
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

IVAN ALEXANDRE PAIZ TIERNO

Assessment of Data-driven Bayesian
Networks in Software Effort Prediction

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Prof. Dr. Daltro José Nunes
Advisor

Porto Alegre, March 2013

CIP – CATALOGING-IN-PUBLICATION

Tierno, Ivan Alexandre Paiz

Assessment of Data-driven Bayesian Networks in Software
Effort Prediction / Ivan Alexandre Paiz Tierno. – Porto Alegre:
PPGC da UFRGS, 2013.

63 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2013. Advisor: Daltro José Nunes.

1. Software effort prediction. 2. Bayesian networks. 3. Ma-
chine learning. 4. Data mining. I. Nunes, Daltro José. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb
Coordenador do PPGC: Prof. Álvaro Freitas Moreira
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS 4

LIST OF FIGURES . 5

LIST OF TABLES . 6

ABSTRACT . 7

1 INTRODUCTION . 8

2 BACKGROUND . 12
2.1 Bayesian Networks . 12
2.2 Feature Subset Selection . 15
2.3 Validation . 16
2.4 Evaluation Metrics . 18
2.5 Classifiers vs Regression - Conversion of BNs predictions 20
2.6 Related work . 21

3 EXPERIMENTS SETUP . 23
3.1 Data sets and Data Preparation . 24
3.2 Data Pre-processing . 27

4 RESULTS AND ANALYSIS . 30

5 CONCLUSIONS . 39
5.1 Future Work . 40

APPENDIX A . 42

APPENDIX B - RESUMO (PORTUGUÊS) 49

REFERENCES . 60

LIST OF ABBREVIATIONS AND ACRONYMS

ANN Artificial Neural Networks

BNs Bayesian Networks

CBR Case Based Reasoning

CPT Conditional Probability Table

DAG Direct Acyclic Graph

FSS Feature Subset Selection

MAR Mean Absolute Residuals

MBRE Mean Balanced Relative Error

MMRE Mean Magnitude of Relative Error

MdMRE Median Magnitude of Relative Error

NPT Node Probability Table

OLS Ordinary Least Squares

LIST OF FIGURES

Figure 2.1: Prediction process. 12
Figure 2.2: A simple Bayesian Network. 13
Figure 2.3: Feature selection process. 16
Figure 2.4: K-fold cross-validation. 17

Figure 3.1: Experiments outline. 24
Figure 3.2: Desharnais data set. 26
Figure 3.3: Maxwell data set. 26
Figure 3.4: Cocomo81 data set. 26
Figure 3.5: BNs on log-transformed data . 28

Figure 4.1: BNs confusion matrices with and without feature subset selection
over Desharnais data set . 31

Figure 4.2: BNs confusion matrices with and without feature subset selection
over Maxwell data set . 31

Figure 4.3: BNs confusion matrices with and without feature subset selection
over Cocomo81 data set . 32

Figure 5.1: Experiments outline. 42
Figure 5.2: Boxplot Residuals Desharnais . 43
Figure 5.3: Boxplot MREs Desharnais . 44
Figure 5.4: Boxplot Residuals Maxwell . 45
Figure 5.5: Boxplot MREs Maxwell . 46
Figure 5.6: Boxplot Residuals Cocomo81 . 47
Figure 5.7: Boxplot MREs Cocomo81 . 48

Figure 5.8: Predição numérica com Redes Bayesianas e transformação logarítmica. 53

LIST OF TABLES

Table 2.1: MMRE example . 18
Table 2.2: Numerical conversion for BNs on Desharnais data set. 20
Table 2.3: Numerical conversion for BNs with FSS on Desharnais data set. . . . 20
Table 2.4: Numerical conversion for BNs on Maxwell data set. 21
Table 2.5: Numerical conversion for BNs with FSS on Maxwell data set. 21

Table 3.1: Basic information on data sets . 25
Table 3.2: Discretized effort classes of Desharnais data set 27
Table 3.3: Discretized effort classes of Maxwell data set 28
Table 3.4: Discretized effort classes of Cocomo81 data set 29

Table 4.1: Models performance on Desharnais data set 33
Table 4.2: Models performance on Maxwell data set 34
Table 4.3: Models performance on Cocomo81 data set 35
Table 4.4: Frequency of Underestimates and Overestimates 36

Table 5.1: Classes de esforço discretizadas da base de dados Desharnais. 53
Table 5.2: Classes de esforço discretizadas da base de dados Maxwell. 53
Table 5.3: Classes de esforço discretizadas da base de dados Cocomo81 54
Table 5.4: Desempenho dos modelos na base de dados Desharnais. 55
Table 5.5: Desempenho dos modelos na base de dados Maxwell. 56
Table 5.6: Desempenho dos modelos na base de dados Cocomo81. 57

ABSTRACT

Software prediction unveils itself as a difficult but important task which can aid the
manager on decision making, possibly allowing for time and resources sparing, achieving
higher software quality among other benefits. One of the approaches set forth to perform
this task has been the application of machine learning techniques. One of these techniques
are Bayesian Networks, which have been promoted for software projects management due
to their special features. However, the pre-processing procedures related to their applica-
tion remain mostly neglected in this field. In this context, this study presents an assess-
ment of automatic Bayesian Networks (i.e., Bayesian Networks solely based on data) on
three public data sets and brings forward a discussion on data pre-processing procedures
and the validation approach. We carried out a comparison of automatic Bayesian Net-
works against mean and median baseline models and also against ordinary least squares
regression with a logarithmic transformation, which has been recently deemed in a com-
prehensive study as a top performer with regard to accuracy. The results obtained through
careful validation procedures support that automatic Bayesian Networks can be compet-
itive against other techniques, but still need improvements in order to catch up with lin-
ear regression models accuracy-wise. Some current limitations of Bayesian Networks
are highlighted and possible improvements are discussed. Furthermore, this study pro-
vides some guidelines on the exploration of data. These guidelines can be useful to any
Bayesian Networks that use data for model learning. Finally, this study also confirms the
potential benefits of feature selection in software effort prediction.

Keywords: Software effort prediction, bayesian networks, machine learning, data min-
ing.

8

1 INTRODUCTION

In recent decades, the unremitting, relentless society’s strive towards automation and
the progress on information systems technologies made software virtually ubiquitous.
With the ever increasing demand for software and the ensuing industry growth, software
projects kept growing in size and importance. Nevertheless, the task of managing and
organizing them did not become any easier or predictable. Related hereto is the difficulty
of predicting their outcomes with regard to budget, quality, etc. The task of software
prediction remains a far from tamed problem.

Accurate software predictions can provide significant advantages in project planning
and are essential for effective project management being strongly linked to the success of
software projects. Underestimating the effort can cause delays, degrade software quality
and bring about increased costs and dissatisfied customers. On the other hand, over-
estimating the project’s effort can lose a contract bid or waste resources that could be
allocated elsewhere. Although the primary objective of software effort prediction is bud-
geting, there are also other important objectives. Boehm, Abts and Chulani (2000) men-
tion tradeoff and risk analysis, project planning and control and software improvement
investment analysis.

Software prediction models strive to perform forecasts for new projects based on
knowledge, be it obtained from historical data, from experts or a hybrid approach that
integrates both forms. The outset of this research field took place in the sixties and the
first proposed approaches relied on expert knowledge. Soon after, the first formal models
were proposed. One of the longest established approaches are parametric models which
have COCOMO (BOEHM, 1981) and its updates as their most recognized representative.
These models are generally based on a formula that relates the size of a task to the effort
needed to perform it (SHEPPERD, 2007). A detailed review on these models and the
pioneering researches on software prediction can be found in Boehm, Abts and Chulani
(2000).

In case of knowledge obtained from data, the models make use of software projects
data sets. These data sets contain information on projects that already finished. The
prediction model takes into account the characteristics of the new project, i.e., the project
we want to predict, and makes a prediction based on knowledge obtained from the projects
stored in the data set. The underlying assumption is that the past patterns will hold for the
new project.

Throughout this study, we use ‘software prediction’ as a synonym for ‘software esti-
mation’. Both forms are common in the literature. Furthermore, the terminology ‘soft-
ware cost estimation’ is often used interchangeably with ‘software effort estimation’ be-
cause these two variables are very closely related to each other. Moreover, there is a
further distinction between development effort estimation and maintenance effort estima-

9

tion. In this study we used development effort estimation data.
The variable to be predicted by the prediction model is known as dependent variable

or also response variable. The attributes or variables used by the model to predict the
response variable are referred to as explanatory or independent variables. The dependent
variables typically found in literature can be classified as cost or quality related (FEN-
TON; RADLINSKI, 2009).

Since the nineties, researchers began applying machine learning techniques for soft-
ware prediction (FINNIE; WITTIG; DESHARNAIS, 1997) (SHEPPERD; SCHOFIELD,
1997) (FENTON; NEIL, 1999). Ever since, studies on machine learning techniques for
software prediction have grown more and more common. Currently this is visibly a thriv-
ing trend with many empirical studies being published regularly and comprising a very
active research field. In a systematic review, Wen et al. (2012) identified eight machine
learning techniques employed in software prediction including CART (a type of decision
tree) (FINNIE; WITTIG; DESHARNAIS, 1997), Case-based Reasoning (CBR) (SHEP-
PERD; SCHOFIELD, 1997), Artificial Neural Networks, Genetic algorithms, Support
Vector Regression among others. CBR, Artificial Neural Networks and Decisions Trees
were considered by Wen et al. (2012) the most popular machine learning techniques in
software development effort prediction research.

One of these machine learning techniques are Bayesian Networks(henceforth BNs),
which is the technique we assess in this study. BNs were initially proposed and are gener-
ally more common in software quality prediction (FENTON; NEIL, 1999). Since then
there has been a steady increase of efforts towards BNs in software effort prediction
(RADLINSKI, 2010) and in software projects management in general (SOUZA et al.,
2011). Wen et al. (2012) ranked BNs fourth in popularity in this research field among the
machine learning techniques. This technique has some distinguishing features that make
it look suitable to deal with the uncertainties prevalent in this field. BNs will be discussed
in more detail in the next chapter.

In spite of the increasing volume of research on machine learning models, these tech-
niques are not yet popular in industry. Surveys have shown that expert judgment is still the
predominant prediction method in industry, e.g., (JØRGENSEN, 2004) (JØRGENSEN;
SHEPPERD, 2007), even though most of the research efforts focus on more formal mod-
els (JØRGENSEN; SHEPPERD, 2007). It is not clear whether expert-based or data-based
predictions are most accurate. Jørgensen (2004) points out that for some situations expert
estimates are likely to be more accurate, whereas in others the use of models may reduce
large situational or human biases, i.e., the use of formal models can help keeping human’s
predictions in check. Several studies recommend the combination of both approaches to
increase estimates reliability.

This research area has not been without its hindrances and difficulties. In spite of the
large number of empirical studies there are conflicting results and conclusions instability
(KORTE; PORT, 2008) (MAIR; SHEPPERD, 2005) (MENZIES et al., 2010). Shepperd
and Macdonell (2012) state that ‘empirical evaluation has not led to consistent or easy to
interpret results. This matters because it is hard to know what advice to offer practition-
ers’. One example of this are studies comparing CBR to regression models. A systematic
review (MAIR; SHEPPERD, 2005) on this subject identified seven studies favouring re-
gression, nine studies favouring CBR and four with inconclusive results. In case of the
studies on CBR and regression, a problem identified was that some studies that favoured
CBR were not applying regression in line with the best statistical practices, thus provid-
ing an ‘optimistic’ assessment on CBR. In a very popular paper, Shepperd and Schofield

10

(1997) proposed a CBR method reporting that it overcomes regression, but in other studies
these results were not confirmed. Shepperd and Schofield (1997) did not split the data into
training and test sets and did not perform a logarithmic transformation on the data, which
makes OLS regression perform poorly. This was discussed by the very author in Shepperd
and Macdonell (2012) wherein the authors discuss the situation in the field and propose
ways to address these problems. There are many other examples of contradictions like
this in comparisons among different machine learning and statistical techniques. Errors
in procedures have been widespread in this field as discussed in, e.g., Shepperd and Mac-
donell (2012) and Kitchenham and Mendes (2009). The latter study points out mistakes
in the application of regression models. Myrtveit, Stensrud and Shepperd (2005) discuss
reasons for the unreliability of conclusions in detail, chiefly focusing on validation and
measuring, and concluded that more reliable research procedures are necessary. Several
other researchers have made suggestions about the validation of results in comparative
studies, e.g., Kitchenham et al. (2001), Mendes and Mosley (2008) and Shepperd and
Macdonell (2012).

In this context, there have been efforts to find out the underlying reasons for these
inconsistencies. Besides errors in procedures, part of these inconsistencies stem from
differences in the experimental designs employed and the data sets used. An identified
problem is that the ranking of techniques is not stable across different data sets. Thus,
results obtained from experiments on a single data set cannot be generalized and categor-
ical conclusions are not possible. To counter this problem the use of multiple data sets
has been recommended. Still with regard to the data sets, some studies have investigated
the effect of the type of data sets employed, i.e., investigations on whether cross-company
or within-company data sets are more effective for building software prediction models.
Some studies did not identify much difference between the two kinds of data sets and
others did find within-company data to provide better results. Kitchenham, Mendes and
Travassos (2007) present a systematic review on this subject concluding that it was not
possible to bring forward a definite conclusion about which one is better due to differ-
ences in empirical procedures of the studies on the subject. They observe that studies that
used small data sets and leave-one-out cross validation did find significant advantage in
using within-company data. Furthermore they highlight that it is clear some companies
would be ill-served by cross-company data whereas others would benefit.

An observable tendency in comparative studies of this field is publication bias. Wen et
al. (2012) observed that researchers frequently tended to favour their proposed technique.

Another source of problems that was promptly investigated is the subject of accuracy
metrics. Several studies, e.g., Foss et al. (2003), Myrtveit, Stensrud and Shepperd (2005),
Korte and Port (2008), identified this as a reason for unreliability of comparative studies’
results. Researchers have found that different accuracy metrics can bring about rank re-
versal problems, i.e., a change in the order of ranked techniques. Particularly, a metric
that has been criticized is the once very popular MMRE due to its susceptibility to outliers
and tendency to favour underestimates. A more detailed analysis of the metrics will be
exposed in the next chapter.

A significant barrier for analysis of findings and replication of experiments has been
the lack of publicly available data sets since the employment of proprietary data sets
inhibits the replication of experiments and confirmation of results. The PROMISE repos-
itory (MENZIES et al., 2012) is an initiative that attempts to counter to some extent the
lack of transparency that pervades this research field. Data sets are made available allow-
ing for replication and scrutiny of findings with the intent of improving research efforts

11

and to stir up analyses and discussion.
A recurrent observation in recent times is that the vast majority of software prediction

studies focusses on prediction models (SHEPPERD; MACDONELL, 2012) and little at-
tention has been addressed to data sets, pre-processors and validation methods. Studies
like Shepperd (2007) point out the importance of investigating data quality. A recent
trend has been the investigation of data analysis and preparation prior to model build-
ing. This is quite an useful effort, for it clarifies and draws attention to this important
but sometimes neglected topic of data preparation. In recent years, discussions in the re-
search community about these issues have grown more common. This has been a source
of many problems in software prediction research. Some studies took up specifically the
investigations on data pre-processing techniques on data sets prior to performing software
prediction, like Chen et al. (2005) that investigated feature selection for prediction models
and Liu et al. (2008) that propose a data pre-processing framework.

In this context, this study strives to assess the employment of data-driven BNs in soft-
ware effort prediction, including related analyses on data pre-processing and on how to
improve their accuracy, discussing their current limitations and possibilities of improve-
ments. Even though BNs have been promoted due to their special features, their applica-
tion in this field remains relatively limited due to some practical difficulties that are rarely
discussed. The investigation of data-driven BNs matters because even if this might not
become the best way to apply them, the optimization of data exploration is an important
direction of development for this technique. By finding ways to optimize the exploration
of data there can be benefits to any BNs that use data.

This thesis is organized as follows. In chapter 2 we present background information
for our experiments, including an overview of Bayesian Networks and feature subset se-
lection, a discussion on validation methods and accuracy metrics, a numerical conversion
method for BNs and also we mention some closely related studies. In chapter 3 we bring
forward the experiment setup and lay out our empirical procedures and decisions. In
chapter 4 we analyze the results and make comparisons with other studies and finally put
forth the conclusions in the last chapter.

12

2 BACKGROUND

In this chapter we set forth some background on BNs and on the empirical procedures
employed in software effort prediction. We make a brief overview of Bayesian Networks,
the technique in focus, and feature subset selection. We discuss the data preparation
and pre-processing methods necessary to carry out the experiments and the conversion
method necessary to compare BNs predictions to OLS regression. It is important to bear
in mind throughout that we are comparing a classifier (BNs) to a regression technique
(OLS regression). The Bayesian classifiers have as an outcome a range of probability
distributions for each class, whereas OLS regression predicts a number. Therefore the
conversion method mentioned is necessary to make the comparison possible. We also
discuss the validation and accuracy evaluation methods and the conclusions that can be
drawn from them. Finally, we contextualize this work with some closely related studies.

This study focuses on data based predictions which is basically a data mining task.
Fig. 2.1 illustrates the prediction process.

Figure 2.1: Prediction process.

2.1 Bayesian Networks

BNs (TAN; STEINBACH; KUMAR, 2005) (WITTEN; FRANK; HALL, 2011) are a
modeling technique which boasts some distinguishing characteristics. A striking feature
of this modeling approach is the possibility, through application of probability theory, to
model uncertainty and subjectivity. The probability distributions allow for the integration
of objective evaluations, learned from data, with subjective evaluations defined by experts.

13

Figure 2.2: A simple Bayesian Network.

Furthermore this allows the model to output several possible outcomes with varying de-
grees of certainty, unlike deterministic models like linear regression which simply output
a single possible outcome, i.e., a numeric value.

Another highlighting characteristic of BNs is the possibility to carry out what-if anal-
yses and tradeoff assessment. This can be done by feeding the model with different input
values, referred to as evidences, and observing the effects on the outcome and on the rest
of the network. Some interesting possibilities arise with this. Through this feature, BNs
can stand as an experimenting platform, allowing for the investigation of several scenar-
ios and acquainting the software manager with the software process sensitive factors and
the importance of specific factors. Furthermore, the converse is also possible. Desired
outcomes can be entered and the models provide the range of inputs required to achieve
those outcomes.

BNs comprise a qualitative part, i.e., the graph structure that models the dependen-
cies among a set of variables, and a quantitative part made up of node probability tables
(NPT’s) which contain the probability distributions for each node. The graph structure
is a directed acyclic graph (DAG) encoding the dependencies among the variables. The
nodes represent the relevant variables or factors in the domain being modeled, and each
directed arc depicts the dependencies among these factors which can be causality relation-
ships. The NPT’s contain the prior probabilities (in case the variable has no parents) or
conditional probabilities (in case the variable has one or more parents). The conditional
probabilities define the state of a variable given the combination of states of its parents.
With the definition of these probabilities during the training phase a test record can later
be classified. These components are illustrated on a simple example in Fig. 2.2. In this
figure, three variables are modelled. The dependent variable is Effort and the independent
variables are People Quality and Programming Language. The state of the dependent
variable varies according to the state of the independent variables. This is shown in the
probability table of the dependent variable. The probability distributions are obtained in
the training phase.

BNs are named after and founded on the Bayes theorem, which models the relation-
ship between two variables. This theorem establishes a relationship between the prior
and posterior probabilities. Before introducing the theorem we review some concepts.
The prior probability (e.g., P(Y)) is simply the probability of a variable taking on some
specified value regardless of other variables, that is, it is the default probability set before
any evidence is known. The joint probability P(X, Y) is the probability of variable X
taking on a determined value and variable Y taking on another determined value simul-

14

taneously. The conditional probability P(Y = y | X = x) is the probability of Y taking
on value y given that X takes on value x (the right-hand side is usually omitted for con-
venience, i.e., it reads P(Y | X)). Posterior probability is the probability of a variable
taking on some value, given some evidence, i.e., it is the updated probability after new
information is inserted into the network. The Bayes theorem allows us to express the
posterior probability P(Y|X) in terms of the prior probability P(Y), the class-conditional
probability P(X|Y), and the evidence, P(X):

P (Y |X) =
P (X|Y)P (Y)

P (X)
(2.1)

After the model building takes place, the model is set with the prior probabilities. When
a variable of the model is known, this information can be entered into the network. Such
information is referred to as evidence. By means of the Bayes theorem the probabilities
of the network can be updated according to new evidences inserted into the network. This
updating process is known as propagation. This process allows for the experimenting
possibilities mentioned in the first paragraphs of this section, namely performance of
what-if scenarios and tradeoff analysis.

BNs can be modeled fully based on data, through a hybrid approach, i.e., integrating
data modeling and experts knowledge or fully expert-based. When the BNs are learnt
from data the learning algorithm strives to identify the dependencies among the variables
and thus making up the network structure, i.e., the DAG. The algorithm will identify a
model that best fits the relationship between the attribute set and the response variable on
the input data (training data). Thereafter the probability distributions are learned for every
combination of variables. This happens during the so called training or learning phase.

Besides learning from data, this modeling technique allows the experts to get involved
with the construction of the model. Due to the possibility of incorporating experts knowl-
edge, BNs can work even when data availability is limited, which is a common constraint
in software companies. Expert knowledge can be coded by means of subjective or qual-
itative variables and also by defining the network topology. The expert can get involved
with model building either in a limited way, by establishing restrictions and enforcing
particular dependencies or more comprehensively by defining the graph structure and the
variables and their probability distributions.

Fenton and Neil (1999) are among the pioneers on the employment of BNs in software
prediction. The authors promoted BNs for software quality prediction explaining the
advantages of BNs over regression based models. Other researchers, e.g., Stamelos et
al. (2003). Pendharkar, Subramanian and Rodgers (2005), Mendes and Mosley (2008),
employed BNs for software effort prediction. Considering the uncertainties inherent to
software projects, BNs appear to be quite suitable and as shown in Radlinski (2010), a
growing trend.

The BNs found in this research field most frequently consist of discrete variables.
The tool used in this study currently does not support continuous variables. Although
some tools offer support to continuous variables, this support has limitations, e.g., im-
posing restrictions in the relationships among the variables or making assumptions about
the distributions of the continuous variables. Radlinski (2010) points out the difficulties
in formalizing and eliciting expert knowledge and lack of usability towards this purpose
in current tools. Moreover, the tools currently demand a background in artificial intel-
ligence and statistics which is an obstacle for industry adoption. There are progresses
concerning continuous variables in machine learning research and there are also constant
developments in the BNs tools, so these limitations could be overcome in the future.

15

2.2 Feature Subset Selection

An important data pre-processing step is the selection of variables or feature selec-
tion. This technique attempts to identify a set of highly predictive attributes and discards
attributes unrelated to the response variable or that do not help the model to predict more
accurately. The goals are three-fold: improve prediction performance, provide faster and
more cost-effective predictors and provide a better understanding of the underlying pro-
cess that generated the data (GUYON; ELISSEEFF, 2003).

Often, data sets contain variables of little or no importance to the prediction task at
hand. There can also be redundant variables which are basically duplicated information
and also cannot provide additional knowledge to the model. These variables can only
confuse the classifier algorithm and reduce the model’s accuracy. In part, the negative
effects on accuracy can be ascribed to the phenomenon known in the data mining field as
the “curse of the dimensionality” (TAN; STEINBACH; KUMAR, 2005). This refers to
the situation in which large numbers of variables make the data too sparse in the space that
it occupies, making it more difficult for the algorithm to find patterns and similarities in
data entries due to the increase of dissimilarities among the entries. Each new independent
variable added to a model adds another dimension to the space and makes the finding of
patterns more difficult and unreliable.

The removal of such variables can generate simpler and more accurate models. Some
of these variables can be promptly identified by commonsense, e.g., the ID of a software
project is irrelevant to predict its cost, and by domain knowledge, e.g., some sizing and
duration variables are usually removed in the software prediction field due to not being
known at the beginning of the project. Thus, this removal reflects the real scenario under
which predictions happen. For instance, the software manager does not know how many
lines of code the final product will have in the beginning of the project, so the model
should not use this information during training. Other variables can be identified by the
feature selection algorithm which will strive to select the variables with higher predictive
value.

The feature selection process comprises four parts: a search method to deliver can-
didate subsets, a measure for evaluating the subset, a stopping criterion and a validation
procedure (DASH; LIU, 1997). Conceptually, the search method looks for the optimal
feature subset over all possible subsets. An exhaustive search is often unfeasible how-
ever, because the size of the search space grows exponentially on the number of features.
So the search typically ends when the procedure meets a stopping criterion. The stopping
criterion can be based on a combination of conditions like the number of iterations, the
size of the subset and a threshold on the score of the subset according to the evaluation
measure. The best subset according to the evaluation measure used is selected and vali-
dated with the classifier algorithm. This process is illustrated in Fig. 2.3 taken from Dash
and Liu (1997).

Feature subset selection techniques can be generally classified as filters or wrappers
(HALL; HOLMES, 2003) (KOHAVI; JOHN, 1997). Filters perform the selection using
a scoring metric that attempts to predict how effective the candidate subset will be for the
classifier. Wrappers on the other hand, evaluate the candidate subsets by running the target
classifier. The classifier is invoked for every feature subset considered by the search. So,
instead of attempting to predict the effectiveness of the feature subset, wrappers actually
use the classification algorithm to verify its effectiveness. A natural drawback is that
wrappers are more demanding computationally since the computing involved in invoking
the classifier so many times is much heavier than using a simpler evaluation measure like

16

Figure 2.3: Feature selection process.

filters do.
Feature subset selection has been employed in software prediction studies with posi-

tive results. Chen et al. (2005) claim to be the first to employ feature selection in software
prediction. Liu et al. (2008) incorporate feature selection in their proposed pre-processing
framework and also confirm the benefits of this technique. The results in Radlinski and
Hoffmann (2010) consistently show improvements across a variety of classifiers when
feature selection was undertaken. Finally, Dejaeger et al. (2012) also report as one of
their main findings and a confirmation of previous results, the increase in accuracy ob-
tained by performing feature selection.

2.3 Validation

In order to assess a model’s accuracy, some method of validation is used. These meth-
ods strive to provide an unbiased measure of the model’s accuracy generally by separating
the data used to build the model from the data used to assess accuracy, i.e., the test data
set. The predictions inferred by the model are compared against the actual values of the
response variable which are stored in the test data set. Common validation methods are
holdout, random sub-sampling, k-fold cross validation and leave-one-out cross validation
(TAN; STEINBACH; KUMAR, 2005).

The holdout validation method splits the data into two sets. One of them is the training
set and the other is the test set. A common split of the data is 2/3 of the records for the
training set and 1/3 of the records for the test set. In this method the model is built using
the training set to feed the model. The idea underlying this split is to avoid using the
training data to evaluate accuracy since the model used this very data for model building.
Instead, the test set, which contains records unseen by the model, is used to measure the
accuracy of the model more reliably.

The k-fold cross validation method splits the data into k partitions. The learning algo-
rithm uses k-1 partitions for model learning and 1 partition for model testing in each round
and the accuracy is averaged out in the end of the process. The test set rotates through
all partitions, so that in the end every record has been used for training and testing. This
is illustrated in Fig. 2.4 taken from Liu et al. (2008). Leave-one-out cross validation is a
special case of k-fold cross validation in which k is equal to the number of records. Both

17

Figure 2.4: K-fold cross-validation.

these methods address many of the shortcomings of the holdout method. It is not yet a
settled matter whether leave-one-out or k-fold cross validation is better.

We have observed in our experiments that the validation method can substantially af-
fect the results in software effort prediction. Keeping all the remaining conditions the
same, significantly different results can occur depending on the method chosen, some-
times bringing about the so called ranking reversal problem, i.e., changing the ranking
of the techniques. We noticed in particular that the holdout method can provide different
results in comparison to k-fold cross validation or leave-one-out cross validation. The
holdout method is more prone to biased results and therefore considered less reliable
for comparative studies. This can contribute to the conflicts and conclusions instability
prevalent in the field.

One way to counter this bias is to employ random sub-sampling. This method consists
in repeating the hold-out split resampling the training and test sets for a pre-specified
number of times which allows constructing a confidence interval indicating the reliability
of the results. Dejaeger et al. (2012) employ this validation method for the larger data
sets.

Other methods frequently employed are k-fold and leave-one-out cross validation.
Recently, some researchers have shown a preference for leave-one-out cross validation
but this is not a consensus. Leave-one-out incurs higher variance in the models accu-
racy because the test sets contain only one record. We highlight that in opposition to the
studies that promote this validation method, it is stated in the WEKA manual that k-fold
cross validation is preferred over leave-one-out due to stratification possibilities which
are implemented in this tool. The test data set in leave-one-out cross validation can-
not be stratified since it contains only one record. We observed in our experiments that
leave-one-out cross validation results are similar to k-fold cross validation’s and since we

18

consider that this advantage of k-fold outweighs the claimed advantages of leave-one-out,
we decided to perform 10-fold cross-validation in our experiments. Other studies in the
field like Radlinski and Hoffmann (2010) have also employed this method.

We consider our validation procedures to be robust and a distinguishing feature com-
pared to other studies assessing BNs’ numeric accuracy, like Mendes and Mosley (2008)
and Pendharkar, Subramanian and Rodger (2005). Studies on BNs have frequently used
the holdout method to assess accuracy. We are not aware of other studies employing k-
fold or leave-one-out cross-validation when converting the BNs predictions. This numeric
conversion that will be discussed in section 2.5 makes the employment of more sophisti-
cated validation methods like this somewhat cumbersome, since it is not automated in the
tools.

2.4 Evaluation Metrics

This has been another controversial topic. There is no consensus on what is the most
reliable metric (MYRTVEIT; STENSRUD; SHEPPERD, 2005). The de facto standard
metric some years ago used to be MMRE (FOSS et al., 2003), but due to some flaws it
lost popularity. MMRE, like other numerical metrics used in this study, is based on the
magnitude of relative error. MRE is a measure of the relative error of the actual effort ei
against the predicted effort êi.

MREi =
|ei − êi|
ei

(2.2)

MMRE measures the mean of all the predictions’ MREs. This metric has not passed
without criticism (FOSS et al., 2003) (KORTE; PORT, 2008), for it is highly affected by
outliers and it favours models that underestimate. Miyazaki et al. (1991) were the first
to observe this. MMRE is biased towards underestimates because the magnitude of the
error is unbounded when overestimating and limited to at most 1 (or 100%) when under-
estimating. This is illustrated in a didactic example taken from Shepperd and Macdonell
(2012) shown in Table 2.1. The table shows two predictions. Both have the same absolute
residuals (90) and are relative to the same actual value (100). However, because MRE is
a ratio measure, the magnitude of overestimates is potentially much larger. For project 1,
which is an overestimate, the MRE is 900% whereas for project 2, which is an underesti-
mate, the MRE is only 90%. This entails that models biased towards underestimates will
tend to have smaller MREs overall, therefore performing better according to MRE based
metrics. Even though this bias is present in all MRE based metrics it is specially so in
MMRE.

Table 2.1: MMRE example
yi ŷi Residual yi − ŷi Absolute residual |yi − ŷi| MRE × 100

Project 1 10 100 -90 90 900
Project 2 100 10 90 90 90

Nevertheless, we will keep it in this study with reservations. In our opinion this metric
is not worthless because it is capable of conveying information that the other two MRE
based metrics do not. It can bring out which models are more prone to be occasionally

19

very inaccurate, since it is more sensitive to outliers, i.e., the wildly inaccurate predic-
tions. Both MdMRE and Pred conceal this information. Furthermore, the MMRE has
been widely employed in software prediction studies. Keeping this metric’s flaw in mind,
one can check the performance under the other metrics, and specially MAR and MBRE
(explained below) which counter precisely this bias of MMRE towards underestimates.

MdMRE is the median of the MRE’s. It smoothes out MMRE’s bias, for it is more
robust to outliers. Amply inaccurate predictions do not bear on MdMRE like on MMRE.
So, on the one hand it shows which models are generally more accurate, but on the other
hand it conceals which models can be occasionally very inaccurate. This effect is even
more pronounced on Pred metric because it ignores completely the predictions with large
errors. Pred measures how frequently predictions fall within a specified percentage of
the actual effort, e.g., Pred25 tells us how often the predicted effort is within 25% of
the project’s actual effort (25 is a common parameter value for this metric). Therefore,
this metric ignores the predictions whose errors are in excess of 25% magnitude, i.e., it
does not matter for this metric if the error is 30% or 200% (assuming Pred25). This is a
limitation which we criticize about these metrics. Obtaining a model whose predictions
rarely lie too far from the actual value is certainly advantageous. This is a desirable quality
in a model and these metrics overlook this aspect.

Several studies proposed new metrics discussing their characteristics. But none of
these metrics was widely adopted in the research field. MdMRE and Pred appear to be
still the most popular. Foss et al. (2003) concluded that every metric studied has flaws or
limitations and that it is unlikely that a single entirely reliable metric will be found. So,
the use of complementary metrics is recommended.

Miyazaki et al. (1991), being the first to observe MRE’s bias towards underestimates,
proposed MBRE (Mean Balanced Relative Error). This metric addresses this flaw because
it makes the relative error unbounded towards both underestimates and overestimates.
By making the ratio relative to the lowest value (between actual and predicted values)
the bias of MRE based metrics is eliminated, therefore avoiding favouring models that
underestimate.

BREi =
|ei − êi|

minimum(ei, êi)
(2.3)

However, it has a flaw in that it does not account for negative predictions. Linear
regression models can at times predict a negative number and therefore distort a bit the
results under MBRE. Kitchenham et al. (2001) propose the use of the absolute residuals
as another alternative to bypass these problems of MRE based metrics. MAR (Mean
Absolute Residuals) being an absolute measure also avoids this bias of ratio metrics like
MRE. MAR has the disadvantage of not being comparable across different data sets.

MARi =

∑n
i |ei − êi|
n

(2.4)

We consider our selection of metrics to be robust with MAR and MBRE being com-
plementary to the MRE based metrics and making the evaluation more reliable. Higher
accuracy in MMRE, MdMRE, MAR and MBRE is inferred from lower values, whereas
for Pred metric, the higher the value the more accurate the model. In our result tables, the
results under MMRE, MdMRE, Pred and MBRE are multiplied by 100 to keep them in a
percentage perspective, e.g., 0.253 turns into 25.3.

20

2.5 Classifiers vs Regression - Conversion of BNs predictions

Generally, comparative studies assess either classifiers or regression models. Not
many researchers have endeavoured to compare classifiers to regression models. Al-
though both these classes of models can be employed for software prediction, the rep-
resentation difference of the dependent variable entails that comparisons between these
models be somewhat infrequent. This is, in our opinion, an interesting undertaking, for it
allows the comparison of techniques that are often in separated worlds.

Mendes and Mosley (2008) and Pendharkar, Subramanian and Rodger (2005) have
done this, comparing BNs to regression techniques. In order to compare BNs’ results to
linear regression we used a variation of the conversion method first proposed by Pend-
harkar, Subramanian and Rodger (2005) in which the numerical prediction is the sum of
the multiplication of each class’ mean by its respective class probability after the proba-
bilities are normalized so that their sum equals one. Instead of using the mean however,
we used the median. Each class’ median value Md is multiplied by its respective normal-
ized class probability ρ, output in the probability distributions of the BN’s predictions.
See formula below.

Effort = ρclass1Mdclass1 + ρclass2Mdclass2 + ...+ ρclassNMdclassN . (2.5)

Like the aforementioned studies, we used the mean in a preliminary study (TIERNO;
NUNES, 2012). We report here accuracy improvements under MdMRE and Pred metric
and significant and consistent improvements in MMRE and MAR results when using the
median for the numerical conversion. This modification increased accuracy and lessened
the amount of outliers, i.e., wildly inaccurate predictions. This happens because the mean
of each class is more affected by outliers than the median. These data sets are positively
skewed, therefore each class’s mean value (and specially the highest effort class) will be
closer to where the outliers are and farther from the majority of the data, pushing the
numerical conversion of the output towards higher values. Therefore, when skewness is
present the median is a more faithful and accurate representative of the data which makes
up each class. An evidence supporting this reasoning is that the larger improvements were
achieved on Maxwell data set which is the more skewed one.

Table 2.2: Numerical conversion for BNs on Desharnais data set.
Prediction System MMRE MdMRE Pred MAR

Bayesian Networks (mean) 70 35.65 38.27 2556.98
Bayesian Networks (median) 57.23 32.66 33.33 2153.52

Table 2.3: Numerical conversion for BNs with FSS on Desharnais data set.
Prediction System MMRE MdMRE Pred MAR

Bayesian Networks + FSS (mean) 68.94 35.49 39.5 2509.52
Bayesian Networks + FSS (median) 56.18 34.16 39.5 2133.84

The effectiveness of this conversion method can be seen in the tables. Table 2.2 shows
the results for BNs on Desharnais data set. Table 2.3 shows the results for BNs with the
employment of feature subset selection on the same data set. Tables 2.4 and 2.5 show

21

the results on Maxwell data set. These tables show the results comparing the conversion
with the mean against the conversion with the median. BNs with and without feature
selection are different prediction systems. So, the effect of the conversion method can be
assessed by comparing the results on the same prediction system. Comparisons between
the two prediction systems do not belong in this section and will be discussed in the results
chapter. Here we are discussing only the improvements provided by this adaptation to the
method proposed in Pendharkar, Subramanian and Rodger (2005).

Table 2.4: Numerical conversion for BNs on Maxwell data set.
Prediction System MMRE MdMRE Pred MAR

Bayesian Networks (mean) 132.69 64.44 22.58 6726.23
Bayesian Networks (median) 86.18 58.77 24.19 4655.29

Table 2.5: Numerical conversion for BNs with FSS on Maxwell data set.
Prediction System MMRE MdMRE Pred MAR

Bayesian Networks + FSS (mean) 163.53 67.74 19.35 6281.83
Bayesian Networks + FSS (median) 97.50 55.99 27.42 4854.74

The effect of using the median in the conversion is quite clear for both prediction sys-
tems and in both data sets. However on Desharnais data set under Pred metric there is no
improvement. This can be ascribed to the limitation about Pred discussed in the previous
section. This metric ignores predictions whose errors are larger than the parameter used,
i.e., 25. All errors over this threshold are ignored. So an error that is reduced from 100%
MRE to 50% MRE will not affect this metric despite being a valuable improvement. We
can infer from this that the improvements happened in the predictions that lie outside the
25% error range since all the other metrics clearly show there were improvements.

We can see the impact of this adaptation is quite significant on the Maxwell data set,
which is the more skewed one.

This adaptation is an interesting result on this study. It is safe to say it provides a more
accurate conversion. This result can probably be more easily grasped in all detail by the
reader after reading the empirical setup in next chapter and the analysis and discussion of
results in the last chapter.

2.6 Related work

In this section we describe some closely related studies.
Radlinski and Hoffmann (2010) carried out a comprehensive benchmarking study

comparing 23 classifiers in WEKA over four public data sets. The authors state their
main research question is: “Is it possible to easily predict software development effort
from local data?”. So they establish two specific constraints: easy predictions and using
local data, i.e., data from a single company. This paper focused more on the practition-
ers viewpoint, trying to avoid complex and time-consuming procedures. So the authors
do not address specific details of the techniques but provide a wide-ranging assessment
of easy-to-use machine learning classifiers. By comparing so many classifiers this study
illustrates very well the lack of stability of the ranking of techniques across different

22

data sets. They mentioned that due to the ranking instability it is difficult to recommend
practitioners with a particular model even though they did conclude that K* technique
with feature selection was the most accurate overall. BNs were among the most accurate
predictors in two of the four data sets but did not particularly stand out. They also demon-
strate that most techniques achieve higher accuracy by performing feature selection. A
difficulty in drawing decisive conclusions with regard to the accuracy of the models from
this study arises with their choice of accuracy metrics.

Mendes and Mosley (2008) outline thorough experiments comparing BNs, CBR, man-
ual stepwise regression and simple mean and median based models for web effort predic-
tion using Tukutuku, a proprietary cross-company data set. The study compares four
automatic and four hybrid BN models. The results were very unfavourable to BNs, with
most of the models being much more inaccurate than the median model and two of them
barely matching it. The authors conclude that manual stepwise regression may be the only
effective technique for web effort estimation. Furthermore, they propose and recommend
that researchers benchmark proposed models against mean and median based models as
they show these can be more effective than more complex models.

One of the latest investigations can be found in Dejaeger et al. (2012) wherein com-
prehensive and thorough experiments are laid out yielding a benchmark of some statistical
and data mining techniques, not including however, BNs. This study benchmarks numeric
predictors, as opposed to Radlinski and Hoffman’s (2010) which assesses classifiers, i.e.,
discrete class predictors. This study included thirteen techniques over eight public and
private data sets. Their results “indicate that ordinary least squares regression with a loga-
rithmic transformation performs best”. They also investigate feature subset selection with
a wrapper approach confirming the improvements brought by this technique. They also
discuss appropriate procedures and address efforts towards statistically rigorous analyses.

A survey covering bayesian networks for software development effort prediction can
be found in Radlinski (2010).

23

3 EXPERIMENTS SETUP

In this chapter we describe details of our experiments, the data sets and the preparation
steps.

We assess data-driven BNs by comparing them to ordinary least squares regression
with a logarithmic transformation, which was found by Dejaeger et al. (2012) to be in-
variably among the most accurate predictors. Quoting the authors, they concluded that
“OLS regression with a logarithmic transformation performs best”. This is a comprehen-
sive study that compared thirteen techniques over nine data sets. We remind the reader
once again that we are comparing a classifier, i.e., a discrete class predictor, to a regression
technique, i.e., a numerical predictor. We do this by converting the BN’s class predictions
to numeric ones by means of the method explained in the previous chapter.

We decided to experiment performing a logarithmic transformation on the data prior
to BNs building. So this variant is included in the comparison amounting so far to three
prediction systems. Furthermore, we also assess the effectiveness of feature selection as
a pre-processing step. So, for each of the aforementioned models there is a variant with
the application of feature selection prior to model building which multiplies by two the
number of prediction systems. So there are four variants of BNs and two variants of OLS
regression amounting so far to six prediction systems.

Finally, we include in the comparison mean and median based models like suggested
by Mendes and Mosley (2008). These models simply use the mean and median of all
projects effort as a constant prediction. These are very simple benchmark models and
an effective model should be able to be more accurate than them. The comparison with
such models allows us to better assess the effectiveness of the other techniques. The in-
clusion of such benchmark models is another recent trend proposed in several studies like
Mendes and Mosley (2008) and Shepperd and Macdonell (2012), with the goal of veri-
fying whether the models are effectively predicting and therefore bringing clarity to the
results. The situation wherein some proposed models were later found not to be predicting
has already happened. Shepperd and Macdonell (2012) illustrate this situation using as an
example a previous study by one of the authors that compared two techniques, namely a
CBR model (also known as estimation by analogies) and a regression to the mean (R2M)
proposed model, concluding that the proposed model performed better. However, when
replicating the experiment including a model of random predictions in the comparison it
was found that those models were performing worse than random, i.e., actually they were
not predicting, thus rendering it meaningless whether one was more accurate than the
other. Similarly, Mendes and Mosley (2008) show that simple mean and median models
can at times be more accurate than more complex models. So, with these two benchmark
models we have in total eight prediction systems.

An abstract outline of the experiments we carried out is shown in Fig. 3.1. We omitted

24

Figure 3.1: Experiments outline.

the different versions of the data set and the two models of BNs on log-transformed data
to avoid cluttering up the figure, for intuitiveness’ sake. Alternatively, the reader can see
in the appendix the figure with the eight prediction systems, see Figure 5.1. So, prepared
data is an abstract entity which represents any of the data sets versions (log-transformed
or not, and discretized or not) and besides the six prediction systems depicted in this figure
there are two BNs on log-transformed data (with and without FSS) which are not shown.
We will explain these procedures in the next sections.

This comparison allows us to assess the impact of the preprocessing steps and the po-
tential of automatic BNs and possible ways for improvements. We believe this is a sound
and meaningful comparison that enables us to draw valid conclusions. As described in the
previous chapter our selection of metrics is varied and robust, with the selection of com-
plementary metrics. We highlight that although MBRE metric has a flaw in that it does
not account for negative estimates, there were no negative estimates in our experiments,
so this flaw had no effect in the results.

These experiments were performed in the WEKA data mining tool (HALL et al.,
2009).

3.1 Data sets and Data Preparation

In this work, we used three widely studied data sets available in the PROMISE repos-
itory (MENZIES et al., 2012). These are the Desharnais, Maxwell and Cocomo81 data
sets. These data sets are relatively clean in comparison to other data sets we have checked.
They are local data sets, i.e., data was collected within a single company. Table 3.1 de-
scribes basic information on the data sets.

The histograms in Fig. 3.2, Fig. 3.3 and Fig. 3.4 illustrate the distribution of data
over effort, the dependent variable. Effort is measured in person-hours on Desharnais
and Maxwell and in person-months of 152 hours on Cocomo81. In all three cases the
variables are positively skewed, i.e., variables with most records situated towards lower

25

Table 3.1: Basic information on data sets
Data set Local data Application Domain Effort unit Range years

Desharnais Yes Unknown Person-Hours 1981-1988
Maxwell Yes Finnish bank Person-Hours 1985-1993
Cocomo81 Yes Various domains Person-Months 1970-1981

values and a few very high outlying values. Desharnais is the least skewed of the three
at 2.00. Maxwell is significantly more skewed at 3.35 and Cocomo81 is the most skewed
one at 4.48. Skewness is a very common characteristic in software project data sets.

This characteristic poses some hindrances for modeling. In order to carry out linear
regression these variables must be transformed as to approximate a Gaussian distribution.
With regard to BNs, this is also a problem since the discretization technique could yield
very uneven classes intervals. In such a scenario the equal-widths discretization technique
(LIU et al., 2002) (TAN; STEINBACH; KUMAR, 2005) can produce empty classes and
dispose most of the data set population within just a couple of classes, thus turning the
validation highly dubious. If almost all of the data is within just a couple of classes
the model can hardly predict wrong or find meaningful patterns. A very high hit-rate
would not be surprising, but the predictions would be meaningless. We have observed
this happen when replicating the experiments discussed in section 7 of Bibi et al. (2010).
The authors use as a concept proof a BN built from a small subset of the ISBSG data set
by means of an interesting methodology to improve the software development process.
Although this model was a byproduct of their research and not the main focus, the authors
claim to have achieved a 100% hit-rate and that was indeed achieved in our replicated
experiments. However, the reasons for this uncommon performance were not discussed.

When software managers carry out effort predictions they do not know, for instance,
how long a project will last, even though they can have an estimation. Therefore, variables
whose values are unknown at the time the prediction is to be performed must be removed,
e.g., ‘Duration’, ‘Defects’. This is standard practice in the software prediction field. On
the other hand, when a sizing variable is quantified in Function points it is usually included
since it can be obtained in the specification phase, depending on the process model.

On Desharnais data set three variables were removed: the ID variable, ‘YearEnd’ and
‘Length’. On Maxwell data set three variables were removed: ‘Duration’, ‘Time’ and
‘SYear’. Finally, no variables were removed from Cocomo81 data set.

In order to carry out OLS regression we removed records with missing values. This
amounts to four records on Desharnais data set and two records on Maxwell data set.
There were no missing values on Cocomo81 data set. For the BNs models all the records
were kept. We also experimented not removing the missing values for the OLS regression
model by performing median imputation and the difference on Desharnais data set, which
is the one with more missing values, was minimal. So, we decided to show the results on
the data set without records with missing values because these are the same we used in
our paper (TIERNO; NUNES, 2012). On Maxwell data set there were two records with
missing values and on Cocomo data set there were none.

The categorical variables were coded to dummy variables for the linear regression
model following good statistical practices (KITCHENHAM; MENDES, 2009). Kitchen-
ham also suggests the removal of outliers. Although this is the standard practice for
statistical procedures, we decided to keep the outliers for both models for two reasons: To
keep the same conditions for both models; and chiefly because these outliers are actual

26

Figure 3.2: Desharnais data set.

Figure 3.3: Maxwell data set.

Figure 3.4: Cocomo81 data set.

27

projects which are rare but can happen. They should not be ruled out as noisy or irrelevant
entries. Other studies in software prediction also keep the outliers, e.g., Dejaeger et al.
(2012), Radlinski and Hoffmann (2010).

For more detailed information on these data sets we refer the reader to the original
works referenced in the PROMISE repository (MENZIES et al., 2012).

3.2 Data Pre-processing

Prior to applying OLS regression, skewed variables must undergo a logarithmic trans-
formation (KITCHENHAM; MENDES, 2009). This transformation has the objective of
making the variables approximate a Gaussian distribution in order to optimize linear re-
gression’s effectiveness.

Prior to building BNs the data underwent discretization. This is one of the most com-
mon pre-processing steps in data mining. This topic has received relatively little attention
in software prediction field. In order to obtain meaningful predictions we used equal-
frequencies discretization (TAN; STEINBACH; KUMAR, 2005). The continuous vari-
ables were discretized to five bins. There are no strict rules on this. Some studies use
only three bins and others use seven or more bins. Five is a common number of bins in
software prediction studies, e.g., Mendes and Mosley (2008), Radlinski and Hoffmann
(2010). On the one hand, the larger the number of bins, the more precise the predictions
can be. But on the other hand, the amount of conditional probabilities grows exponen-
tially on the amount of bins. Thus more data is necessary for reliable model learning.
Considering software project data sets are usually small, a large number of bins tends to
be impractical. There is a short review study on discretization in software prediction field
in Fernández-Diego and Torralba-Martínez (2012). More investigations are needed on
this subject.

A recent technical development on BNs which we could not exploit is the employ-
ment of dynamic discretization (NEIL; TAILOR; MARQUEZ, 2007). This appears to
be a very interesting development since the discretization bears directly on the model’s
accuracy. The authors reported that this discretization method improves accuracy and
provides more flexibility to model builders (FENTON; NEIL; MARQUEZ, 2007). How-
ever, this development is generally not available in BNs tools yet. It was implemented on
commercial BNs tool Agena Risk.

Table 3.2: Discretized effort classes of Desharnais data set
Effort Category Range Median value Log transf. Median

Very Low <= 2161.5 1211 7.0981
Low 2161.5 < x <= 3062.5 2534 7.8375
Medium 3062.5 < x <=4035.5 3636.5 8.1987
High 4035.5 < x <= 7553 5635 8.6367
Very High > 7553 10969 9.3021

Although some BNs tools offer support to continuous variables in a limited way, e.g.,
making assumptions on the distribution of data or assumptions on the relationships among
the variables, studies in software prediction field mostly resort to discretization when there
are continuous variables. WEKA’s implementation of BNs currently does not support
continuous variables. Even though we used the equal-frequencies discretization method

28

Figure 3.5: BNs on log-transformed data

(LIU et al., 2002), sometimes the classes ended up with different amount of records be-
cause of repeated values. This happened more often in the Cocomo81 data set which has
many repetitions of values due to the way in which this data set was projected. In this
data set the repeated values actually represent categories. The splitting up of such records
would confound the model, so they are kept in the same class.

Tables 3.2, 3.3 and 3.4 show the discretized classes for each data sets’ effort variables.
The measurement unit for Desharnais and Maxwell is person-hours. Cocomo81’s is mea-
sured in person-months (months of 152 hours). The reported median values are used by
the BNs’ numerical conversion method explained in the previous chapter.

Table 3.3: Discretized effort classes of Maxwell data set
Effort Category Range Median value Log transf. Median

Very Low <=1750 1080 6.9845
Low 1750 < x <= 4187 2957 7.9919
Medium 4187 < x <= 6960.5 5189.5 8.5542
High 6960.5 < x <= 10735 8710 9.0722
Very High >10735 16776 9.7223

We can observe that the higher effort classes are much larger than the low effort
classes. This pattern is directly related to the skewness of the data sets because the data
gets sparser as the effort increases, therefore requiring larger classes to keep the bins with
the same number of records which in turn incur precision losses to the classifier. This
effect is more pronounced in the more skewed data sets.

We determined to experiment performing a logarithmic transformation on the data
prior to BNs building. We have not seen this being evaluated elsewhere even though a
couple of studies raised this possibility. Fernández-Diego and Torralba-Martínez (2012)
apply this transformation to the data in order to compare three discretization techniques
but without any assessment on its effectiveness. This transformation complicates a bit
the numerical conversion. The numerical conversion must use the median of each class’
log-transformed data and not the median of the original ranges. The medians of the dis-
crete intervals obtained on log-transformed data are shown in the three tables under ‘Log
transf. Median’. Then the number obtained after the conversion will have to undergo the
de-transformation to the original range just like done for OLS regression. This process
is illustrated in Fig. 3.5. Considering the effectiveness of this transformation for OLS
regression we decided to experiment performing this transformation on BNs. It addresses
the problem of skewness of software project data sets and makes the classes more even.

There is a wide variety of feature subset selection algorithms in the data mining field
and many of these algorithms are implemented in WEKA. We decided to use a wrapper
approach with BestFirst search algorithm and using a 5-fold cross validation procedure
to estimate the accuracy of the models. This algorithm generated good scoring feature
subsets in our experiments and has also been well regarded elsewhere (HALL; HOLMES,

29

Table 3.4: Discretized effort classes of Cocomo81 data set
Effort Category Range Median value Log transf. Median

Very Low <= 34.5 9 2.1972
Low 34.5 < x <=76 47 3.8501
Medium 76 < x <=188.5 102 4.6242
High 188.5 < x <= 653.5 321 5.7714
Very High > 653.5 1436 7.2630

2003) (KOHAVI; JOHN, 1997) (MENZIES et al., 2010). We took up this feature selection
procedure for both BNs and OLS regression models.

It is interesting to observe that the application of feature selection stems from the data
mining field and the combination with linear regression is not mentioned as standard sta-
tistical practice but we did achieve good results with this combination. In statistics, the
selection of variables is done by means of other methods and the model is referred to as
stepwise regression, e.g., see Kitchenham and Mendes (2009) and Mendes and Mosley
(2008). Dejaeger et al. (2012) also used feature selection in combination with the linear
regression methods. We observed that Dejaeger et al.’s results for OLS regression with
and without feature selection are very similar, which shows that there is some form of
variable selection taking place for OLS regression without feature selection. In our study,
we made sure to not perform any selection of variables for the experiments on OLS re-
gression without feature selection, because otherwise the models would be virtually the
same.

30

4 RESULTS AND ANALYSIS

This chapter reports on the results of the experiments outlined in the previous chapter.
The results are displayed in confusion matrices and tables. In each figure, the upper
confusion matrices are for BNs without feature selection and the lower matrices for BNs
with feature selection. This is the traditional way to display results for classifiers. The
tables contain the results according to MRE-based metrics, MBRE and MAR, besides
the basic hit-rates for the BNs. Furthermore, we included boxplots of the MREs and the
residuals in the appendix.

We have observed across various experimentations with the hyperparameters available
in WEKA (e.g., enforcing a limit on the number of parents for each node, enforcing a
markov blanket correction) that complex networks with many nodes and relationships
among them tended to perform worse than simple Naïve Bayes networks. These are
simple BN models in which every independent variable relates directly to the dependent
variable. The increased complexity of some models did not translate into more accurate
predictions.

The confusion matrices in Figs. 4.1, 4.2 and 4.3 illustrate the BN predictions for the
Desharnais, Maxwell and Cocomo81 data sets with and without feature selection on the
non log-transformed data. They allow us to see how frequently the predictions hit the
right class and by how much the wrong predictions missed the right class. We did not
include confusion matrices of the BNs on log-transformed data.

We consider predictions to be amply wrong when they hit classes situated two classes
away or more from the actual class. On Desharnais data set, without feature selection
eleven times the predictions were far. Same number with feature selection. So, while
there was an improvement on the hit-rates, the number of amply inaccurate predictions
did not decrease. On Maxwell data set this pattern is more pronounced. Without feature
selection, thirteen predictions were amply inaccurate, i.e., two classes away or more. This
number increased to sixteen when feature selection was carried out. On Cocomo81 the
number of very inaccurate predictions remained the same.

We can observe in the confusion matrices for all data sets that there is an improvement
in the hit-rates with the employment of feature selection. However it is also observable
that the magnitude of the wrong predictions also increased, i.e., the errors are situated
farther away from the right class. It appears to be a tradeoff wherein the larger errors
offset the increased hit-rate. So, the feature selection process appears to be geared towards
improving the hit-rates.

The most relevant variables identified by the feature selection algorithm for OLS re-
gression on Desharnais data set were the dummy variables for ‘Language’ (program-
ming language used) and ‘PointsAdjust’ which is a size measure in functions points.
For BNs the variables selected were ‘ManagerExp’ (manager experience), ‘PointsNon-

31

Figure 4.1: BNs confusion matrices with and without feature subset selection over De-
sharnais data set

Figure 4.2: BNs confusion matrices with and without feature subset selection over
Maxwell data set

32

Figure 4.3: BNs confusion matrices with and without feature subset selection over Co-
como81 data set

Adjust’, ‘Adjustment’, ‘PointsAdjust’ (these last three variables are related to Function
points measure) and ’Language’ variable (programming language used). For BNs on
long-transformed data the variables selected were ‘ManagerExp’, ‘Entities’ (also related
to Function points measure) and ‘PointsNonAdjust’.

On Maxwell data set, feature selection for OLS regression identified six variables:
‘Ifc’ (User interface), ‘T03’ (Staff availability) , ‘T08’ (Requirements volatility), ‘T09’
(Quality requirements), ‘Time’ (a measure related to the starting year of the project) and
‘Size’. For both BNs models (i.e., with and without log transformation on the data) the al-
gorithm identified nine variables: ‘Har’ (Hardware platform), ‘Dba’ (Database), ‘Source’
(whether the project was outsourced or not), ‘Nlan’ (Number of different development
languages), ‘T03’ (Staff availability), ‘T12’ (Staff analysis skills), ‘T13’ (Staff applica-
tion knowledge), ‘T15’ (Staff team skills) and ‘Size’.

The feature selection procedure on Cocomo81 data set selected ten variables for OLS
regression: ‘rely’ (required software reliability), ‘time’ (time constraint for cpu), ‘virt’
(machine volatility), ‘acap’ (analysts capability), ‘pcap’ (programmers capability), ‘vexp’
(virtual machine experience), ‘modp’ (modern programing practices), ‘tool’ (use of soft-
ware tools), ‘sced’ (schedule constraint) and ‘loc’ (a size variable that can be computed
from a function points analysis). For BNs, feature selection identified only a few vari-
ables. On the non log-transformed data it selected three variables: ‘cplx’ (process com-
plexity), ‘stor’ (main memory constraint) and ‘loc’. On the log-transformed data it se-
lected four variables: ‘data’ (data base size), ‘stor’ (main memory constraint), ‘lexp’
(language experience) and ‘loc’.

Table 4.1 reports the results for the Desharnais data set according to the continuous

33

metrics previously exposed. On the Desharnais data set there is an obvious improvement
in the BNs’ hit-rates when applying feature selection. However, when we consider the
continuous metrics there were generally no improvements except under Pred. Pred metric
resembles the hit-rates in its characteristic of only considering the accurate predictions and
ignoring predictions lying far from the actual value. This shows there were more accurate
predictions but that there were also more wrong predictions since the other metrics do not
show improvements. This illustrates the limitation of Pred metric that we highlighted in
chapter 2. For OLS regression, there is a small improvement under MMRE, MdMRE,
MAR and MBRE and a marginal degradation under Pred metric. The improvements
were relatively small because the number of variables in this data set is also small. The
likelihood of a data set containing irrelevant or redundant variables dwindles in such cases
and the feature selection technique cannot find much improvements by further decreasing
the number of variables.

The accuracy of the BNs on log-transformed data was about the same as on the non
transformed data. The log transformation did not bring improvements to BNs’ predic-
tions. BNs’ performance was very constant regardless of data pre-processing. So, on this
dataset, BNs performed relatively well but were more prone to large inaccuracies. This
can be confirmed graphically in the boxplots of figures Fig. 5.2 and Fig. 5.3 shown in the
appendix.

Finally, BNs clearly overcame the baseline models.

Table 4.1: Models performance on Desharnais data set
Prediction System Hit-rate MMRE MdMRE Pred MAR MBRE

BNs 46.91% 57.23 32.66 33.33 2153.52 65.83
BNs + FSS 54.32% 56.18 34.16 39.5 2133.84 64.52
BNs + log 44.44% 56.37 33.61 34.57 2128.65 67.38
BNs + log + FSS 48.15% 57.64 36.42 38.27 2165.47 72.19
OLS + log - 37.62 29.19 46.75 1731.53 48.04
OLS + log + FSS - 34.24 27.66 45.45 1567.93 42.54
Mean model - 121.66 59.49 18.51 3161.52 140.04
Median model - 78.46 42.03 29.62 2861.53 120.42

Table 4.2 reports on the results for the Maxwell data set. For being the data set with
the largest amount of variables in this study, it is likely to contain irrelevant variables
and benefit the most by undergoing feature selection. This expectation is fulfilled for
OLS regression. Feature selection reduced by half the mean of residuals and all the other
metrics show large improvements as well. The results obtained here with the application
of feature selection were significantly more accurate than the results achieved by Dejaeger
et al. (2012) on the same data set.

But again, like on Desharnais data set, BNs’ performance did not improve convinc-
ingly with the application of feature selection. There is a clear improvement on the hit-
rates and an improvement under Pred metric, but the other metrics show that the increase
of good predictions (i.e., predictions close to the actual value) was offset by larger errors.

It is interesting to observe that when the data did not undergo feature selection, the
performance of BNs is comparable to the performance of OLS regression. But with the
application of feature selection OLS regression has a large improvement in accuracy as
opposed to BNs which do not collect any improvement. This highlights that the BNs

34

models are missing very significant improvements in accuracy which are expected with
the application of feature selection.

With regard to the logarithmic transformation, the results show small improvements
for BNs under all metrics but Pred as opposed to the Desharnais data set in which there
was no effect.

Like on Desharnais dataset, BNs clearly overcame the baseline models. In our view,
an important observation on this data set is the improvement with feature selection that is
being missed by BNs. We will discuss the reasons for this after exposing all results.

All these results can also be verified graphically in the boxplots of figures Fig. 5.4 and
Fig. 5.5.

Table 4.2: Models performance on Maxwell data set
Prediction System Hit-rate MMRE MdMRE Pred MAR MBRE

BNs 40.32% 86.18 58.77 24.19 4655.29 110.48
BNs + FSS 51.61% 97.5 55.99 27.41 4854.74 122.19
BNs + log 40.32% 73.41 52.72 19.35 4550.90 104.54
BNs + log + FSS 51.61% 70.67 53.88 25.81 4576.05 106.44
OLS + log - 76.86 43.78 30 4932.6 101.19
OLS + log + FSS - 42.57 28.62 40 2500.04 52.28
Mean model - 119.67 52.96 19.35 5616.54 225.64
Median model - 108.95 66.28 20.97 5654.11 180.91

Table 4.3 reports on the results on Cocomo81. On this data set, the logarithmic trans-
formation did yield an observable improvement on the BNs’ predictions, specially under
MMRE. This suggests a decrease of large overestimates. We can observe the difference
in performance compared to OLS regression grew in comparison to the previous data
sets, even though this effect can be slightly reduced by the application of the logarithmic
transformation.

Feature selection brought an improvement for OLS regression though not as pro-
nounced as on Maxwell. For BNs, the same pattern of improved hit-rates and no im-
provements under other metrics which was observed in the other data sets stands on this
data set. This appears to be related to the skewness of the data sets and the loss of pre-
cision brought about by the discretization process. Skewness increases this imprecision
because it makes the classes more uneven. The logarithmic transformation is only to some
extent able to reduce this effect.

Nevertheless, even in this very skewed data set they were able to overcome both base-
line models which is an improvement over Mendes and Mosley’s (2008) results.

Table 4.4 shows the frequency of underestimates and overestimates for each model.
OLS models have a tendency to underestimate, which is considered worse than a tendency
to overestimate.

The variables most frequently identified by the feature selection algorithm were re-
lated to ‘Size’. In all data sets studied here, a size variable was selected. This variable
appears to be frequently the one with highest predictive value for estimating effort.

We can observe in all of these results that feature selection improved clearly and con-
sistently the hit-rates of BNs and the accuracy of linear regression over all data sets.
This effect is very pronounced on the Maxwell data set which is the one with the highest
number of variables. Such improvements are expected because the larger the amount of

35

Table 4.3: Models performance on Cocomo81 data set
Prediction System Hit-rate MMRE MdMRE Pred MAR MBRE

BNs 50.79% 134.85 58.64 25.81 551.95 197.82
BNs + FSS 55.56% 270.64 130.37 9.68 606.22 336.39
BNs + log 52.38% 91.19 53.64 19.35 536.54 233.15
BNs + log + FSS 55.56% 76.94 64.93 25.81 530.61 212.73
OLS + log - 46.6 30.49 44.44 278 61.83
OLS + log + FSS - 44.28 22.98 53.96 297.47 55.97
Mean model - 1775.35 571.16 4.76 891.64 1905.81
Median model - 235.42 86.25 15.87 642.63 842.24

variables in a data set, the more likely it is for the data set to contain irrelevant or redun-
dant variables. This emphasizes the importance of applying feature selection especially
on data sets with many variables. It also highlights the fact that many variables in soft-
ware projects data sets have a small predictive value and can actually make the models
less accurate. Therefore, collecting a smaller amount of variables focusing on high data
quality may be a wiser approach for data-based predictions. This finding is a confirmation
of the findings of previous studies, e.g., Chen et al. (2005), Radlinski and Hoffman (2010)
and Dejaeger et al. (2012).

In spite of these clear improvements however, we can see that the improvements of
BNs predictions when measured by the continuous metrics was small or at times the
accuracy even worsened. Specially on the Maxwell and Cocomo81 data sets, on which
the predictions were significantly less accurate than without feature selection as opposed
to what one would expect. According to data mining literature, wrapper approaches like
the one applied here use the algorithm’s own accuracy measure to assess the feature subset
(HALL; HOLMES, 2003) (TAN; STEINBACH; KUMAR, 2005). And it is obvious the
BNs algorithm is not using this numerical conversion to measure accuracy. The model
selection is clearly favouring hit-rates. This brings into question the validity of hit-rates
as an accuracy measure or at least highlights its limitation. Improved hit-rates were offset
by larger magnitude errors, i.e., less wrong predictions but when the predictions were
wrong they were wrong by a larger margin. So, does the improved hit-rate really reflect a
more accurate model? In all these experiments BNs ended up missing the improvements
expected from feature selection. This could make a significant difference in Maxwell and
Cocomo81 data sets which are the ones with larger amounts of variables.

It follows from this observation that an interesting development for BNs would be to
investigate the feasibility of incorporating this numerical conversion into the BNs algo-
rithms and tools, using it as a measure of accuracy instead of the hit-rates or error-rates.
This modification could bring in some improvements in the predictions and also in the
effects of the feature selection technique. The application of feature selection would find
improvements in overall accuracy even if with lower hit-rates. As it is, the potential
improvements expected from feature selection are being wasted in the strive for higher
hit-rates. Alternatively, a suggestion for future research is to experiment with other BNs
search algorithms, score types and CPT estimators and check out whether these bypass
this focus on hit-rates. In this study we restricted ourselves to the K2 search algorithm
(COOPER; HERSKOVITS, 1992) with Bayes method for scoring of the networks and
Simple estimator to estimate the NPTs.

36

Table 4.4: Frequency of Underestimates and Overestimates
Prediction System Overestimates (count) Underestimates (count)

BNs 110 96
BNs + FSS 127 79
BNs + log 99 107
BNs + log + FSS 104 102
OLS + log 86 114
OLS + log + FSS 91 109

We can observe a trend in these results. BNs accuracy degrades according to the data
sets’ skewness. With increases in skewness BNs struggle to predict accurately. BNs best
performance in these experiments was achieved in the least skewed data set, i.e., De-
sharnais. When the data is too skewed the discretized classes become too uneven and
there is an increased loss of precision with the largest discretized intervals. The highest
effort classes tend to be very sparse. An example is the highest effort class defined for
the Maxwell data set which spans a wider interval than all others put together (ranges
from 10000 to 64000 person-hours), thus being very imprecise. Besides the effect on the
discretization, there is also an effect on the numerical conversion because even a small
probability of the highest effort class (Very High) affects the conversion quite signifi-
cantly.

Much of the imprecision of the BNs can be ascribed to the discretization process.
This subject has been neglected to some extent in this research field and the establish-
ment of guidelines on this could benefit research inititiatives. The imprecision brought
about by the discretization process is directly related to the skewness of the datasets. In
this scenario of highly skewed data sets, the equal-frequencies discretization generates
classes intervals of too different widths and the numerical conversion will show larger
error margins. The alternative of equal-widths discretization causes meaningless results,
for there will be empty or near empty classes and the model learning will simply state
the obvious, predicting nearly always the same class which is the lowest effort class since
it contains most of the records. High hit-rates are not only unsurprising but very likely
when using equal-widths in very skewed data sets. Unless a log transformation is ap-
plied to the data, predictions based on skewed data discretized with the equal-widths
method bring in deceitful results. Related to these findings is the study of Fernández-
Diego and Torralba-Martínez (2012) which compared equal-widths, equal-frequencies
and k-means discretization on one data set and concluded that equal-frequencies with a
log-transformation can improve the accuracy results according to most evaluation criteria.
Further investigations on discretization methods are necessary.

An interesting undertaking was to investigate the effect of the log transformation on
the Bayesian classifier. Even though a couple of studies used this transformation, we are
not aware of studies assessing its effects. The log transformation was able to provide
only slight improvements of accuracy. The results show that in very skewed data sets,
transforming the data can be beneficial. As another suggestion for future research, we
observe that it would be interesting to try out this data transformation with BNs that
support continuous variables since in these experiments much of the benefit of performing
this transformation appears to have been lost with the discretization.

These experiments on data-driven BNs are relevant because the way data is explored

37

can have a significant impact on the model’s performance. Much of the excitement over
BNs revolves around their capability to integrate objective and subjective knowledge.
Therefore, learning how to optimize the use of data (i.e., the objective part) can improve
the performance of not only data-driven BNs, but also hybrid BNs which appear to be
the most promising for this research field. Even though BNs solely based on data may
not become the most accurate approach in software effort prediction, improvements on
the use of data for BNs benefit this technique as a whole and given its relevancy in soft-
ware engineering, these investigations are necessary. Optimizing the performance of the
data mining capabilities of BNs is an essential part in the development of this modelling
technique.

Our results on these data sets are more optimistic for BNs than the ones reported in
Mendes and Mosley (2008), which were obtained on another data set. Our experiments
show the BNs models struggle in very skewed data sets but are still capable of achieving
a minimum standard of accuracy. In Mendes and Mosley (2008), most BNs, including
hybrid BNs, performed worse than the baseline models.

From our studies on the literature and our own experiments, we observe that it appears
to be hard to overcome OLS regression when it is properly applied. Our results on OLS
regression confirm the conclusion of Dejaeger et al. (2012) and partially the results of
Mendes and Mosley (2008). While OLS regression does perform better with regard to
accuracy, one must observe that OLS regression as a well established statistical technique
is optimized to its best. On the other hand, we have shown in this study that techniques like
BNs have room for improvements and are under constant development. As BNs theory
evolve and the tools catch up with the developments, more accurate predictions will be
possible. Ideally, if data-driven BNs catch up with OLS regression and even overcome
them, they will be very advantageous due to their flexibility and powerful features. When
such a standard is achieved BNs users will be able to trust this technique is exploring data
as well as the most accurate data-based models.

Specifically, we have observed room for improvements for BNs with regard to dis-
cretization techniques and experimenting with different model selection methods which
could provide improvements in accuracy under other metrics than the hit-rates and also
optimizing the effects of feature selection. This appears to be a fundamental problem.
Furthermore, there are developments in data mining research concerning support for or-
dinal and continuous variables. These could also bring further improvements in accuracy.
And besides these improvements on BNs’ data mining capabilities, there are also im-
provements concerning support for experts’ model building.

The BNs tools are currently a limitation (RADLINSKI, 2010). The latest develop-
ments are not available for most of the tools. In these experiments we did not have the
opportunity to experiment with continuous variables nor with dynamic discretization. It
would be interesting to verify the improvements techniques like dynamic discretization
proposed in Neil, Taylor and Marquez (2007) could bring in. Although WEKA offers
validation advantages over other tools, it does not have other developments from BNs
theory. As we already mentioned, an interesting development would be the incorporation
of the numerical conversion method. This conversion is not automated in the tools and it
can be somewhat cumbersome to perform which may hinder its employment. Having this
conversion automated into the tools could be an interesting development.

Some studies on BNs indicate that BNs’ main strength for the software prediction area
lies in their possibility to incorporate domain knowledge and qualitative factors, therefore
favouring hybrid or expert-driven approaches. Currently, an advantage of data driven

38

models like this, as pointed out in Radlinski and Hoffmann (2010), is that by owning a
projects data set it is possible to obtain quick predictions as supporting evidence for the
expert’s prediction, as opposed to expert based networks which take much more effort to
build and to have the NPT’s elicited. The employment of data-based models to support
expert estimates has been indicated to industry practitioners as a means to increase safety
and reliability on experts’ estimates, since the situation with expert-based estimations has
not been easier than the situation seen in this research field.

Finally, an observation obtained with this study and the difficulties in the field is that
it is important to show faithful and realistic results even if they are not positive towards a
particular technique. This research field has suffered in the last twenty years due to over-
optimism towards some techniques. In recent years, efforts towards correcting mistaken
studies and addressing reasons for conflicting results are on the rise even if these show a
less than flattering state of affairs in the field. To move forward it is important to recognize
the actual situation paving the way for improvements and solutions.

39

5 CONCLUSIONS

This study provided a sound and realistic assessment of automatic BNs by means of a
comparison with a long established statistical technique and benchmark models, thereby
illustrating its current limitations and possibilities of improvements. BNs’ limitations are
discussed and some guidelines on its employment are provided. Specifically, the skewness
of data sets prevalent in this research field and the discretization are shown to bring about
inaccuracies that limit BNs’ effectiveness.

One suggestion arising from these observations and set forth to the research com-
munity is to investigate the feasibility of incorporating the numerical conversion into BNs
model building as we consider it portrays accuracy more faithfully than the basic hit-rates.
This could make BNs models generally more accurate even if achieving lower hit-rates.
Also, the inclusion of this conversion in the tools would be interesting for research under-
takings.

We believe this study discusses important matters that are scarcely discussed in soft-
ware prediction studies and that can be a source of confusion. Most studies have not
addressed much attention to data set properties and implications on model’s functioning.
Shedding light on these somewhat neglected topics is an important step to address some
of the current difficulties in the field.

An interesting finding is the accuracy improvements obtained by using the median for
the numerical conversion of the BNs’ probability distributions instead of using each class’
mean like it was originally proposed in Pendharkar, Subramanian and Rodger (2005). The
improvements obtained with this modification are larger than the improvements obtained
with any of the other pre-processing methods investigated.

Another result is the confirmation of the potential of feature selection to improve
software prediction models’ accuracy. Its effect is very clear on the linear regression
technique. For BNs, the improvement is very obvious when we evaluate the hit-rate,
but when converting the predictions there was little or no improvement. This lack of
improvement can be ascribed to the model selection algorithm because it strived to choose
models that achieve higher hit-rates. Since the feature selection approach uses the learning
algorithm’s accuracy measure to select the feature subset, a better feature subset could
be chosen if the learning algorithm accounted for the numerical conversion or at least
favoured the continuous metrics. A modification in this direction could yield significant
improvements in overall accuracy. Furthermore, the effectiveness of feature selection tells
us that focusing on collecting high quality data for a small number of highly predictive
attributes may be more effective than collecting data on a large number of variables. The
results obtained so far in researches with feature selection make it a must in software
prediction endeavours.

Moreover, we assessed the possibility of performing a logarithmic transformation on

40

the data prior to model learning. Even though a couple of studies employed this transfor-
mation in combination with BNs, its effectiveness had not been verified. In our experi-
ments we have shown that the logarithmic transformation for BNs is capable of improving
predictions only slightly on the most skewed data sets. We believe larger improvements
were lost due to the discretization. It would be interesting to assess this transformation in
combination with continuous variables.

This study showed some of the problems arising from the data sets in the field and the
constraints they impose specially on classifiers. Much of this is related to the discretiza-
tion process and the uneven classes that it generates. We brought forward some points
concerning the exploration of data which we believe to be important for the development
of BNs.

There is a limit on how accurate data-driven prediction techniques can be depend-
ing on the data used. Therefore, more efforts should be addressed in studying software
prediction data sets properties and data pre-processing in order to increase prediction ac-
curacy. The performance of these models is highly dependent on data quality, which is
a subject that has not received sufficient attention. Significant improvements could come
from investigations on this.

Our observations indicate that BNs have a potential for data-based predictions but still
need improvements to catch up with the most accurate data based models. In spite of the
apparent advantage of linear models in this scenario, i.e.,data-driven modeling, it must be
observed that this is only part of the potentiality of BNs. BNs offer experimenting possi-
bilities beyond that of linear regression. The linear regression method can only provide a
point estimate, whereas BNs meet other requirements expected from a prediction model.

Our results present a more optimistic view on BNs when compared to the results
presented in Mendes and Mosley (2008), showing that although BNs are less accurate
than linear regression, they were able to achieve a minimum standard of accuracy and
that there is a potential for improvements which could lessen this gap to linear regression
models. Even if BNs solely based on data might not become the most accurate predictor
in software effort prediction, optimizing the exploration of data is an important step of
development and necessary given the relevancy of BNs in software management research.

Purely data-based techniques can be useful to support software managers, specially
as a quick, less demanding approach to aid the software manager or to keep the software
manager in check in case of possible bias, e.g., bias towards optimism. Notwithstanding,
due to the human factors and inherent uncertainties in software projects, the capability to
incorporate expert’s subjective knowledge can provide an advantage over models solely
based on data. Bayesian Networks appear to be one of the most suitable techniques for
future progresses in this aspect. BNs theory and tools are under constant development
and some technical breakthroughs regarding discretization and NPT’s elicitation appear
to herald progresses for BNs in software prediction and software projects management in
general.

5.1 Future Work

A topic that could provide some improvements for the software prediction field and
that warrants investigations is data pre-processing. Carrying out this work we observed
the impact discretization, data transformations and feature selection can have on the mod-
els’ performance. Moreover, we observed the implications of and hindrances posed by
the characteristics of software projects data sets. In our view, discretization is a topic that

41

needs thorough investigations as there are currently no guidelines on this.
In this work we applied a specific feature subset selection technique (a Wrapper ap-

proach with BestFirst algorithm (HALL; HOLMES, 2003)). It would be interesting to
assess whether other feature selection techniques can bypass this focus on hit-rates that
this wrapper approach demonstrated. Good improvements could be obtained if BNs could
better extract the accuracy improvements expected from feature selection.

Another suggestion is to experiment with other learning and selection algorithms,
as in this work we restricted ourselves to the K2 search algorithm with Bayes method
for scoring of the networks and Simple estimator to estimate the NPTs. We have the
expectancy that other algorithms could assess accuracy in a different way, as in this study
the algorithms were clearly favouring the hit-rates, which we questioned as an accuracy
measure.

Furthermore, investigating BNs with continuous variables and the related pre-processing
procedures could yield interesting results.

Also, statistical significance tests could be performed to enhance the validation of the
results.

42

APPENDIX A

Figure 5.1 outlines the experiments including the eight prediction systems.

Figure 5.1: Experiments outline.

In the following pages, boxplots of the residuals and the MREs for the three data sets
are shown. For all boxplots the numbers represent the following prediction systems:

(i)BNs;
(ii)BNs+FSS;
(iii)BNs+log;
(iv)BNs+log+FSS;
(v)Mean model;
(vi)Median model;
(vii)OLS+log;
(viii)OLS+log+FSS;

43

Figure 5.2: Boxplot Residuals Desharnais

44

Figure 5.3: Boxplot MREs Desharnais

45

Figure 5.4: Boxplot Residuals Maxwell

46

Figure 5.5: Boxplot MREs Maxwell

47

Figure 5.6: Boxplot Residuals Cocomo81

48

Figure 5.7: Boxplot MREs Cocomo81

49

APPENDIX B - RESUMO (PORTUGUÊS)

Introdução

Modelos de predição de software buscam realizar estimativas para novos projetos
baseando-se em conhecimento que pode ser obtido a partir de especialistas, de dados ou
de uma abordagem híbrida integrando ambas as formas. A área da predição de software
teve seu início na década de sessenta e as primeiras abordagens consistiam em conhec-
imento de especialistas. Logo a seguir, foram propostos os primeiros modelos formais.
O mais conhecido deles é o COCOMO (BOEHM, 1981). Estes modelos baseam-se em
uma fórmula que relaciona o tamanho do projeto com o esforço necessário para realizá-lo.
Uma revisão detalhada sobre esses modelos e sobre os trabalhos pioneiros da estimativa
de software pode ser encontrada em Boehm, Abts e Chulani (2000).

No caso de conhecimento baseado em dados, os modelos fazem uso de bases de da-
dos de projetos de software. Estas bases de dados contêm informação sobre projetos já
concluídos. O modelo leva em conta as características do novo projeto, isto é, o projeto
o qual se quer estimar, e realiza uma predição baseando-se nos projetos armazenados na
base de dados. A expectativa subjacente é a de que os padrões presentes nos projetos
concluídos se repetirão no novo projeto.

Na literatura, a terminologia ‘predição de software’ é encontrada assim como ‘estima-
tiva de software’. Além disso, ‘estimativa de custo’ é usada como sinônimo de ‘estimativa
de esforço’ pois estas variáveis são bastante proximamente relacionadas. Por fim, existe
uma distinção entre ‘estimativa de esforço de desenvolvimento’ e ‘estimativa de esforço
de manutenção’. Neste estudo, os dados usados são de desenvolvimento de software.

A variável a ser estimada pelo modelo de predição é conhecida como variável de-
pendente ou variável resposta. Os atributos, isto é, as variáveis usadas pelo modelo para
estimar a variável resposta são chamadas variáveis explanatórias ou variáveis indepen-
dentes. As variáveis tipicamente encontradas na literatura são relacionadas ao custo ou à
qualidade (FENTON; RADLINSKI, 2009).

A partir da década de noventa, técnicas de aprendizagem de máquina começaram a ser
propostas. Uma revisão sistemática sobre estas técnicas na predição de esforço software
pode ser encontrada em Wen et al. (2012). Uma destas técnicas de aprendizagem de
máquina são as Redes Bayesianas, à qual este estudo se dedica. As Redes Bayesianas
foram inicialmente propostas para a predição de qualidade por Fenton e Neil (1999). Este
estudo aponta as vantagens desta técnica de modelagem sobre as técnicas estabelecidas
na área até então, mencionando a possibilidade de incorporar relações de causalidade
e o conhecimento subjetivo de especialistas como grandes atrativos para a área, dadas
as incertezas dos projetos de software. Desde então, diversos estudos foram publicados
empregando Redes Bayesianas e frequentemente utilizando a possibilidade de incorporar

50

variáveis subjetivas. Alguns estudos empregam Redes Bayesianas baseadas unicamente
em dados como é feito neste estudo. Uma revisão sobre a aplicação de Redes Bayesianas
na predição de esforço de software pode ser encontrada em Radlinski (2010).

Esta área de pesquisa tem sofrido com inconsistências e contradições nos resultados
de estudos. São diversos os estudos que abordam este assunto, identificando causas e
provendo orientações para novas pesquisas, e.g., Korte e Port (2008), Mair e Shepperd
(2005), Shepperd e Macdonell (2012). Parte destas inconsistências provém de diferenças
nos procedimentos empíricos e bases de dados usadas. Uma situação comum nos resulta-
dos é a instabilidades do ranking das técnicas dependendo da base de dados, isto é, ocorre
a inversão do ranking dependendo de qual base de dados é utilizada. Com esta obser-
vação, foi recomendado o uso de mais de duas bases de dados. Ainda sobre a questão dos
dados, vários estudos comparam o uso de bases de dados locais (bases de dados contendo
projetos de uma única empresa) com bases de dados multi-empresas (cross-company, i.e.,
bases de dados com projetos de várias empresas diferentes). Em Kitchenham, Mendes
e Travassos (2007) há uma revisão sistemática sobre o assunto. Os resultados foram in-
conclusivos devido a diferenças nos estudos comparativos, mas os autores observam que
nos estudos em que foram utilizados bases de dados pequenas e validação cruzada leave-
one-out o uso de dados locais foi significativamente mais vantajoso. Os autores também
concluem que ficou claro que para algumas empresas seria benéfico o uso de bases de
dados multi-empresas enquanto para outras o uso de dados locais é necessário.

Uma outra fonte de incosistências que foi investigada é o assunto das métricas de
avaliação dos modelos. Diversos estudos, e.g., Foss et al. (2003), Myrtveit, Stensrud e
Shepperd (2005), Korte e Port (2008), identificaram esta como uma razão para as inco-
sistências em resultados de estudos comparativos. Foi identificado que cada métrica tem
alguma limitação, tendendo a favorecer certos modelos, e causando a inversão de rank-
ing dependendo da métrica usada. Particularmente, a métrica MMRE foi criticada devido
a sua suscetibilidade a desvios e uma tendência a favorecer modelos que subestimam a
variável de saída, i.e., o esforço de desenvolvimento.

Uma barreira para a transparência dos estudos tem sido a falta de bases de dados públi-
cas, já que o emprego de bases de dados proprietárias inibe a replicação de experimentos e
confirmação de resultados. O repositório PROMISE (MENZIES et al., 2012) foi proposto
com o intuito de amenizar esta barreira. Bases de dados são disponibilizadas promovendo
a replicação de experimentos e análises de resultados.

Embora as Redes Bayesianas tenham sido promovidas nesta área de pesquisa, seu
uso ainda é relativamente limitado possivelmente devido a algumas dificuldades práticas.
Neste contexto, este estudo procurou avaliar o emprego de Redes Bayesianas baseadas em
dados na predição de esforço de software, considerando a preparação de dados necessária,
discutindo as limitações atuais e possibilidades de melhoras. Mesmo que Redes Bayesianas
puramente baseadas em dados, como as que são investigadas neste estudo, não venham
a ser a melhor forma de aplicá-las, a otimização da exploração dos dados é um passo
importante para o desenvolvimento desta técnica.

Neste resumo, é exposta uma breve descrição dos experimentos na próxima seção,
para a seguir analisar-se os resultados.

Procedimentos Empíricos

As Redes Bayesianas são avaliadas através da comparação com a regressão linear
(usando o método dos mínimos quadrados) com uma transformação logarítmica sobre os

51

dados. Esta técnica estatística foi recentemente identificada por Dejaeger et al. (2012), em
um estudo abrangente, como a técnica mais precisa. Este estudo comparou treze técnicas
sobre nove bases de dados. Ressalta-se que se está comparando um estimador discreto,
i.e., um classificador, a um estimador contínuo. Isto é feito através da transformação das
saídas das Redes Bayesianas para valores contínuos utilizando uma variante do método
proposto por Pendharkar, Subramanian e Rodger (2005). Esta variante proporcionou uma
melhora significativa na precisão obtida com a conversão numérica das predições das
Redes Bayesianas. A saída das Redes Bayesianas é uma distribuição de probabilidades
para cada uma das classes. O método de conversão numérica consiste em multiplicar
a probabilidade ρ de cada classe pelo valor mediano Md de cada uma destas classes,
como mostrado na fórmula abaixo. Os valores medianos de cada uma das classes de
esforço são mostrados nas tabelas 5.1, 5.2 e 5.3. O método original de Pendharkar utiliza
a média de cada classe. As tabelas na seção 2.5 mostram as melhoras obtidas com o uso
da mediana comparando com os resultados de um estudo preliminar em que usamos a
média (TIERNO; NUNES, 2012).

Esforco = ρMuitobaixoMdMuitobaixo+ ρBaixoMdBaixo+ ...+ ρMuitoaltoMdMuitoalto. (5.1)

Neste estudo, avalia-se também o efeito da execução de uma transformação logarít-
mica antes da construção da Rede Bayesiana. Esta idéia surgiu com a constatação das
melhoras obtidas através desta transformação para a regressão linear. Constatou-se, após
a execução destes experimentos, que esta combinação foi utilizada por Fernández-Diego e
Torralba-Martínez (2012), no entanto os efeitos e a validade desta combinação não foram
discutidos. Até então, três sistemas de predição foram mencionados: Redes Bayesianas,
Redes Bayesianas com transformação logarítmica e regressão linear.

Os experimentos incluem variantes dos sistemas de predição supracitados com a apli-
cação de uma técnica de seleção de variáveis, aumentando assim o número de sistemas
de predição para seis.

Finalmente, são incluídos na comparação modelos base baseados na média e na me-
diana. A inclusão de modelos base para a comparação como estes é sugerida em diversos
estudos com a finalidade de melhor avaliar a eficácia das outras técnicas, estabelecendo
assim um padrão mínimo de precisão.

Uma abstração dos experimentos é mostrada em Fig. 3.1. As diferentes versões das
bases de dados e os modelos de Redes Bayesianas com transformação logarítmica foram
omitidos da figura para mantê-la intuitiva. Alternativamente o leitor pode conferir uma
versão da figura que inclui estes dois sistemas no apêndice. A transformação logarítmica,
quando aplicada, ocorre antes da seleção de variáveis e no caso das Redes Bayesianas,
antes da discretização.

Destaca-se que a validação destes experimentos é considerada confiável. Foi utilizada
a validação cruzada 10-fold e uma combinação robusta de métricas, sendo que as métricas
MAR e MBRE são complementares as métricas baseadas em MRE.

Bases de dados e preparação dos dados

Neste trabalho, foram utilizadas bases de dados disponibilizadas no repositório PRO-
MISE (MENZIES et al., 2012). Estas são as bases de dados ‘Desharnais’, ‘Maxwell’ e
‘Cocomo81’.

Os histogramas das figuras Fig. 3.2, Fig. 3.3 e Fig. 3.4 ilustram a distribuição dos
dados na variável de saída (esforço). Esforço é medido em horas de trabalho (Person-

52

Hours) nas bases de dados Desharnais e Maxwell e em meses de trabalho (Person-months)
na base de dados Cocomo81. Nos três casos as variáveis tem obliquidade positiva, isto
é, variáveis com a maioria dos registros concentrados nos valores mais baixos e uma
quantidade pequena de registros nos valores mais altos. Obliquidade ou assimetria é uma
característica comum em bases de dados de projetos de software.

Esta característica proporciona algumas dificuldades para a modelagem. Para a exe-
cução da regressão linear, boas práticas estatísticas ditam que a distribuição das variáveis
deve aproximar-se a uma distribuição Gaussiana, razão pela qual é realizada uma trans-
formação logarítmica. Com relação às Redes Bayesianas, isto também é um problema
porque dificulta a discretização. Os intervalos discretizados tendem a ficar bastante as-
simétricos. Neste cenário, a discretização das larguras iguais (equal-widths) pode gerar
classes vazias e distribuir a grande maioria dos registro em uma ou duas classes. Neste
caso, a validação seria bastante duvidosa já que se quase todos os registros estão distribuí-
dos em uma ou duas classes o algoritmo de aprendizagem não poderá identificar padrões
significativos e inclusive, dificilmente errará as predições. Uma taxa de acertos bastante
alta não seria surpreendente, no entanto seria de fato, fútil. Isto ocorreu na replicação dos
experimentos com a Rede Bayesiana exposta como prova de conceito no trabalho de Bibi
et al. (2010).

Quando gerentes de projeto executam as predições, eles não sabem por exemplo, o
quanto o projeto vai durar, muito embora possam ter uma estimativa. Logo, variáveis
como esta são geralmente excluídas dos modelos. Isto é prática padrão na área de predição
de software, embora raramente seja mencionada.

Pré-processamento

Antes de aplicar regressão linear as variáveis assimétricas passaram por uma transfor-
mação logarítmica com o objetivo de aproximá-las a uma distribuição normal.

Antes da aprendizagem da Rede Bayesiana os dados tiveram que ser discretizados.
Esta é uma das etapas de pré-processamento mais comuns na mineração de dados. Para
obter classes relevantes, optamos pela discretização das frequências iguais (equal- fre-
quencies) (TAN; STEINBACH; KUMAR, 2005). As variáveis contínuas foram dis-
cretizadas em cinco intervalos. Não existem regras estritas sobre isto. Cinco é um número
comum de classes encontrado em estudos de predição de software, e.g., Mendes e Mosley
(2008), Radlinski e Hoffmann (2010). Por um lado, quanto maior o número de classes
mais precisas podem ser as predições. Por outro lado, um número grande de classes ex-
ige uma quantidade de dados maior. Considerando que as bases de dados de projetos de
software são geralmente pequenas (a maioria costuma ter menos de cem registros), um
número grande de classes tende a ser inviável. Em Fernández-Diego e Torralba-Martínez
(2012) há um artigo curto sobre o assunto que aponta que a discretização das frequências
iguais produziu resultados melhores. Este tópico foi muito pouco explorado na área e
mais investigações são necessárias.

Um desenvolvimento técnico recente, que não pôde ser avaliado neste estudo, é a
discretização dinâmica (NEIL; TAILOR; MARQUEZ, 2007). Este parece ser um desen-
volvimento bastante interessante já que a discretização tem efeito direto sobre a precisão
do modelo. Os autores relataram significativas melhoras na precisão e também que a téc-
nica proposta flexibiliza a construção de Redes Bayesianas com variáveis subjetivas. Esta
inovação foi implementada na ferramenta comercial Agena Risk. Entretanto, este recurso
ainda não está disponível em outras ferramentas.

As tabelas 5.1, e mostram os intervalos e os valores usados para a conversão numérica.

53

Figure 5.8: Predição numérica com Redes Bayesianas e transformação logarítmica.

A unidade de medida para as bases de dados Desharnais e Maxwell é horas de trabalho
(Person-Hours). Para a base de dados Cocomo81 é meses de trabalho (Person-Months)
que equivalem a 152 horas.

Table 5.1: Classes de esforço discretizadas da base de dados Desharnais.
Categoria de Esforço Intervalo Mediana Mediana transf. Log.

Muito Baixo <= 2161,5 1211 7,0981
Baixo 2161,5 < x <= 3062,5 2534 7,8375
Médio 3062,5 < x <=4035,5 3636,5 8,1987
Alto 4035,5 < x <= 7553 5635 8,6367
Muito alto > 7553 10969 9,3021

Pode-se observar o efeito da assimetria dos dados sobre o tamanho dos intervalos.
As classes de maior esforço têm intervalos muito mais largos que as classes de menor
esforço. Este padrão está diretamente relacionado.

Table 5.2: Classes de esforço discretizadas da base de dados Maxwell.
Categoria de esforço Intervalo Mediana Mediana transf. Log.

Muito Baixo <=1750 1080 6,9845
Baixo 1750 < x <= 4187 2957 7,9919
Médio 4187 < x <= 6960,5 5189,5 8,5542
Alto 6960,5 < x <= 10735 8710 9,0722
Muito Alto >10735 16776 9,7223

A partir desta observação, resolveu-se experimentar realizar uma transformação log-
arítmica sobre os dados para tornar as classes mais equilibradas. O efeito da aplicação
desta técnica em conjunto com as Redes Bayesianas não foi avaliada anteriormente, em-
bora Fernández-Diego e Torralba-Martínez (2012) recentemente a tenham aplicado. A
inclusão desta transformação logarítmica torna um pouco mais complexa a conversão
numérica. Para realização da conversão numérica devem ser usadas as medianas das
classes obtidas com os dados já processados com a transformação logarítmica. Ao fi-
nal do processo, obtida a predição numérica com os dados transformados, pode-se então
realizar a destransformação da predição obtida. Este processo é ilustrado na figura 5.8 .

Outra etapa de pré-processamento empregada nestes experimentos é a seleção de var-
iáveis. A ferramenta WEKA contém uma grande variedade de algoritmos para esta tarefa.
Foi decidido aplicar uma abordagem Wrapper com algoritmo de busca BestFirst e uti-
lizando um procedimento de validação cruzada 5-fold para estimar a precisão dos mode-
los. Este algoritmo produziu bons resultados nos experimentos e também foi bem avaliado
em outros estudos (HALL; HOLMES, 2003) (KOHAVI; JOHN, 1997) (MENZIES et al.,
2010).

54

Table 5.3: Classes de esforço discretizadas da base de dados Cocomo81
Categoria de esforço Intervalo Mediana Mediana transf. Log.

Muito baixo <= 34,5 9 2,1972
Baixo 34,5 < x <=76 47 3,8501
Médio 76 < x <=188,5 102 4,6242
Alto 188,5 < x <= 653,5 321 5,7714
Muito alto > 653,5 1436 7,2630

É interessante observar que a aplicação da seleção de variáveis da forma que é ap-
resentada na mineração de dados não é mencionada como prática estatística padrão. No
entanto bons resultados foram obtidos com esta combinação. Dejaeger et al. (2012)
também usaram a seleção de variáveis em conjunto com as técnicas de regressão lin-
ear. Foi observado que os resultados obtidos no estudo citado são muito similares para
o modelo de regressão OLS (mínimos quadrados) independente da aplicação de seleção
de variáveis. Isto evidencia que está ocorrendo alguma forma de seleção de variáveis
no modelo sem seleção de variáveis (os hiperparâmetros da regressão linear do WEKA
oferecem esta opção). Em contrapartida, neste estudo decidiu-se não empregar nenhuma
forma de seleção de variáveis para esse modelo, já que de outra maneira, os modelos
seriam praticamente os mesmos.

Resultados

Os resultados são mostrados em matrizes de confusão e tabelas. Nas figuras 4.1, 4.2
e 4.3 mostram as predições para as bases de dados Desharnais, Maxwell e Cocomo81. Em
cada figura, as matrizes de confusão de cima mostram as predições para Redes Bayesianas
sem a aplicação de seleção de variáveis e as matrizes de baixo mostram as predições para
Redes Bayesianas com a aplicação de seleção de variáveis. Esta é a maneira tradicional
de mostrar resultados para classificadores. As tabelas contêm os resultados de acordo
com as três métricas baseadas em MRE, a métrica MBRE e a métrica MAR. As taxas de
acerto das Redes Bayesianas também foram incluídas. Além disso, para a visualização
foram incluídos no apêndice os diagramas de caixa para MRE e para os residuais.

Pode-se observar de maneira geral nas matrizes de confusão que há um aumento de
predições corretas com a aplicação de seleção de variáveis. No entanto, o número de
predições amplamente incorretas (i.e., predições distando duas classes ou mais da classes
correta) não diminuiu. Na base de dados Maxwell houve um aumento de treze para dezes-
seis predições amplamente incorretas.

As variáveis identificadas pela seleção de variáveis na base Desharnais foram as var-
iáveis mudas para ‘Language’ e a variável ‘PointsAdjust’ que é uma medida de tamanho
em pontos de função. Para as Redes Bayesianas as variáveis selecionadas foram ‘Man-
agerExp’ (experiência do gerente), ‘Entities’ e ‘PointsNonAdjust’.

Na base de dados Maxwell, a seleção de variáveis para regressão linear identificou seis
variáveis: ‘Ifc’ (interface de usuário), ‘T03’ (disponibilidade de pessoal), ‘T08’ (volatili-
dade dos requerimentos), ‘T09’ (requerimentos de qualidade), ‘Time’ (uma variável rela-
cionada ao ano de início do projeto) e ‘Size’ (tamanho em pontos de função). Para as Re-
des Bayesianas o algoritmo identificou nove variáveis: ‘Har’ (plataforma de hardware),
‘Dba’ (base de dados), ‘Source’ (variável binária apontando emprego de outsourcing),

55

‘Nlan’ (número de linguagens de desenvolvimento diferentes), ‘T03’ (disponibilidade
de pessoal), ‘T12’ (habilidade de análise da equipe), ‘T13’ (conhecimento de aplicação
da equipe), ‘T15’ (habilidade colaborativa da equipe) e ‘Size’ (tamanho em pontos de
função).

Na base de dados Cocomo81 foram selecionadas dez variáveis para a regressão lin-
ear: ‘rely’ (confiabilidade requerida do software), ‘time’ (restrição de tempo para CPU),
‘virt’ (volatilidade de máquina), ‘acap’ (capacidade dos analistas), ‘pcap’ (capacidade dos
programadores), ‘vexp’ (experiência em máquina virtual), ‘modp’ (práticas modernas de
programação), ‘tool’ (uso de ferramentas de software), ‘sced’ (limitação de cronograma)
e ‘loc’ (uma variável de tamanho que segundo o autor pode ser computada a partir de uma
análise de pontos de função).

A tabela 5.4 mostra os resultados de acordo com as métricas numéricas. Na base de
dados Desharnais há uma melhora clara nas taxas de acerto com a aplicação da seleção de
variáveis. Entretanto, considerando as métricas numéricas esta melhora não é confirmada,
à exceção da métrica Pred. Esta assemelha-se à taxa de acertos com a característica de
apenas considerar as predições precisas e ignorar as predições imprecisas. Isto mostra que
houve um maior número de predições precisas mas que a imprecisão das predições im-
precisas aumentou. Para a regressão linear constata-se que houve uma ligeira melhora nas
predições, embora a métrica Pred não mostre. As melhoras foram pequenas porque esta
base de dados contém apenas nove variáveis. Em bases de dados com poucas variáveis as
melhoras esperadas com a aplicação da seleção variáveis é pequena.

A precisão das Redes Bayesianas com transformação logarítmica dos dados foi prati-
camente a mesma que quando sem a transformação. O pré-processamento de dados nesta
base de dados surtiu apenas efeitos minúsculos. Nesta base de dados o desempenho das
Redes Bayesianas foi razoável mas com uma propensão um pouco maior para grandes
imprecisões. Claramente os modelos foram mais precisos que os modelos base da média
e da mediana. Estes resultados podem também ser visualizados nos diagramas de caixa
mostrados no apêndice.

Table 5.4: Desempenho dos modelos na base de dados Desharnais.
Sistema Taxa de acertos MMRE MdMRE Pred MAR MBRE

BNs 46,91% 57,23 32,66 33,33 2153,52 65,83
BNs + FSS 54,32% 56,18 34,16 39,5 2133,84 64,52
BNs + log 44,44% 56,37 33,61 34,57 2128,65 67,38
BNs + log + FSS 48,15% 57,64 36,42 38,27 2165,47 72,19
OLS + log - 37,62 29,19 46,75 1731,53 48,04
OLS + log + FSS - 34,24 27,66 45,45 1567,93 42,54
Média - 121,66 59,49 18,51 3161,52 140,04
Mediana - 78,46 42,03 29,62 2861,53 120,42

A tabela 5.5 mostra os resultados para a base de dados Maxwell. Sendo esta a base
de dados com maior número de variáveis deste estudo, é provável que tenha um maior
número de variáveis redundantes ou irrelevantes, e logo que seja a base de dados em que a
aplicação de seleção de variáveis tenha o maior impacto. Esta expectativa é correspondida
para a técnica de regressão linear. Os residuais foram reduzidos praticamente pela metade
e todas as demais métricas mostram grandes melhoras também. Os resultados obtidos
aqui com a aplicação de seleção de variáveis foram significativamente mais precisos do

56

que os obtidos por Dejaeger et al. (2012) na mesma base de dados.
Entretanto, como ocorreu na base de dados Desharnais, a precisão das Redes Bayesianas

não melhorou convincentemente com a aplicação da seleção de variáveis, registrando ape-
nas pequenas melhoras nas métricas numéricas. Há um claro aumento na taxa de acertos
e na métrica Pred, mas a melhora apenas pequena nas demais métricas indica que os erros
também foram maiores. É interessante observar que nos dados sem seleção de variáveis as
Redes Bayesianas tiveram um desempenho próximo ao da regressão linear, o que enfatiza
as melhoras em precisão que as Redes Bayesianas estão deixando de alcançar.

Com relação a transformação logarítmica, os resultados mostram pequenas melhoras
para as predições das Redes Bayesianas, diferentemente da base de dados Desharnais, em
que não houve melhora perceptível.

Todos os modelos foram mais precisos que os modelos base, embora apenas a re-
gressão linear com transformação logarítmica os tenha superado por margem bastante
grande.

Table 5.5: Desempenho dos modelos na base de dados Maxwell.
Sistema Taxa de acertos MMRE MdMRE Pred MAR MBRE

BNs 40,32% 86,18 58,77 24,19 4655,29 110,48
BNs + FSS 51,61% 97,5 55,99 27,41 4854,74 122,19
BNs + log 40,32% 73,41 52,72 19,35 4550,90 104,54
BNs + log + FSS 51,61% 70,67 53,88 25,81 4576,05 106,44
OLS + log - 76,86 43,78 30 4932,6 101,19
OLS + log + FSS - 42,57 28,62 40 2500,04 52,28
Média - 119,67 52,96 19,35 5616,54 225,64
Mediana - 108,95 66,28 20,97 5654,11 180,91

A tabela 5.6 mostra os resultados para a base de dados Cocomo81. Nesta base de
dados a transformação logarítmica surtiu efeitos mais significativos. A grande melhora
sob a métrica MMRE sugere uma diminuição de estimativas exageradas.

A aplicação da seleção de variáveis trouxe uma melhora na precisão da regressão
linear, embora não tão significativa como na base de dados Maxwell. No caso das Redes
Bayesianas repetiu-se o padrão de melhoras na taxa de acertos que não se confirmam com
as métricas numéricas. Ocorre inclusive uma piora significativa na precisão das Redes
Bayesianas sem transformação logarítmica.

Pode-se observar que a precisão das Redes Bayesianas, em comparação com a re-
gressão linear, piorou progressivamente com o aumento da obliquidade dos dados, embora
esta piora possa ser um pouco amenizada com a aplicação da transformação logarítmica.

Também pode-se observar nestes resultados que a seleção de variáveis melhorou clara
e consistentemente a taxa de acerto das Redes Bayesianas e a precisão da regressão linear.
Este efeito é mais pronunciado na base de dados Maxwell que é a base de dados com o
maior número de variáveis. Isto enfatiza a importância de aplicar a seleção de variáveis,
especialmente em bases de dados que contêm muitas variáveis. Estes resultados também
dão destaque ao fato de que muitas variáveis nas bases de dados de projeto de software
podem ter pouco valor preditivo inclusive prejudicando a obtenção a precisão do mod-
elo. Portanto, coletar uma quantidade menor de variáveis enfocando na qualidade dos
dados talvez seja uma abordagem mais adequada para predições baseadas em dados. Este
resultado é uma confirmação de resultados de outros estudos, e.g., Chen et al. (2005),

57

Table 5.6: Desempenho dos modelos na base de dados Cocomo81.
Sistema Taxa de acertos MMRE MdMRE Pred MAR MBRE

BNs 50,79% 134,85 58,64 25,81 551,95 197,82
BNs + FSS 55,56% 270,64 130,37 9,68 606,22 336,39
BNs + log 52,38% 91,19 53,64 19,35 536,54 233,15
BNs + log + FSS 55,56% 76,94 64,93 25,81 530,61 212,73
OLS + log - 46,6 30,49 44,44 278 61,83
OLS + log + FSS - 44,28 22,98 53,96 297,47 55,97
Média - 1775,35 571,16 4,76 891,64 1905,81
Mediana - 235,42 86,25 15,87 642,63 842,24

Radlinski e Hoffman (2010) e Dejaeger et al. (2012).
Entretanto, apesar destas evidentes melhoras, pode-se constatar que o efeito da seleção

de variáveis nas predições das Redes Bayesianas quando medidas pelas métricas numéri-
cas foi pequeno ou até mesmo negativo, como ocorreu nas bases de dados Maxwell e
Cocomo81. De acordo com a literatura de mineração de dados, a abordagem wrapper uti-
liza a medida de precisão do próprio algoritmo de aprendizagem para avaliar o conjunto de
variáveis selecionadas (HALL; HOLMES, 2003) (TAN; STEINBACH; KUMAR, 2005).
É evidente que as Redes Bayesianas estão favorecendo as taxas de acerto. Isto levanta
questões sobre a validade das taxas de acerto como uma medida de precisão, ou pelo
menos mostra a sua limitação. Taxas de acerto mais altas são alcançadas às custas de
margens de erro maiores, isto é, apesar do maior número de acertos, as margens de erro
das predições erradas são também maiores. Então questiona-se, uma taxa de acertos maior
realmente reflete um modelo mais preciso? Nas três bases de dados as Redes Bayesianas
deixaram de obter as melhoras através da seleção de variáveis. A diferença nas bases de
dados Maxwell e Cocomo81 poderia ser bastante significativa se a seleção de modelos
levasse em conta esta conversão numérica.

A partir desta observação, uma sugestão interessante de desenvolvimento para as Re-
des Bayesianas seria que os algoritmos e ferramentas incorporem esta conversão numérica
e a usem para medir a precisão, ao invés de usar taxas de acerto ou taxas de erro. Então,
mesmo que obtendo um menor aumento nas taxas de acerto, a seleção de variáveis tornaria
os modelos mais precisos no geral. Da maneira que estão, a potencial melhora esperada
com a seleção de variáveis parece estar sendo disperdiçada na busca de taxas de acerto
maiores. Alternativamente, uma outra sugestão para pesquisas futuras é experimentar com
outros algoritmos de busca, métodos de avaliação das redes e estimadores das tabelas de
probabilidade já que este estudo restringiu-se ao algoritmo de busca K2 (COOPER; HER-
SKOVITS, 1992) com o método Bayes para avaliação de redes e o estimador simples para
estimar as tabelas de probabilidades.

Além das observações sobre a seleção de variáveis, pode-se constatar uma tendência
nestes resultados. A precisão das Redes Bayesianas se degrada com o aumento da obliq-
uidade dos dados. O melhor desempenho das Redes Bayesianas foi alcançado na base de
dados menos oblíqua, isto é, a base de dados Desharnais. A obliquidade dos dados afeta as
Redes Bayesianas de duas maneiras: a) Quanto maior a obliquidade mais desequilibradas
serão as classes gerada pela discretização e as classes de esforço maiores se tornam muito
imprecisas. Pode-se constatar nas tabelas de discretização mostradas na seção anterior
que as classes de maior esforço abrangem um intervalo muito maior do que as classes

58

menores. Um exemplo disto é a maior classe de esforço da base de dados Maxwell em
que compreende valores entre 10000 e 64000 horas de trabalho sendo maior que todas
as outras classes juntas. b) Além deste efeito na discretização, há também um efeito na
conversão numérica já que mesmo uma pequena probabilidade para a classe maior afeta
a conversão numérica bastante significativamente.

Então, observa-se que boa parte da imprecisão das Redes Bayesianas pode ser atribuída
ao processo de discretização. Neste cenário em que os dados são muito oblíquos, a dis-
cretização das frequências iguais gera classes com larguras muio diferentes. A alternativa
da discretização das larguras iguais gera resultados irrelevantes porque várias classes fi-
cam vazias e o modelo prediz o óbvio, isto é, quase sempre as classes de menor esforço
já que esta contém a grande maioria dos registros. Neste caso, taxas de acerto muito altas
não só não surpreendem, como são prováveis. Mas a menos que uma transformação log-
arítmica seja aplicada nos dados, predições baseadas em dados oblíquos e a discretização
das larguras iguais são fúteis e trazem resultados duvidosos. As técnicas de discretização
são um assunto que carece de investigações na área da predição de software.

Apesar deste desempenho parecer desencorajador, especialmente nas bases mais as-
simétricas, mesmo na muito assimétrica base de dados Cocomo81, as Redes Bayesianas
foram mais precisas que os modelos base. Esta é uma perspectiva mais positiva do que a
publicada em Mendes e Mosley (2008), já que neste estudo as diversas Redes Bayesianas
propostas dificilmente superavam os mesmos modelos base. Alerta-se ao leitor de que
o desempenho das Redes Bayesianas não é pior do que o de muitas outras técnicas de
aprendizagem de máquina propostas. Isto pode ser verificado em estudos como Radlinski
e Hoffman (2010), onde em duas das quatro bases de dados as Redes Bayesianas estavam
entre os classificadores com maiores taxas de acerto.

A partir dos estudos da literatura e destes experimentos, observa-se que parece ser
difícil superar a regressão linear em termos de precisão quando esta é apropriadamente
aplicada. Estes resultados da regressão linear confirmam a conclusão de Dejaeger et al.
(2012) e parcialmente os resultados de Mendes e Mosley (2008). Mas observa-se que
embora a regressão linear seja mais precisa, deve-se observar que esta técnica estatística
já está bastante otimizada, enquanto outras técnicas como as Redes Bayesianas ainda têm
possibilidades de melhoras e estão em constante desenvolvimento. Com evoluções na
teoria das Redes Bayesianas e a atualização das ferramentas com estes desenvolvimentos,
predições mais precisas serão possíveis. Se as Redes Bayesianas puramente baseadas
em dados, como as investigadas neste estudo, alcançarem a regressão linear em termos
de precisão, isto será bastante benéfico para esta técnica já que esta deixaria de ser mais
imprecisa quando puramente baseada em dados e ainda estaria contando com as vantagens
de experimentação e de integração de conhecimento de especialistas.

Especificamente, observou-se possibilidades de melhora especialmente no que se ref-
ere a discretização e otimização da seleção de variáveis. Além disso, constata-se nas
pesquisas que existem progressos em relação a suporte a variáveis ordinais e numéricas
que poderão vir a possibilitar predições mais precisas.

As ferramentas de Redes Bayesians são atualmente uma limitação (RADLINSKI,
2010). Seria interessante analisar que melhoras pode-se obter com técnicas como a dis-
cretização dinâmica proposta em Neil, Tailor e Marquez (2007) e desenvolvida na ferra-
menta comercial AgenaRisk. A vantagem da ferramenta WEKA consiste nas possibili-
dades extensas de validação, mas em contrapartida, esta ferramenta ainda não tem desen-
volvimentos como o recém citado. Um desenvolvimento interessante para as ferramentas
seria a incorporação da conversão numérica discutida neste estudo. Esta conversão não

59

está automatizada nas ferramentas e sua execução pode ser trabalhosa. Além distom, ex-
istem desenvolvimentos relacionados ao suporte de variáveis ordinais e contínuas. Estes
desenvolvimentos podem abrir possibilidades de melhoras na precisão.

É importante expor resultados realistas mesmo que estes não sejam positivos para
uma técnica em particular. Esta área de pesquisa sofreu nos últimos vinte anos devido
a avaliações otimistas. Nos anos recentes, esforços dirigidos à correção de conclusões
equivocadas e identificação das razões para os resultados conflitantes estão em ascenção,
mesmo que isto exponha uma situação complicada desta área de pesquisa. É importante
reconhecer a situação como tal para que seja possível encontrar saídas.

60

REFERENCES

BIBI, S. et al. BBN based approach for improving the software development process of
an SME a case study. J. Softw. Maint. Evol., New York, NY, USA, v.22, n.2, p..1–.1,
Mar. 2010.

BIBI, S.; STAMELOS, I.; ANGELIS, L. Bayesian Belief Networks as a Software Pro-
ductivity Estimation Tool. In: BALKAN CONFERENCE IN INFORMATICS, THESSA-
LONIKI, 1. Proceedings. . . [S.l.: s.n.], 2003.

BOEHM, B.; ABTS, C.; CHULANI, S. Software development cost estimation ap-
proaches - A survey. [S.l.]: Annals of Software Engineering, 2000.

BOEHM, B. W. Software Engineering Economics. Englewood Cliffs, NJ: Prentice Hall,
1981.

CHEN, Z. et al. Finding the Right Data for Software Cost Modeling. IEEE Softw., Los
Alamitos, CA, USA, v.22, n.6, p.38–46, 2005.

COOPER, G. F.; HERSKOVITS, E. A Bayesian Method for the Induction of Probabilistic
Networks from Data. Mach. Learn., Hingham, MA, USA, v.9, p.309–347, Oct. 1992.

DASH, M.; LIU, H. Feature Selection for Classification. Intelligent Data Analysis, [S.l.],
v.1, p.131–156, 1997.

DEJAEGER, K. et al. Data Mining Techniques for Software Effort Estimation: a compar-
ative study. IEEE Trans. Software Eng., [S.l.], v.38, n.2, p.375–397, 2012.

FENTON, M. N. N.; RADLINSKI, L. Software Project and Quality Modelling Using
Bayesian Networks. In: Artificial Intelligence Applications for Improved Software
Engineering Development: new prospects. (part of the advances in intelligent informa-
tion technologies (aiit) book series). [S.l.]: Information Science Reference. ISBN: 978-1-
60566-758-4, 2009. p.223–231. Edited by: F. Meziane and S. Vadera.

FENTON, N. E.; NEIL, M. A Critique of Software Defect Prediction Models. IEEE
Trans. Softw. Eng., Piscataway, NJ, USA, v.25, n.5, p.675–689, 1999.

FENTON, N.; NEIL, M.; MARQUEZ, D. REVIEW PAPER 701 Using Bayesian net-
works to predict software defects and reliability. 2007.

61

FERNÁNDEZ-DIEGO, M.; TORRALBA-MARTÍNEZ, J.-M. Discretization methods for
NBC in effort estimation: an empirical comparison based on isbsg projects. In: ACM-
IEEE INTERNATIONAL SYMPOSIUM ON EMPIRICAL SOFTWARE ENGINEER-
ING AND MEASUREMENT, New York, NY, USA. Proceedings. . . ACM, 2012. p.103–
106. (ESEM ’12).

FINNIE, G. R.; WITTIG, G. E.; DESHARNAIS, J.-M. A comparison of software effort
estimation techniques: using function points with neural networks, case-based reason-
ing and regression models. J. Syst. Softw., New York, NY, USA, v.39, n.3, p.281–289,
Dec. 1997.

FLORES, M. J. et al. Analyzing the impact of the discretization method when compar-
ing Bayesian classifiers. In: INDUSTRIAL ENGINEERING AND OTHER APPLICA-
TIONS OF APPLIED INTELLIGENT SYSTEMS - VOLUME PART I, 23., Berlin, Hei-
delberg. Proceedings. . . Springer-Verlag, 2010. p.570–579. (IEA/AIE’10).

FOSS, T. et al. A Simulation Study of the Model Evaluation Criterion MMRE. IEEE
Trans. Softw. Eng., Piscataway, NJ, USA, v.29, p.985–995, Nov. 2003.

GUYON, I.; ELISSEEFF, A. An introduction to variable and feature selection. J. Mach.
Learn. Res., [S.l.], v.3, p.1157–1182, Mar. 2003.

HALL, M. A.; HOLMES, G. Benchmarking Attribute Selection Techniques for Discrete
Class Data Mining. IEEE Trans. on Knowl. and Data Eng., Piscataway, NJ, USA, v.15,
n.6, p.1437–1447, 2003.

HALL, M. et al. The WEKA data mining software: an update. SIGKDD Explor. Newsl.,
New York, NY, USA, v.11, n.1, p.10–18, 2009.

JØRGENSEN, M. A review of studies on expert estimation of software development ef-
fort. J. Syst. Softw., New York, NY, USA, v.70, n.1-2, p.37–60, Feb. 2004.

JØRGENSEN, M.; SHEPPERD, M. A Systematic Review of Software Development Cost
Estimation Studies. IEEE Trans. Softw. Eng., Piscataway, NJ, USA, v.33, n.1, p.33–53,
2007.

KITCHENHAM, B. A.; MENDES, E.; TRAVASSOS, G. H. Cross versus Within-
Company Cost Estimation Studies: a systematic review. IEEE Trans. Softw. Eng., Pis-
cataway, NJ, USA, v.33, n.5, p.316–329, 2007.

KITCHENHAM, B. et al. What accuracy statistics really measure. IEE Proceedings -
Software, [S.l.], v.148, n.3, p.81–85, 2001.

KITCHENHAM, B.; MENDES, E. Why comparative effort prediction studies may be
invalid. In: INTERNATIONAL CONFERENCE ON PREDICTOR MODELS IN SOFT-
WARE ENGINEERING, PROMISE ’09, 5., New York, NY, USA. Proceedings. . . ACM,
2009. p.1–5.

KOHAVI, R.; JOHN, G. H. Wrappers for Feature Subset Selection. Artificial Intelli-
gence, [S.l.], v.97, n.1-2, p.273–324, 1997.

62

KORTE, M.; PORT, D. Confidence in software cost estimation results based on MMRE
and PRED. In: PREDICTOR MODELS IN SOFTWARE ENGINEERING, 4., New York,
NY, USA. Proceedings. . . ACM, 2008. p.63–70. (PROMISE ’08).

LIU, H. et al. Discretization: an enabling technique. Data Min. Knowl. Discov., Hing-
ham, MA, USA, v.6, p.393–423, Oct. 2002.

LIU, Q. et al. Evaluation of preliminary data analysis framework in software cost estima-
tion based on ISBSG R9 Data. Software Quality Control, Hingham, MA, USA, v.16,
n.3, p.411–458, 2008.

MAIR, C.; SHEPPERD, M. J. The consistency of empirical comparisons of regres-
sion and analogy-based software project cost prediction. In: ISESE’05. Proceedings. . .
[S.l.: s.n.], 2005. p.509–518.

MENDES, E.; MOSLEY, N. Bayesian Network Models for Web Effort Prediction: a com-
parative study. Software Engineering IEEE Transactions on, [S.l.], v.34, n.6, p.723–
737, 2008.

MENZIES, T. et al. Stable rankings for different effort models. Automated Software
Engg., Hingham, MA, USA, v.17, p.409–437, Dec. 2010.

MENZIES, T. et al. The PROMISE Repository of empirical software engineering
data. Available at: <http://promisedata.googlecode.com>. viewed in apr. 16th, 2013.
2012.

MIYAZAKI, Y. et al. Method to estimate parameter values in software prediction models.
Inf. Softw. Technol., Newton, MA, USA, v.33, n.3, p.239–243, Apr. 1991.

MYRTVEIT, I.; STENSRUD, E.; SHEPPERD, M. Reliability and Validity in Compara-
tive Studies of Software Prediction Models. IEEE Trans. Softw. Eng., Piscataway, NJ,
USA, v.31, n.5, p.380–391, May 2005.

NEIL, M.; TAILOR, M.; MARQUEZ, D. Inference in hybrid Bayesian networks using
dynamic discretization. Statistics and Computing, Hingham, MA, USA, v.17, p.219–
233, 2007.

PENDHARKAR, P. C.; SUBRAMANIAN, G. H.; RODGER, J. A. A Probabilistic Model
for Predicting Software Development Effort. IEEE Trans. Softw. Eng., Piscataway, NJ,
USA, v.31, n.7, p.615–624, 2005.

RADLINSKI, L. A Survey of Bayesian Net Models for Software Development Effort
Prediction. International Journal of Software Engineering and Computing, [S.l.], v.2,
n.2, p.95–109, 2010.

RADLINSKI, L.; HOFFMANN, W. On Predicting Software Development Effort using
Machine Learning Techniques and Local Data. International Journal of Software En-
gineering and Computing, [S.l.], v.2, n.2, p.123–136, 2010.

SHEPPERD, M. Software project economics: a roadmap. In: FUTURE OF SOFTWARE
ENGINEERING, 2007., Washington, DC, USA. Proceedings. . . IEEE Computer Soci-
ety, 2007. p.304–315. (FOSE ’07).

63

SHEPPERD, M.; MACDONELL, S. Evaluating prediction systems in software project
estimation. Inf. Softw. Technol., Newton, MA, USA, v.54, n.8, p.820–827, Aug. 2012.

SHEPPERD, M.; SCHOFIELD, C. Estimating Software Project Effort Using Analogies.
IEEE Trans. Softw. Eng., Piscataway, NJ, USA, v.23, p.736–743, Nov. 1997.

SOUZA, A. L. R. et al. A Systematic Review of Bayesian Belief Network in Manage-
ment of Software Development Process. In: CONFERÊNCIA LATINOAMERICANA
DE INFORMÁTICA, Quito, Peru. Anais. . . [S.l.: s.n.], 2011. v.37.

STAMELOS, I. et al. On the use of Bayesian belief networks for the prediction of software
productivity. Information & Software Technology, [S.l.], v.45, n.1, p.51–60, 2003.

TAN, P.-N.; STEINBACH, M.; KUMAR, V. Introduction to Data Mining, (First Edi-
tion). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2005.

TIERNO, I. A.; NUNES, D. J. Assessment of Automatically Built Bayesian Networks
in Software Effort Prediction. Ibero-American Conference on Software Engineering,
Buenos Aires - Argentina, [S.l.], p.196–209, Apr. 2012.

TRENDOWICZ, A.; MüNCH, J.; JEFFERY, R. State of the practice in software effort
estimation: a survey and literature review. In: THIRD IFIP TC 2 CENTRAL AND
EAST EUROPEAN CONFERENCE ON SOFTWARE ENGINEERING TECHNIQUES,
Berlin, Heidelberg. Proceedings. . . Springer-Verlag, 2011. p.232–245. (CEE-SET’08).

WEN, J. et al. Systematic literature review of machine learning based software devel-
opment effort estimation models. Inf. Softw. Technol., Newton, MA, USA, v.54, n.1,
p.41–59, Jan. 2012.

WITTEN, I. H.; FRANK, E.; HALL, M. A. Data Mining: practical machine learning
tools and techniques. 3rd.ed. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2011.

