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A Numerical Investigation of Inertia 
Flows of Bingham-Papanastasiou 
Fluids by an Extra Stress-Pressure-
Velocity Galerkin Least-Squares 
Method 
This article is concerned with finite element approximations for yield stress fluid flows 
through a sudden planar expansion. The mechanical model is composed by mass and 
momentum balance equations, coupled with the Bingham viscoplastic model regularized 
by Papanastasiou (1987) equation. A multi-field Galerkin least-squares method in terms of 
stress, velocity and pressure is employed to approximate the flows.  This method is built to 
circumvent compatibility conditions involving pressure-velocity and stress-velocity finite 
element subspaces. In addition, thanks to an appropriate design of its stability parameters, 
it is able to remain stable and accurate in high Bingham and Reynolds flows. Numerical 
simulations concerning the flow of a regularized Bingham fluid through a one-to-four 
sudden planar expansion are performed. For creeping flows, yield stress effects on the 
fluid dynamics of viscoplastic materials are investigated through the ranging of Bingham 
number from 0.2 to 100. In the sequence, inertia effects are accounted for ranging the 
Reynolds number from 0 to 50. The numerical results are able to characterize accurately 
the morphology of yield surfaces in high Bingham flows subjected to inertia. 
Keywords: viscoplasticity, Bingham model, Papanastasiou regularization, inertia effects, 
multi-field Galerkin least-squares method 
 
 

Introduction1

Although the majority of fluids in the biosphere present 
Newtonian behavior, non-Newtonian behavior is observed in most 
industrial synthetic and non-synthetic fluids and in biological fluids, 
such as human blood and saliva. To quote a few examples, crude oil 
and drilling muds from the oil industry, paints, cosmetics, glues, 
soaps, detergents and many food products. Among them, an 
important class of non-Newtonian materials presents a yield stress 
limit which must be exceeded before significant deformation can 
occur – the so-called viscoplastic materials. In order to model the 
stress-strain relation in these fluids, some fitting have been proposed 
such as the linear Bingham equation and the non-linear Herschel-
Bulkley and Casson models. 

In this article, the Bingham fluid is employed to describe the 
viscoplastic behavior of the material. Many researchers have 
performed and analyzed numerical simulations for these flows. 
Papanastasiou (1987) introduced a continuous regularization for the 
viscosity function which has been largely used in numerical 
simulations of viscoplastic fluid flows, thanks to its easy 
computational implementation. As a weakness, its dependence on a 
non-rheological (numerical) parameter, which controls the 
exponential growth of the yield-stress term of the classical Bingham 
model in regions subjected to very small strain-rates, may be 
pointed. Abdali et al. (1992) simulated Bingham-Papanastasiou fluid 
flows through a one-to-four sudden contraction, in axisymmetric 
and planar channels, by a finite element methodology. The authors 
also considered exit flows aiming to determine yielded and 
unyielded regions in extrusion dies. Alexandrou et al. (2001) studied 
the influence of inertia, viscous and yield stress effects in the filling 
process of a cavity with Bingham fluids, identifying and mapping 
the distinct flow patterns as functions of Reynolds and Bingham 
numbers. Liu et al. (2002) simulated creeping flows of Bingham  
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fluids around a rigid sphere, regularized by two different 
approaches, the Papanastasiou (1987) and Bercouvier and Engelman 
(1980) ones, accounting for the effect of the regularization 
parameter on both the convergence and the topology of material 
yield surfaces. Peric and Slijpcevic (2001) used a mixed Galerkin 
least-squares (GLS) method to study the evolutionary behavior of 
Bingham fluids through a three-to-one planar sudden contraction, 
leading to the conclusion that the GLS methodology was able to 
deal with viscoplastic flows of industrial relevance such as those 
employed in the extrusion process. A mixed GLS formulation is 
employed, too, by Zinani and Frey (2007) to approximate creeping 
flows of Bingham fluids regularized by the Papanastasiou equation, 
flowing through planar and axisymmetric sudden expansions 
subjected to two-to-one aspect ratio. The authors concluded that the 
increasing of Bingham number leads to a significant pressure drop 
increase, due to the growth of unyielded material regions throughout 
the expansion channel. This geometry is also considered by 
Mitsoulis and Huilgol (2004) in the simulation of entry flows of 
Bingham fluids via finite element method, ranging Bingham and 
Reynolds numbers to take into account yield-stress and inertia 
effects, respectively. Roquet and Saramito (2007) used an 
anisotropic and self-adaptive finite element method, to simulate 
Pouseuille flow of Bingham fluids through square ducts, imposing 
slip boundary conditions on walls and identifying different flow 
regimes. Singh and Denn (2008) simulated, via a finite element 
method, the motion of bubbles and drops in a Bingham fluid 
regularized by the Bercovier and Engelman (1980) equation, 
observing that multiple bubbles and droplets require smaller body 
forces to move than a single bubble or droplet, a behavior analogous 
to the motion of bubbles and drops in a Newtonian fluid. 

Multi-field finite element formulations were first introduced in 
terms of stress, pressure and velocity, in the context of the Stokes 
problem. Marchal and Crochet (1986) proposed a finite element 
approximation for stress using Hermite polynomials as shape 
functions and showed it assures that the solution of the three- and 
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two-field problems are the same. In another work, Marchal and 
Crochet (1987) introduced finite elements composed by several sub-
elements, obtaining stable results for velocity and stress fields. 
Fortin and Pierre (1989) proved that the element proposed by 
Marchal and Crochet (1987) satisfied the Babuška-Brezzi condition 
for stress and velocity sub-spaces. Franca and Stenberg (1991) 
introduced a three-field stabilized formulation based on the Galerkin 
formulation for the Stokes problem, establishing the convergence 
and stability properties. Behr et al. (1993) improved these results, 
using a very similar stabilized formulation, but incorporating inertia 
terms and using a stability parameter that is a function of the local 
grid Reynolds number and of the element mesh size, as proposed by 
Franca and Frey (1992). Bonvin et al. (2001) presented a stabilized 
three-field formulation for the Stokes problem based on a linear 
version of the Oldroyd-B model, splitting the viscosity function in 
polymeric and solvent portions (as first suggested by Crochet and 
Keunings, 1982). Ruas and co-workers (see Araujo and Ruas (1998) 
and references therein) proposed new mixed elements and 
performed the numerical analysis of a multi-field formulation for the 
Stokes problem. Zinani and Frey (2008) employed a Galerkin least-
squares multi-field formulation, based on Behr et al. (1993) scheme, 
to simulate Carreau fluid flows through abrupt contractions. 

In the present work a multi-field finite element method is used 
to simulate Bingham fluid flows regularized by the strategy 
proposed by Papanastasiou (1987). The employed multi-field finite 
element method is the Galerkin least-squares (Hughes et al., 1986), 
which modifies the classical Galerkin formulation no longer 
requiring the satisfaction of the compatibility conditions involving 
the finite element sub-spaces for the pairs pressure-velocity and 
stress-velocity. Besides, the method remains stable even in the 
approximation of advective-dominated fluid flows, due to a proper 
design of the stability parameters of the least-squares terms of the 
balance equations for the fluid problem (Franca et al., 1992). This 
method is employed to carry out some numerical simulations of 
inertia flows of Bingham-Papanastasiou fluids through a one-to-four 
sudden planar expansion. The influence of yield-stress and inertia 
on the morphology of yielded and unyielded material regions are 
taken into account through the ranging of the Bingham number from 
0.2 to 100 and the Reynolds number from 0 to 50. The numerical 
results attested the good stability proprieties of the employed 
formulation and are in accordance with the related literature. 

Nomenclature 

B = GLS three-field form 
Bn = Bingham number 
C0 = space of continuous functions 
Cp = Euler pressure coefficient 
Ck = inverse estimate constant 
D = strain rate tensor 
F = GLS functional 
f  = body force vector 
H1 = Sobolev functional space 
H = characteristic length 
I = identity tensor 
J  = Jacobian matrix 
h  = element size K
K = element domain 
L2 = Hilbert functional space 
Lr = reattachment length 
m = regularizing parameter 
m  = interpolation parameter k
n = outward normal unit vector 
p  = pressure field 
P = pressure functional space 

q  = pressure variation function 
R = residual vector 
Re = Reynolds number 
ReK = grid Reynolds number 
S = virtual extra-stress field 
t = stress vector 
U = vector of degrees of freedom 
u = admissible velocity field 
uj = velocity component in the j direction 
ui = inlet velocity 
uo = outlet velocity 
V = velocity functional space 
v = virtual velocity field 
x1, x2 = Cartesian coordinates 
Greek Symbols 
α = stability parameter for motion equation 
β = stability parameter for material equation 
δ = stability parameter for continuity equation 
γ&  = magnitude of tensor D 
Γ = domain boundary 
η = viscosity function 
ηp = plastic viscosity 
ρ = mass density 
Σ = extra-stress functional space 
τ = magnitude of stress  
τ = admissible extra-stress field, extra-stress tensor 
τ0 = yield stress 
Ω = problem domain 
ξ = upwind function 
Subscripts 
g Dirichlet boundary condition 
h Neumann boundary condition 
k,l,m degrees of polynomial interpolation 
K finite element 
Superscripts 
h finite element approximation 
* dimensionless 

The Mechanical Model 

The laws of balance for mass and momentum are postulated 
regardless the considered material, thus requiring constitutive 
assumptions to describe the behavior of the body under the action of 
forces. Supposing that the external efforts are given by the 
gravitational field, the internal efforts – performed by a given 
portion in the body over neighboring portions – are expressed 
through the Cauchy stress tensor, relating the forces to the 
deformation. 

In Fluid Mechanics, when non-Newtonian inelastic fluids are 
concerned, the deviatoric portion of Cauchy tensor, the extra-stress 
tensor τ, depends on the rate of strain tensor D and on the shear 
viscosity, ( )η γ& , that depends on the magnitude of the tensor D, 

( )1/222trγ = D& . A very useful class of non-Newtonian fluids, widely 

employed in industrial application, is the generalized Newtonian 
fluids (GNL) (Bird et al., 1987), which may be expressed by the 
following constitutive equation: 

 
( )2η γ=τ D&                 (1) 
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The Viscoplastic Equation 

The internal structure of viscoplastic fluids presents a shear-
stress limit τ0, which must be overcome in order that the material 
starts to flow; otherwise, when this limit is not exceeded, it behaves 
as a rigid body. Examples of real viscoplastic are toothpaste, 
mayonnaise, blood and some particle suspensions. 

The Bingham model (Bird et al., 1987) is the simplest and most 
employed viscoplastic model in industrial applications. Its 
fundamental features are the yield limit τ0 – beyond which the 
material flows as a Newtonian fluid – and a constant viscosity pη , 

 
0

0

if 0
0, if

pτ τ η γ τ
γ τ τ
= + ≥⎧

⎨ = <⎩

&

&
              (2) 

 
where the shear-stress τ is the Frobenius norm of tensor : τ
 

( )1/221 / 2 trτ = τ                (3) 

 
From the GNL viscosity concept (Bird et al., 1987) and Eq. (2), 

the Bingham viscosity function is obtained by 
 

0
0

0

, if

, if

p
τη η τ
γ

τ

η τ τ

⎧ = + ≥⎪
⎨
⎪ = ∞ <⎩

&               (4) 

 
According to Eq. (2), due to the discontinuity on shear stress 

field, when the stress level is below τ0, no information is available 
concerning the stress distribution in the material rigid zones. In 
order to amend this weakness, Papanastasiou (1987) introduced a 
purely viscous approximation in which the rigid zones are replaced 
by very high (but finite) viscous ones. Thanks to this assumption, a 
continuous shear-stress distribution on the whole shear-rate domain 
is obtained, valid for both the yielded material regions and the 
unyielded ones. In order to do so, Papanastasiou (1987) employs an 
exponential function, controlled by a non-rheological parameter m, 
acting on the yield stress term of Eq. (4) that guarantees its 
boundedness for very small values of the shear rate. The regularized 
shear-stress and viscosity functions proposed by Papanastasiou are 
written as 
 

( )0 1 expp mτ η γ τ γ= + − −⎡ ⎤⎣ ⎦& &               (5) 
 

( ) ( )0 1 expp mτη γ η γ
γ

= + − −⎡ ⎤⎣ ⎦& &
&

              (6) 

 
In Fig. 1, dimensionless flow curves ( 0* /τ τ τ= ) parametrized 

by the regularizing parameter m are illustrated. It may be noticed, 
from Eq. (5) that for high values of m, the classical Bingham model 
is recovered; otherwise, as the parameter m tends to zero, Eq. (6) 
reduces to the linear Newtonian fluid. 

Remark: 
A very detailed discussion is carried out in Liu et al. (2002) 
concerning the influence of viscoplastic regularizing 
parameters on the yield surface topology. Using the 
benchmark of the flow around a solid sphere, the authors 
compare and analyze two different regularizing approaches 
for the Bingham model – namely, a variation of the equation 
introduced by Bercovier and Engelman (1980) and the 
Papanastasiou (1987) equation. Even the authors achieving 
that both methodologies qualitatively produce similar results 

for yielded surface topologies, they obtained quantitative 
differences both in the yield surfaces and in the drag 
coefficient. The authors verified that, for small values of the 
regularized parameter, two interior unyielded regions were 
captured, i.e. a polar cap and an island over the cylinder 
equator. In the Bingham limiting case – as the regularizing 
parameter tends to zero – both unyielded regions increased in 
size; however, quoting the authors, “… it is not possible to 
make a definitive statement (due to computational 
constraints) about the limiting behavior (of the yielded 
surface)”. 
 

 
Figure 1. The flow curve for Bingham-Papanastasiou fluids, for m = 10-4-105. 

 

 

A Multi-Field Boundary-Value Problem 

A multi-field boundary-valued problem, in terms of extra-stress, 
pressure and velocity, for steady Bingham-Papanastasiou fluid flows 
may be obtained combining mass and momentum balance equations 
and the regularized viscosity function defined by Eq. (6): 
 

( )

( ) ( )

[ ]

0

div in

2 1 exp 0 in

div 0 in
in

on

p

g g

h h

p

m

p

ρ ρ

τη γ
γ

∇ + ∇ − = Ω

⎛ ⎞
− + − − = Ω⎡ ⎤⎜ ⎟⎣ ⎦

⎝ ⎠
= Ω

= Γ

− = Γ

u u τ f

τ D u

u
u u

τ I n t

&
&

                 (7) 

 
where 0, , ,pτ η γτ & and m have the foregoing meaning, ρ  is the fluid 
density, u is the velocity, p is the hydrostatic pressure, f is the body 
force per unit mass and th is the Cauchy stress vector. Besides, gΓ is 

the portion of boundary of the flow region  on which Dirichlet 
velocity condition u

Ω
g is imposed, and  is the boundary of hΓ Ω  on 

which the Neumann stress condition th is imposed. 

Multi-Field Finite Element Modeling 

The finite element approximation for the multi-field problem 
defined by Eq. (7) is built with usual finite subspaces for pressure 
(Ph), velocity (Vh) and stress ( h∑ ) fields: 
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h h
K l

Nh N h
K m

Nh N h
g K m g g

NxN NxNh NxN
ij ji K k
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= ∈ Ω ∈ ∈Ω = Γ

= ∈ Ω ∩ Ω = = ∈

P
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S
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  (8) 

 
in which Rl, Rm, and Rk denote, respectively, polynomial spaces of 
degree l, m and k (Ciarlet, 1978),  represents the space of 

continuous functions in  and the function spaces 

( )0C Ω

Ω ( ) ( )2 2
0,L LΩ Ω , 

and ( ) ( )1 1
0,H HΩ Ω , stand for Hilbert and Sobolev spaces, 

respectively (Rektorys,1975): 
 

( ) { }
( ) ( ){ }
( ) ( ) ( ){ }
( ) ( ) ( ){ }

2 2

2 2
0

1 2
2

1 1 2
0

0

, 1,

0, 1,
i

i

x

x
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L q L

H v L v L i N

H v H v L v i N

Ω

Ω

Ω = Ω <

Ω = ∈ Ω

Ω = ∈ Ω ∂ ∈ Ω =

Ω = ∈ Ω ∂ ∈ Ω = =

∫
∫ 0q dΩ =

          (9) 

 
Starting from finite sub-spaces definitions introduced by Eqs. 

(8)-(9), a Galerkin least-squares multi-field approximation for the 
multi-field boundary-value problem defined by Eq. (7) is stated in 
the following way:  

Find the triple ( ), ,h h h h h h
gp P∈ × ×τ u V∑  such that 

 
( ) (

( )
, , , , , , ,

                      , ,

h h h h h h h h h

h h h h h h

)
g

B p q F q

q P

=

∀ ∈ ×

τ u S v S v

S v Σ V×
          (10) 

 
where 
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and 
 

( )
( ) ( )(

, , div

Re div
Kh

h h h h h
h

h h h h
K

K

F q d d

q dα ρ
Ω Ω

Ω
∈Ω

= ⋅ Ω + ⋅ Ω

+ ⋅ ∇ +∇ −

∫ ∫
∑ ∫

S v f v t v

f v u S
       (12) 

 

in which the positive constant ε  is very small ( )1ε << , the 

stability parameter for viscoplastic equation β  is set as 0.5 
(according Behr et al. (1993)) and the stability parameters for 
motion and continuity equations,  and (ReKα ) ( )ReKδ , 
respectively, are given by Franca and Frey (1992), 
 

( ) ( )Re Re
2

K
K K

p

hα ξ=
u

             (13) 

 
( ) ( )Re ReK Kp

δ χ ξ= u              (14) 

 

( )
Re , 0 Re 1

Re
1, Re 1
K K

K
K

ξ
≤ <⎧

= ⎨ ≥⎩
             (15) 

 

( )0

Re
4 1 exp

k Kp
K

p

m h

mτη γ
γ

=
⎛ ⎞

+ − −⎡ ⎤⎜ ⎟⎣ ⎦
⎝ ⎠

u

&
&

           (16) 

 
[ ]min 1 / 3, 2k km C=               (17) 

 

( ) ( )
2 2

2

0, 0
div ,

k
h

h h h h
K

KK

C h
∈Ω

≤ ∀∑ D u D u u V∈           (18) 

 
with hK representing the mesh size, χ a scalar positive constant, the 
parameter mk  derived from the error estimates introduced in Franca 
and Frey (1992) and the operator | |P denoting the p-norm on Nℜ . 

 
Remark: 
Setting the stability parameters a, b andδ equal to zero in Eqs. 
(10)-(18), the GLS formulation mimics the classical three-field 
Galerkin formulation for Eq. (7), which fails to approximate 
high advective fluid flows, even for a combination of finite 
element interpolations for extra-stress, pressure and velocity, 
satisfying the compatibility conditions involving the finite 
element sub-spaces for these variables. 

Incremental Newton equation 

Substituting the trial and test functions for extra-stress, pressure 
and velocity present in the GLS formulation defined by the Eqs. 
(10)-(18), for the product of their respective shape functions and 
degrees of freedom, the following discrete residual equation may be 
achieved: 
 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( )

( )( ) ( )( )

1 1 ,

, 1

, ,

T T

p

α

α

α α

β η γ β η γ

η γ β β

η γ η γ

⎡ ⎤+ + − +⎣ ⎦

0

⎡ ⎤+ + + − + − +⎣ ⎦
⎡ ⎤+ + + − − =⎣ ⎦

E H E u τ

N u N u K H G M u

G G u ε F F u

& &

&

& &

     (19) 

 
where [H] and [HT] are the matrices representing the coupling 
between τ and u, [E] is the matrix related to the extra stress tensor τ, 
[N] is the advective term matrix, [K] the diffusive term matrix, [G] 
the pressure term one, [GT] the matrix of the continuity equation 
and [F] the body forces term matrix. The matrices with α index: 
[Eα], [Nα], [Gα], and [Fα] come from the least-squares terms, while 
[M] and [ ε ] represent the matrices of the δ -term and the ε -term, 
respectively. 
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Denoting Eq. (19) simply by  – with  
denoting the degree of freedom vector evaluated at every nodal 
point of the finite element mesh – this residual equation is solved by 
a quasi-Newton incremental method in which a frozen gradient 
strategy is used. At each quasi-Newton iteration, the algorithm 
solves the linear system , for the incremental 
vector A, where the Jacobian matrix of the residual system, in a 
generic iteration k, is given by 

( ) 0=R U [ ], , Tp=U τ u

1( ) ( )k k k+ = −J U A R U

 

( ) ( )k
k

k

∂
=

∂
R U

J U
U

              (20) 

 
In the sequence, the algorithm continuously updates the degree-

of-freedom vector, , until the imposed 

convergence criterion is satisfied, e.g. 
1k k k+ = +U U A 1+

7( ) 10k
−<R U . In addition, 

the algorithm employs a continuation procedure on the geometrical 
and material non-linearity terms of Eq. (19); such a strategy allows 
achieving high values of Bingham and Reynolds flows – see Zinani 
and Frey (2008) for details of the entire algorithm. 

Numerical results 

 
 

Figure 2. Flow through a 1:4 sudden expansion: problem statement. 

 
In this section, the multi-field GLS formulation defined by Eqs. 

(10)-(18) is used to approximate Bingham-Papanastasiou fluids 
flowing through a sudden planar expansion, as sketched in Fig. 2. 
The flow domain is described using a Cartesian system in terms of 
axial x1 and transversal x2 coordinates, with the origin on the 
centerline of expansion plane. Besides that, taking advantage of the 
geometry symmetry, only half the channel is simulated. In all 
computations, the channel aspect ratio is fixed as one-to-four and 
the lengths of both channels are sufficiently large to avoid entry 
flow effects – with H = 1 m. In addition, the symbol Lr defines the 
reattachment length. 

A grid independence procedure is performed comparing both the 
Euler pressure coefficient ( ( ) 2

02 /p iC p p uρ= − ), with  standing 

for a reference pressure at the channel outlet and u
0p

i for the inlet 
velocity, and the dimensionless shear stress ( 0* /τ τ τ= ). Three 
different meshes are considered: (i) M1 with 10,550 Lagrangian bi-
linear finite elements; (ii) M2 with 19,800 elements and (iii) M3 
with 20,920 elements – for the details of this procedure see Fig. 3, 
which is subjected to relative errors for the shear stress from 0.09% 
to 2.84% and for the Euler coefficient from 0.09% to 2.76%. Figure 
4 shows details in the expansion vicinity of the selected mesh (M2) 
with 19,800 elements and 121,686 degrees-of-freedom. 

 
 

(a) 

 (b) 

(c) 

(d) 
Figure 3. Mesh independence procedure for Re = 0 and Bn = 20 – full view 
of: (a) Cp and (b) τ*; blow-up view of: (c) Cp and (d) τ*. 
 

As usual in internal flows, no-slip and impermeability boundary 
conditions are imposed on channel walls, symmetry conditions 

2 1 2 12 0x u u τ∂ = = =  are assumed on the channel centerline and flat 
velocity profiles are considered both at the inlet (ui = 1 m/s) and at 
the outlet ( / 4o iu u= ), according to the flow mass conservation. All 
computations presented in this section are obtained by considering 
Papanastasiou regularization parameter m (first introduced in Eqs. 
(5)-(6)) equal to 1000 s, following some viscoplastic works (see, for 
instance, Mitsoulis and Huilgol (2004)). 
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Figure 4. Flow through a 1:4 sudden expansion: detail of the employed 
finite element mesh at the expansion vicinity. 

 
In order to obtain the dimensionless groups that govern the 

viscoplastic fluid flow, Eq. (7) may be written in a non-dimension 
form scaling all Cartesian coordinates by H, all velocities by ui, the 
pressure by 2

iuρ  and the shear stress by the material yield stress τ0. 
Applying such dimensionless quantities to Eq. (7), one obtains that 
the governing dimensionless groups for such a flow are the 
Bingham and Reynolds numbers: 
 

0Bn
p i

H
u

τ
η

=                (21) 

 

Re i

p

u Hρ
η

=                (22) 

 

 
(a)  

 
(b) 

 
(c)  

 
(d) 

 
(e)  

 
(f) 

Figure 5. Yielded and unyielded regions for Re=0: (a) Bn = 0.2; (b) Bn = 2; 
(c) Bn = 20; (d) Bn = 30; (e) Bn = 60; (f) Bn = 100. 
 

The yield stress effect and the inertia effect are taken into 
account respectively by the Bingham (Eq. (21)) and the Reynolds 
(Eq. (22)) numbers. The former expressing the relationship between 
the yield and shear stresses and the latter denoting the relationship 
between inertia and viscous forces acting on the fluid flow. 

Figure 5 investigates the yield stress limit influence on the 
morphology of yielded (white zones in the pictures, in which 

0* /τ τ τ 1= > ) and unyielded (black ones, in which * 1τ < ) material 
regions, for creeping flows. As Bingham number increases, both the 
unmoving and moving unyielded zones monotonically increase too 
– see Figs. 5(a)-5(f). The morphology of yielded and unyielded 
regions in Bingham flows is related to the yield stress of the 
material – namely the higher the yield limit is, the greater the 
unyielded regions are; or, in other words, the easier for the condition 

* 1τ <  to occur throughout the flow. Some comments ought to be 
added to this overall rule. First, for the lowest viscoplastic flow (Bn 
= 0.2, Fig. 5(a)), while the moving unyielded regions (hereafter, 
called plug-flows) in the smaller channel are still incipient, the 
larger channel already presents well-developed plug-flows around 
the channel centerline and unmoving unyielded regions (hereafter, 
called dead zones) at the expansion corner. This behavior may be 
credited to a combination of two factors, namely the higher local 
shear-rate experimented in the smaller channel and the low yield 
limit of the flow, Bn = 0.2. These two factors combined generate 
very low local Bingham numbers along the smaller channel. Next, 
the monotonic growth of unyielded regions with the increasing of 
Bingham number seems to be damped when Bingham reaches the 
value 20 (Fig. 5(c)), after which both the plug-flow and dead zone in 
the larger channel are almost insensitive to the Bingham increase. 
Note that the same does not apply to plug-flows in the smaller 
channel, which still experiment some enlargement even for the 
highest viscoplastic flows (see Fig. 5(e) and Fig. 5(f)). In addition, it 
is worth pointing out that plug-flow distance from the expansion 
plane, in the larger channel, decreases with Bingham increase only 
for Bingham values less than 20 (Fig. 5(c)). Thereafter, it seems to 
be almost insensitive to the Bingham growth (Figs. 5(d)-5(f)) – for 
the same reasons already reported in the comments on the 
morphology of these regions. 

Figure 6 presents elevation plots for the dimensionless axial 
velocity ( ) through the expansion channel, for creeping 
flow and Bn = 0.2-100. These figures confirm the foregoing 
comments introduced in the previous paragraph. In all figures, the 
plug flows in both channels and the dead zones at the expansion 
corner are clearly illustrated and complement the behavior described 
in Fig. 5 – namely, the increasing of unyielded regions with the 
Bingham number growth. Two points may still be added. The first 
one, the good insight provided by these elevation plots that permits 
a clear visualization of the velocity development in viscoplastic 
fluid flows permitting the identification of the following features of 
velocity field: (i) for the lowest viscoplastic flows (Figs. 6(a)-6(b)), 
the entrance length in the smaller channel, imposed by the flat 
velocity profile at the inlet and its subsequent development into 
fully-developed viscoplastic profiles; (ii) the plug-flows smoothness 
and their sharp edges for high viscoplastic situations (Figs. 6(c)-
6(f)); and (iii) the strong decay experimented by the maximum 
velocity in the larger channel thanks to the flow mass conservation. 
Another point worth mentioning is that Fig. 6 makes clear the 
narrowness of yielded regions for the most viscoplastic cases (for 
Bn = 60, Fig. 6(e), and Bn = 100, Fig. 6(f)) – characterizing very 
thin boundary layers near the channel wall. From the numerical 
point of view, this issue results in very stiff computational 
simulations for high Bingham flows, for which only a numerical 
method containing a proper stabilized strategy might be successful. 

*
1 1 / iu u u=
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(a) 

 
(b) 

 
(c) 

  
(d) 

Figure 6. Elevation plots for dimensionless axial velocity along the 
channel, for Re = 0: (a) Bn = 0.2; (b) Bn = 2; (c) Bn = 20; (d) Bn = 30; (e) 
Bn = 60; (f) Bn = 100. 

 
(e) 

  
(f) 

Figure 6. (Continued). 

(a) 

(b) 
Figure 7. Transverse profiles of dimensionless axial velocity, for Re = 0 
and Bn = 0.2-100: (a) at x1

* = -10; (b) at x1
* = +10. 
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Figure 7 quantitatively investigates the plug-flows in two fully-

developed viscoplastic regions in both channels. The figures depict 
transverse profiles of dimensionless axial velocity u1

* for creeping 
flow, and Bn = 0.2-100 at  in the smaller channel 

and at  in the larger channel – considering 

*
1 1 / 1x x H= = − 0

*
1 10x = + *

2 2 /x x H=  in 
both figures. The velocity profiles obey the above established rule, 
as expected: the more viscoplastic the flow is, the flatter the profiles 
are – from the quasi-parabolic profile, in the smaller channel, for Bn 
= 0.2 (Fig. 7(a)), up to the plug-flow profile for Bn = 100 (Fig. 
7(b)). From the comparison of Figs. 7(a) and 7(b), the influence of 
the channel height is noticed. Whereas in Fig. 7(a) the maximum 
velocity in the smaller channel slightly surpasses 1.42, for the larger 
channel its value decays to approximately 0.33 – a drop of almost 
77% with respect to the smaller channel. This behavior may be 
explained by two distinct arguments. The first one, a classical 
incompressible Newtonian feature, is related to the velocity decrease 
caused by the enlargement of the flow area after the expansion. The 
second argument is originated by the increasing viscoplastic effects 
as Bingham grows, which give rise to quasi-uniform velocity 
profiles – except in the thin yielded material regions near the 
channel wall – hence decreasing even more their maximum 
velocities. 

 

 
(a) 

 

 
(b) 

Figure 8. Dimensionless pressure drop through the channel, for Re = 0 and 
Bn = 0.2-100: (a) longitudinal profile and elevation plots for (b) Bn = 30; (c) 
Bn = 60; (d) Bn = 100. 

 

 
(c) 

  
(d) 

Figure 8. (Continued). 

 
The influence of Bingham number on the dimensionless 

pressure drop ( ( )*
02 / 2

p ip C p p uρ= = − ) along the channel is 

shown in Fig. 8 – with *
1 1 /x x H= . In all cases, the greater the 

Bingham number is, the more the pressure drops – with all flows 
presenting a steeper slope in the smaller channel. This general 
behavior for the pressure drop may be understood recollecting that 
the viscosity regularization proposed by Papanastasiou (1987) 
substituted the material unyielded regions prescribed by the 
Bingham model (Eq. (4)) for yielded regions submitted to very high 
(but finite) viscosity (Eq. (6)). Thus, viscoplastic flows are much 
more viscous than the quasi-Newtonian case (for Bn = 0.2, in Fig. 
8(a)) as Bingham number increases – see also three-dimension 
illustrations of the pressure surface in Figs. 8(b)-8(d). 

 

 
(a) 

  
(b) 
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(c) 

 
(d) 

 
(e) 

Figure 9. Yielded and unyielded regions for Bn = 2: (a) Re = 0; (b) Re = 15; 
(c) Re = 30; (d) Re = 45; (e) Re = 50. 

 
Figure 9 analyzes the influence of inertia effects on the 

morphology of yielded and unyielded material regions, through the 
plotting of yielded and unyielded material regions for a mild value 
of the Bingham number (Bn = 2) and Reynolds number ranging 
from 0 to 50. As illustrated in the figure, two major effects on the 
morphology of those regions may be noticed. First, the displacement 
from the expansion plane experienced by downstream plug-flows in 
the larger channel and, second, the stretching of dead zones at the 
expansion corner along the flow streamlines. The former issue is 
due to the enlargement of entry-flow regions in the larger channel 
with Reynolds number enhancement. These entry regions present 
greater shear stresses (τ* > 1) than those experienced in downstream 
regions of pure shear flows, since, besides the shear component τ12

*, 
they are also submitted to non-null τ11

* and τ22
* normal stresses. 

This comment is well illustrated in Fig. 10, which presents the 
inertia influence on extra-stress profiles downstream of the 
expansion plane at channel wall (x2

* = 2), for Bn = 2, and Re = 0 
(Fig. 10(a)) and Re = 50 (Fig. 10(b)). Although the GNL model is 
built to describe pure shear flows and, consequently, is not the most 
appropriate model to describe complex flows with non-zero normal 
stress, the morphology of dead zones at the expansion corner may 
be better understood from these figures. First, note that the end of 
dead zones corresponds to the intersection between the curves of τ* 
and τ0

* in both figures, i.e., the intersection point τ* = 1. Thus, with 
the increasing of the Reynolds number, this point moves away from 
the expansion plane – for Re = 0 (from Fig. 10(a) and Fig. 9(a)) its 
location is at x1 *≃1.25 and, for Re = 50 (from Fig. 10(b) and Fig. 
9(e)), it is at x1* 3. ≃

(a) 

(b) 
Figure 10. Extra-stresses longitudinal profiles at x2

* = 2, downstream of 
expansion plane, for Bn = 2: (a) Re = 0; (b) Re = 50. 

(a) 

(b) 
Figure 11. Extra-stresses longitudinal profiles at x2

* = 0, downstream of 
expansion plane, for Bn = 2: (a) Re = 0; (b) Re = 50. 

 
In Fig. 12, inertia and yield stress influence on the vortex length 

at expansion corner is shown. This figure presents the plotting of the 
dimensionless reattachment length ( * /r rL L H= ) versus the 
Reynolds number, for a fixed Reynolds equal to 0 and versus the 
Bingham number, for a fixed value of Reynolds equal to 50. First, in 
Fig. 12(a), the reattachment length is checked for the Newtonian 
case, presenting an acceptable agreement with the results of Rocha 
et al. (2007). Next, in Fig. 12(b), it may be noted that the 
reattachment length decreases with the increasing of the Bingham 
number, due to the increasing of yield stress effect. Flows subjected 
to higher yield stress limits present high finite viscous zones and, 
consequently, the local influence of inertia is restrained – see Fig. 13 
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for an illustration of flow streamlines of the recirculation region at 
the expansion corner, for Re = 50 and Bn = 0.2-5.0. In addition, a 
comparison for the Newtonian case (the point Bn = 0 in the curve of 
Fig. 12(b)) is undertaken against the results of Dagtekin and Ünsal 
(2010). Both articles present a good adhesion: the latter work yields 
a value Lr = 8.785 and the current work yields Lr = 8.6. 
 

 

 
(a) 

  
(b) 

Figure 12. Reattachment Lengths versus: (a) Reynolds numbers, for Bn = 0 
and (b) Bingham numbers, for Re = 50. 

 

 
(a) 

  
(b) 

 
(c) 

  
(d) 

 
(e) 

  
(f) 

 
Figure 13. Flow streamlines for Re = 50: (a) Bn = 0; (b) Bn = 0.2; (c) Bn = 1; 
(d) Bn = 2; (e) Bn = 3; (f) Bn = 5. 

Final conclusions 

In this article, a multi-field Galerkin least-squares method in 
terms of extra-stress, velocity and pressure is employed to 
approximate inertial flows of Bingham-Papanastasiou fluids through 
a one-to-four sudden planar expansion. This formulation does not 
need to satisfy the compatibility conditions involving both pressure-
velocity and stress-velocity finite element sub-spaces and is able to 
remain stable in high Bingham and Reynolds fluid flows. The inertia 
and yield stress influence on the morphology of material yield 
surfaces are evaluated ranging Bingham and Reynolds numbers, 
respectively. For creeping flows, the more the Bingham number 
increases, the more the moving and unmoving unyielded material 
regions monotonically increase too. As a consequence of the 
unyielded region growth, the flow is subjected to higher pressure 
drops as Bingham increases. When inertia is taken into account, the 
Reynolds number increase drives plug-flow zones away from the 
expansion plane and dead zones at expansion corner are stretched 
along the main flow streamlines. Furthermore, the reattachment 
length in the larger channel is severely restrained by the Bingham 
increase. The numerical results are confirmed with the related 
literature and ensure the good stability features of the multi-field 
GLS method employed. 
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