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This paper aims at showing how analytical techniques can be employed to explain the global emerged be-
havior of a heterogeneous population of ultimatum game players, over different strategies, by calculating their
payoff moments. The ultimatum game is a game, in which two players are offered a gift to be shared. One of the
players (the proposer) suggests how to divide the offer while the other player (the responder) can either agree
or reject the deal. Computer simulations were performed considering the concept of turns (in every turn each
participant plays necessarily only once, which is equivalent to performing matching a graph) in the game. We
reproduce by simulations the expected analytical results at the limit of high number of turns. From these results,
we are capable of establishing diagrams to say where each strategy is the best (optimal strategy).
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It is very hard to find realistic models to describe the com-
plexity of economic behavior in real societies. The same
can be said about biological populations with a large num-
ber of participants over different strategies competing to sur-
vive. However, some interesting answers can be provided
using Game Theory [1], which should describe negotiations
among different individuals via a payoff matrix that quantifies
all possible actions that can be taken by players in the game.

This theory, an accepted approach by theoretical econo-
mists due to contributions by John Nash [4] have also became
accepted by biologists after the essential works of John May-
nard Smith [2, 3] if we have in mind the different relations
existing among species and among individuals of the same
species because of a simple way different strategies can be
tested and the results extrapolated to real situations in soci-
eties. In this evolutionary branch [8], this theory can bring
about questions related to equilibrium, survival of strategies
assuming not only one game play but several plays. Such
theory is able to represent the dynamic behavior of games
in average under different social contexts: in economy, such
as public good games[9–11], minority game [12], in biology,
prisoner dilemma [8] and others and it also can consider the
different networks and their influence on the emerging collec-
tive behaviors.

In the game defined in [5], the usual ultimatum game, two
players must divide a quantity between them. One of them
proposes a division (the proposer) and the other can accept or
reject it (the responder). If the responder rejects the offer, both
players receive nothing, otherwise the “money” will be shared
accordingly. A good analogy of this game, in a situation in-
volving human beings, is how a percentage paid to an agent in
a sale can be negotiated.

In human economic experiments, one could see a tendency
to offer a division as near as possible to fifty-fifty and to re-
ject values lower than 30% (see e.g. [5], [13]). However, this

goes against results obtained by the classical game theory that
claims participants play under Nash equilibrium [4], i.e., the
rational solution is for the proposer to offer the smallest pos-
sible share, and for the responder to accept it. It is important
to observe that spacial features have also been explored in the
context of this game [6] as well as an analysis of the rational
strategy versus a fair strategy[7], in which the player accepts
values satisfying the proposer. But, as a proposer, it wants to
earn compatible values (he helps and hopes to be helped).

Our goal is then to show analytically a procedure to cal-
culate the payoff moments of players in the heterogeneous
ultimatum game population according to a determined strat-
egy. Our objective is to establish a dominant strategy for a set
of input parameters. Our approach is general in the sense that
all strategies are described as probability distributions and ad-
ditional behaviors can be tested as different strategies. It is
important to notice that other suitable games can be explored
using the same kind of approach developed here. Our pro-
cedure takes into consideration the density/fractions of strate-
gies, dominance of strategies (i.e. who is the proposer, who is
the responder in different encounters) and also considers finite
population corrections.

Let us consider Ysc a random variable assuming values in
{0,1,2, ...,w}, denoting the value obtained by a player with
strategy sc ∈ S = {s1,s2, ...,sp}, where w is the maximum
amount of money competed (a integer variable) for a con-
frontation of ultimatum game, where S is the set of possi-
ble strategies by players. Let us denote by Φsk the density of
players with strategy sk defined by a pair of rules (one well-
defined proposal if the player turns out to be the proposer and
a well-defined threshold below which the player will refuse a
proposal if the player turns out to be the responder) in a pop-
ulation of N size. Defining Pr(Ysc = i) as the probability of a
received value by the player with strategy sc to be exactly i,
we can then write according to law of total probability:
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Pr(Ysc = i) =
p
∑

k=1
Pr[ (Ysc = i)|{ (sc is the proposer)∩ (the opponent has strategy sk)} ]

·Pr[(sc is the proposer)|(the opponent has strategy sk)]·
·Pr(the opponent has strategy sk)

+
p
∑

k=1
Pr[ (Ysc = i)|{ (sc is the responder )∩ (the opponent has strategy sk)} ]

·Pr[(sc is the responder)|(the opponent has strategy sk)]·
·Pr(the opponent has strategy sk)

(1)

To describe these probabilities, we claim that there is a
meaningful question concerning the existence of dominant
strategies, i.e., the “ability” of a player with strategy s1 to be
the proposer/responder with probability greater than its op-
ponent with s2, i.e., to be proponent or responder depends
not only on one’s own strategy, but also on the capacity the
opponent’s to be the responder or proposer. Therefore we
will denote: Pr[(sc is the proposer)|(the opponent has strat-
egy sk)] = ρsc,sk = 1−Pr[(sc is the responder)|(the opponent
has strategy sk)].

But, what is the probability Pr(the opponent has strategy
sk)? This quantity depends only on the fraction of the players
with strategy sk and if this strategy is not exactly sc:

Pr(· has strategy sk) =





Φsk N−1
N−1

if k = c

NΦsk

N−1
if k 6= c.

(2)

Finally, let us calculate the probabilities Pr(Ysc = i|sc is the
proposer ∩ the opponent has strategy sk) and Pr(Ysc = i|sc is
the responder ∩ the opponent has strategy sk ).

Here we postulate that Pr(Ysc = i|sc is the proposer∩ the op-
ponent has strategy sk) = psc(i)ask(w− i) and Pr(Ysc = i|sc is
the acceptor ∩ the opponent has strategy sk ) = asc(i)psk(w−
i), where pξ(i) is the probability of a player with strategy ξ∈ S
to propose the value w− i to its opponent (which means i for
the proposer) with strategy ζ ∈ S, and aζ(w− i) is the proba-
bility of the opponent to accept the offer.

So we have a complete probability distribution formula for
a player, with strategy sc given by:

Pr(Ysc = i) = psc(i)
p

∑
k=1

ask(w− i)
Φsk N−δk,c

N−1
ρsc,sk+

asc(i)
p

∑
k=1

psk(w− i)
Φsk N−δk,c

N−1
(1−ρsc,sk) (3)

The m-th moment of the player with strategy sc in the pop-
ulation, is computed by:

E[Y m
sc ] =

w

∑
i=0

p

∑
k=1

im · psc(i)ask(w− i)
Φsk N−δk,c

N−1
ρsc,sk+

Player types p(i) a(i)

fixed





1 i = wc

0 otherwise,





1 wc ≤ i≤ w

0 0≤ i < wc

uniform 1/(w+1) 1/2
greedy 2(i+1)/[(w+1)(w+2)] (i+1)/(w+1)

TABLE I: Players strategies.

w

∑
i=0

p

∑
k=1

im ·asc(i)psk(w− i)
Φsk N−δk,c

N−1
(1−ρsc,sk) (4)

From (4), considering the first moment (m = 1) and second
moment (m = 2), we can calculate the dispersion (variance) of
money of a player with strategy sc in the population:

var[Ysc ] = E[Y 2
sc ]−E[Ysc ]

2. (5)

Here it is important to notice that the strategies can be ab-
solutely general since the choice of as and ps is arbitrary. So
we can look for strategies that resemble possible interesting
characteristics of participants in biological or economic popu-
lations and situations involving ambition, altruism, stubborn-
ness and many others.

For the sake of simplicity, let us study a particular test bed
p = 3, i.e., when we have a population composed by 3 species
of players (see table I): k = 1 corresponding to a fixed payoff
player (stubborn)– who wants to have the same gain, propos-
ing always the same value wc and accepting values greater
than wc, k = 2 – a uniform player (random), any value is pro-
posed by it with the same probability but, as a responder, it
accepts or not any value with probability 1/2. Finally, k = 3
corresponds to probabilistic greedy player (ambitious) – the
probability of a value to be proposed or accepted grows lin-
early with the player’s gain.

So, in this particular case, let us calculate the expected
value of a fixed player in a population of N heterogeneous
players. The choice of ρsc,sk can be very arbitrary, but for the
sake of simplicity we will set ρsc,sk = 1/2, for k = 1,2, ..., p,



1208 Brazilian Journal of Physics, vol. 37, no. 4, December, 2007

i.e., there is no dominance of strategies to propose or accept.
First, this result is computed, substituting the considered pro-

poser functions, which leads to:

E[Y1] =
1
2

(
wc

3

∑
k=1

Φsk N−δk,1

N−1
ask(w−wc)+

3

∑
k=1

w

∑
i=wc

i · psk(w− i)
Φsk N−δk,1

N−1

)
(6)

Now, it is interesting to look at each one of these sums separately. The first sum stands as:

3
∑

k=1

(Φsk N−δk,1)ask (w−wc)
N−1 =





Φs1 N−1
N−1 + 1

2
Φs2 N
N−1 + (w−wc+1)

w+1
Φs3 N
N−1 if wc ≤ w/2

1
2

Φs2 N
N−1 + (w−wc+1)

w+1
Φs3 N
N−1 if wc > w/2

(7)

and, from the second one it is easy to conclude that

3
∑

k=1

w
∑

i=wc

i · psk(w− i)
Φsk N−δk,1

N−1 =
Φs1 N−1

N−1

w
∑

i=wc

i · ps1(w− i)+
Φs2 N
N−1

w
∑

i=wc

i · ps2(w− i)+

+
Φs3 N
N−1

w
∑

i=wc

i · ps3(w− i)
(8)

Each of the above equations can be then calculated straightforwardly:

w

∑
i=wc

i · ps1(w− i) =





w−wc if wc ≤ w/2

0 if wc > w/2

(9)

w

∑
i=wc

i · ps2(w− i) =
w

∑
i=wc

i
(w+1) = (w+wc)(w−wc+1)

2(w+1)

w

∑
i=wc

i · ps3(w− i) =
w

∑
i=wc

2i(w−i+1)
(w+1)(w+2) = (wc−w−1)(wc−w−2)(w+2wc)

3(w+1)(w+2) .

Finally, the average payoff in a population with the given characteristics can be obtained by:

E[Y1] =





1
2 wc

[
Φs1 N−1

N−1 + 1
2

Φs2 N
N−1 + (w−wc+1)

w+1
Φs3 N
N−1

]

+ 1
2

[
(Φs1 N−1)(w−wc)

N−1 +
Φs2 N
N−1

(w+wc)(w−wc+1)
2(w+1)

]

+ 1
2

Φs3 N
(N−1)

(wc−w−1)(wc−w−2)(w+2wc)
3(w+1)(w+2)

if wc ≤ w/2
1
2 wc

[
1
2

Φs2 N
N−1 + (w−wc+1)

w+1
Φs3 N
N−1

]
+

1
2

Φs2 N
(N−1)

(w+wc)(w−wc+1)
2(w+1) +

1
2

Φs3 N
N−1

(wc−w−1)(wc−w−2)(w+2wc)
3(w+1)(w+2)

if wc > w/2

(10)

and so E[Y1] has a cubic polynomial dependence on wc for the two different branches (wc ≤ w/2 and wc > w/2).
To compute the variance, first of all, we need to calculate the second moment:

E[Y 2
1 ] = 1

2

w
∑

i=0

3
∑

k=1
i2 · [ps1(i)ask(w− i)+as1(i)psk(w− i)

] · Φsk N−δk,c
N−1

= 1
2 w2

c

3
∑

k=1

Φsk N−δk,1
N−1 ask(w−wc)+ 1

2

3
∑

k=1

w
∑

i=wc

i2 · psk(w− i)
Φsk N−δk,1

N−1

(11)

The first sum was computed before to calculate the average. So, calculating some necessary parts:
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w

∑
i=wc

i2 · ps1(w− i) =





(w−wc)2 if wc ≤ w/2

0 if wc > w/2

(12)

w

∑
i=wc

i2 · ps2(w− i) = (wc−1−w)(2w2
c−wc+2wcw+w+2w2)
6(w+1)

w

∑
i=wc

i2 · ps3(w− i) = (wc−1−w)(wc−w−2)(3w2
c−wc+2wcw+w2+w)

6(w+1)(w+2) ,

we found the second moment is given by

E[Y 2
1 ] =





1
2 w2

c

[
Φs1 N−1

N−1 + 1
2

Φs2 N
N−1 + (w−wc+1)

w+1
Φs3 N
N−1

]

+ 1
2

[
(w−wc)2 Φs1 N−1

N−1 + (wc−1−w)(2w2
c−wc+2wcw+w+2w2)
6(w+1)

Φs2 N
N−1

]

+ (wc−1−w)(wc−w−2)(3w2
c−wc+2wcw+w2+w)

12(w+1)(w+2)
Φs3 N
N−1

if wc ≤ w/2
1
2 w2

c

[
1
2

Φs1 N
N−1 + (w−wc+1)

w+1
Φs2 N
N−1

]
+ (wc−1−w)(2w2

c−wc+2wcw+w+2w2)
12(w+1)

Φs2 N
N−1

+ (wc−1−w)(wc−w−2)(3w2
c−wc+2wcw+w2+w)

12(w+1)(w+2)
Φs3 N
N−1

if wc > w/2

(13)
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FIG. 1: The calculated value of average fixed player payoff E[Y1]
with the corresponding standard deviation

√
var[Y1], compared to

the mean value received by one fixed player in different numbers of
turns.

For a comparison, we now present several computer simu-
lations. These simulations use the concept of turn [14] i.e.,
for each iteration a pair of players is chosen randomly, but all
players take part only once (this is formally known in data
structure as “matching”) as described by algorithm 1. For
example, in a population of 200 players, in every turn 100
pairs are randomly arranged. For our experiments we assume
w = 100.

Figure 1 shows the received payoff E[Y1] (fixed players) ob-
tained analytically by equation 10 (continuous curve). The
population has the same proportion of fixed, uniform and
greedy players (1/3). One can notice that for a high num-
ber of turns, the experimental results agree with the analyt-
ical ones. This agreement is not observed in a low number
of turns (Nt < 100), which is natural according to ”analytical

Algorithm 1 - Simulation with turns
1: for each parameters combination do
2: create all players in population
3: for each turn do
4: create a list of players not yet chosen
5: repeat
6: choose two players randomly in the list
7: choose which of them is proposer or accepter
8: they play according to their strategies
9: remove players from the list

10: until the list is empty
11: end for
12: calculate mean payoff and variance
13: end for

error bars” (
√

var[Y1]) according to equations 13 and 10.
The expected crossover in equation 10 can be observed ex-

actly in wc = 50 (w = 100). The payoff of the uniform and
greedy players according to the cutoff of fixed players can also
be analyzed numerically calculating the average directly from
equation 4, i.e., performing the sums of this equation (see Fig.
2) and not obtaining exactly an analytical expression like 10.
In this case, we have also considered simulation experiments
simultaneously for a comparison, studying the effects of an
increase in the number of turns observing, like in Fig. 1, that
the results of simulation are the same as the exact formulae for
Nt ∼ 1000, in the exact sense of law of large numbers (see fig-
ure 2). In this case we observe a continuous decay of payoff
for both players (greedy and uniform) as a function of fixed
players cutoff, different from the observed discontinuity that
occurs for fixed players (Fig. 1).

Finally, we would like to analyze the dominance regions of
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FIG. 2: The average payoff of greedy and uniform players in a pop-
ulation with the same proportion (1/3) of players: fixed, greedy and
uniform. In both cases we observe a continuous decay as function of
fixed players cutoff.
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FIG. 3: Dominance of strategies fixing the proportion of uniform
players at 1/3. The different plots correspond to the different draw
criteria respectively.

players based on the average payoff, i.e., who has the best
strategy changing the proportion of greedy players and the
cutoff of fixed ones. For this experiment, we have fixed the
proportion of uniform players at 1/3, and we changed the
greedy proportion keeping the complement of population with
fixed players.

In Fig. 3, the sequence of plots shows a diagram of strate-
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FIG. 4: Dominance of strategies fixing the proportion of the fixed
players at1/3. We considered 1% (left side) and 5% (right side) as
draw criteria respectively.
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FIG. 5: Plot similar to figure 4 but fixing 1/3 of greedy players in the
population.

gies looking at dominance of different players/strategies. The
light gray color corresponds to a region where the greedy
player has the highest average payoff while the dark gray cor-
responds to a dominant region for fixed players. The black
dots represent a region where a draw occurs among play-
ers considering different draw criteria, errors (absolute differ-
ences among the payoffs) of 1%, 3%, 5% and 7% respectively.

We can observe an increase in draw regions as a result of
relaxation of draw criteria. Considering this particular con-
figuration, there is no region where the uniform players win,
showing this strategy (play roulette, play coin) to negotiate is
not so good to ultimatum game if the population is composed
just by 1/3 of uniform players independently of cutoff used
by fixed players, not even in the case where the strategies are
equally distributed (1/3,1/3,1/3) in the population.

Additionally, we perform two similar alternative simula-
tions: firstly, fixing the proportion of fixed players at 1/3 (see
Fig. 4) and secondly, fixing the proportion of greedy players
at 1/3 (figure 5).

When the uniform players are not fixed at 1/3 in the popu-
lation, regions where they obtain the highest payoff are found
(represented by white regions in Figs. 4 and 5, the other tones
follow the same definition of Fig. 3). These regions become
smaller for more relaxed draw criteria losing area for draw re-
gions (although only 1% and 5% are shown here, the other
cases were simulated by authors and corroborate this trend).

It is important to notice the general aspect of these results
regarding the several strategies that can be adopted and the
different extensions to be explored to cover additional differ-
ent games in an evolutionary context.



Roberto da Silva and Gustavo Adolfo Kellerman 1211

Acknowledgments

R. da Silva thanks CNPq for the financial support to this

work.

[1] J. Von Neumann, O. Morgenstern, Theory of Games and Eco-
nomic Behavior, Princeton University Press (1953).

[2] J. M. Smith, G. R. Price, Nature 246, 15 (1973).
[3] J. M. Smith, Evolution and the Theory of Games, Cambridge

University Press (1982).
[4] J. Nash, Proceedings of Nacional Academy of Science of the

United States of America 36, 48 (1950).
[5] W. Guth, R. Schmittberger, B. Schwarze, Journal of Economic

Behavior and Organization 3(4), 367 (1982).
[6] K. M. Page, M. A. Nowak, and K. Sigmund, Proc. R. Soc. Lond.

B 267, 2177 (2000).
[7] M. A. Nowak, K. Page, and K. Sigmund, Science 289, 1773

(2000).
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