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ABSTRACT 

 

 

Nowadays, networks-on-chip (NoCs) have been used as an alternative 
communication architecture inside complex system on-chip. They offer better 
scalability and performance than the traditional bus. However, the growing number of 
interconnects that have to be inserted using smaller transistors means that NoCs have a 
growing number of faults, either from manufacturing or due to aging.  In future 
systems-on-chip (SoCs), the fault rate will be around 20 to 30% of the contact and 
transistors of integrated circuits. Therefore, even in the presence of a fault, it is still 
desirable that NoCs properly work. 

The main idea of this work is to implement adaptive mechanisms to protect NoCs 
against permanent faults. The main advantage of such mechanism is to manage failures 
based on data from the testing and diagnosing phase. The mechanisms are adapted in 
each router in order to sustain performance, increasing the system yield and reliability 
even in the presence of failures. 

Even if one adds extra blocks for replacement, the occurrence of permanent faults in 
a NoC might preclude the replacement or repair of a faulty component within the SoC. 
In such case, fault-tolerant NoCs are able to reduce manufacturing costs, increase yield 
and the lifetime of the chip. 
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Cobrindo falhas permanentes em Redes intrachip usando técnicas 

adaptativas nos roteadores em um nível de projeto e em um nível de 
algoritmo 

RESUMO 

Hoje em dia, as redes intra chip (NoC) são cada vez mais  utilizadas  como uma 
arquitetura de comunicação  alternativa  para  sistemas  complexos,  pois estas permitem 
flexibilidade e desempenho da comunicação. Porém, o grande número de interconexões 
da rede, aliado à diminuição das dimensões dos transistores fabricados nas 
tecnologias nanométricas, fazem com que a NoC possa ter um grande número de falhas 
durante sua fabricação, ou por desgaste durante  sua vida útil.  Sabe-se que, em futuras 
tecnologias os circuitos integrados terão uma taxa de falhas permanentes de 20 a 30%. 
Entretanto, mesmo na presença de falhas, é desejável que a NoC permaneça 
funcionando corretamente. 

A partir do diagnóstico das falhas, a NoC deve ser capaz de buscar alternativas para 
manter a comunicação entre os núcleos, evitando os canais e os roteadores com falhas. 
O objetivo deste trabalho é propor mecanismos adaptativos de proteção contra falhas 
permanentes.  

Mesmo quando são adicionados componentes extras para a substituição em SoCs, a 
ocorrência de falhas permanentes na rede intrachip impede a substituição ou reparo de 
um componente no sistema intrachip. Portanto a tolerância a falhas na NoC será crucial 
para reduzir custo de manufatura, e aumentar o rendimento e o tempo de vida do 
circuito integrado. 

O mecanismo proposto é capaz de evitar falhas sabendo anteriormente, na fase de 
teste e diagnóstico, a localização especifica da falha. Portanto, as técnicas se adaptam 
em cada roteador para evitar as falhas permanentes, sempre buscando manter 
desempenho, aumentar o rendimento e a confiabilidade do sistema. 

 

 

 

 

 

Palavras-Chave: NoC, Tolerância a Falhas, adaptabilidade, performance, 
microeletrônica. 
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1 INTRODUCTION 

Network-on-Chip (NoC) is an efficient communication architecture for Systems-on-
Chip. It allows the integration of a huge number of computational blocks in only one 
integrated circuit. NoC allows the reuse of blocks, which provide a high degree of 
parallelism and it may present high improvement in performance (BENINI and DE 
MICHELI, 2002). The increasing need of NoC has been driven by the demand for high 
bandwidth in communication. According to Moore’s law, transistor integration doubles 
in approximately eighteen months, but as the delay of the global wires has increased, 
physical connection in an IC (Integrated Circuit) is the performance bottleneck 
(HOROWITZ et al., 2000). NoC can provide short interconnections, which can reduce 
the wire delays. 

 The traditional methods (end-to-end, bus-based and others) are not a good 
solution to integrate many IP cores in System-on-Chips (SoCs), because they do not 
scale well as more components are added to the system. Ad hoc solutions that use 
multiple buses, crossbar and dedicated wiring can achieve near optimal performance for 
a specific application but they are hard to reuse and have a high development and 
verification cost (PANDE et al., 2003). The use of Network-on-chip (NoC) to replace 
the traditional methods of interconnection has advantages for performance and 
modularity. With the use of a NoC, it was observed that electrical properties can be 
optimized, power consumption can be decreased by 10 times and speed increased by 3 
times when compared to bus-based interconnections (DALLY and TOWLES, 2001). 

A basic NoC infrastructure is composed of routers, links and network interfaces. The 
routers route the data through the links. The network interfaces adapt the data coming 
from or going to the core of the network. The topology defines the layout of the 
network. The routing algorithm decides the path between source and destination. Figure 
1.1 exemplifies a 3x3 Grid NoC where ‘acc’ is accumulator, ‘mem’ is memory, ‘FPU’ 
is the Floating Point Unit, ‘I/O’ is the input and output block and ‘CPU’ is the 
processor. 
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Figure 1.1: NoC 3x3 2-D Grid with 9 routers. 

 

With the advance in technology, as the number of interconnections increases and the 
transistor dimension shrinks, NoC will probably have a high number of faults in its 
interconnections and logics (during the manufacture, or during its lifetime). According 
to the projections of INTEL (FURBER, 2006) “within a decade we will see 100 billion 
transistor chips”, however, “20 billion of those transistors will fail in manufacture and 
a further 10 billion will fail in the first year of operation”. Therefore, 20% to 30% will 
be the fault rate in a System-on-Chip. The effect of faults can be permanent, intermittent 
and transient. Here in this Thesis, we address permanent faults.  

In the future of any SoC architecture, it is very likely that in order to be fault-
tolerant, a SoC will contain a large number of replicated components and will employ a 
fault-tolerance approach to deactivate the defective component, i.e. microprocessor or 
memory, routers and wires.  Once a faulty component has been detected, the system 
software application can be used to initiate the remaining hardware components.  

To apply a fault tolerant technique in the NoC, first it is necessary to test and 
diagnose the communication infrastructure. However, the test has some challenges (how 
to detect the fault, how to identify the faulty components: routers, wires, cores and how 
to use efficiently the remaining hardware components that are fault free). Faults can be 
detected by inserting input vectors capable of manifesting them at the output. The test 
can be performed by the use of ATE (Automatic Test Equipment) or BIST (Built In Self 
Test).  Cota et al. (2004), has proposed the use of a NoC as a way to apply these vectors 
to test the cores of a SoC, performing functional testing. This work has been extended to 
detect faults in the NoC links by Cota et al. (2008). More recently, Herve et al. (2009) 
has proposed a method of diagnosing the location of faults in the NoC links. The 
information of the faults location can be used by a fault tolerance technique to isolate 
the faults and to determine the fault free components.  

In this Thesis, we propose two different techniques to cope with permanent faults in 
the network. We assume that faults can occur in the routers and in the links. Both 
strategies aim to increase system reliability by isolating and avoiding known faults. The 
first strategy is based on the idea of designing the router with extra components so that 
faults in the router can be tolerated.  The idea is to ensure the NoC behavior by using 
the router with a different configuration providing minimum performance and power 
degradation. This technique is a design level strategy. At this level, we have used 
techniques to protect the NoC against permanent faults in the router buffers, in router 
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FSM, links and crossbar. However, as the number of faults increases, this technique 
becomes less cost effective.  

So, this brings the necessity of an algorithm level strategy.  In this case, the routing 
algorithm is adapted in the presence of permanent faults in the links.  With the 
algorithm level strategy, faulty links and routers are avoided. According to the NoC 
size, the performance degradation can be minimal.  

By using the solutions proposed in this Master Thesis, the yield can be increased 
because once faulty, a SoC can be used as the faults can be isolated. In the two proposed 
strategies, we show results in area, frequency, power. 

 

1.1  Organization of Text 
This thesis is organized as follows:  

 

• Chapter 2 – The case study platform is presented. 

• Chapter 3 – The problem of coping with permanent faults in NoC is defined 
and some state-of-the art works to solve the problem are presented. 

• Chapter 4 – The first scheme of fault tolerance is proposed, where results are 
shown in terms of performance, area, power and frequency.  

• Chapter 5 – Adaptive Routing Algorithm is presented. Results in power, 
frequency, area and performance are presented. 

• Chapter 6 – The proposed strategies are compared to two of the state of the 
art techniques. 

• Chapter 7 - Conclusion and future work are discussed. 
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2 NOC PLATFORM 

 

This chapter presents the SoCiN NoC platform used in this thesis (System-on-Chip, 
Interconnection Networks) proposed by Zeferino and Susin (2003). Its topology can be 
configured as 2D-Grid or Torus. The Network SoCIN has a wormhole packet switching, 
a deterministic routing algorithm, input buffering, handshake control flow and round-
robin arbiter. This chapter presents details of the topology, switching, routing, 
buffering, control flow and others characteristics. 

The main block of SoCIN is the router RASoC (Router Architecture for Systems-on-
Chip). RASoC is a VHDL soft-core which  has tree parameters of change: channel 
width, buffer depth and the information of the routing in the header packet, also the 
number of ports can be configured. These decisions are made in design time (channel 
width, buffer size and number of ports). 

The topology most common of SoCIN is 2D Grid, shown in fig. 1.1. In fig. 1.1 the 
white boxes are the routers, the gray boxes are the cores and the arcs between the 
routers represent the communication links. One feature of a 2D Grid is that it can be 
easily extended to 2D torus, adding arcs on the edged routers. The torus network has the 
advantage of decreasing the diameter of the network. Nevertheless, in torus topology 
the size of the wires are larger than in Grid topology, consequently there is a lower 
frequency due to the capacity in the long wires. 

The links of the SoCIN are unidirectional channels, called simples (fig 2.1). The 
simplex channel has n bits of data and 2 bits for control and so n+2 is the size of the 
channel. The 2 bits for control are used to inform if the flits are header, data or tail. The 
parameter n is defined at design time according to the need of the system. In addition to 
the n+2 bits, the simplex channel needs 2 other  signals (val and ack) to do the 
handshake protocol, these two signals are explained together with the input buffering. 
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Figure 2.1: Link configuration of SoCIN. 

The switching is wormhole. The packets are made by flits and each flit has the same 
size as the channel, in this case n+2 bits. The first flit of the packet is the header. The 
header flit has the information needed to make the path between the source and the 
destination. The following flits have the data and they follow the header flit through the 
network like a pipeline. Fig. 2.2 shows a packets split in flits, the first flit is the header 
flit (H)  the framing signals are “10”, this flit is followed by the data flits (P) where the 
framing signals are “00”.The Tail flit (T) comes to release the path and the framing 
signals are “01”.Each router of the network has the ability to store a few flits in the 
input channel. 

 

Figure 2.2: A Packet. 

 

The routing algorithm is deterministic, that is, the path used for the packet is 
determined by the source and the destination and the same path is always chosen. The 
XY routing algorithm is deadlock free and it has a low cost of implementation, however 
its performance is lower when the traffic or fault rates are high. 

XY routing algorithm first routes the packet in the X axis until the packet reaches 
the desired column and after the packet is routed in the Y axis. Once the Y axis is taken 
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the packet cannot be routed in the X axis again. The XY routing algorithm is deadlock 
free because there is not a cyclic dependency between the channels, a packet will never 
be routed from Y axis to X axis and this can be seen in fig 2.3. 

 

Figure 2.3: Permitted turns and non permitted in XY routing algorithm. 

SoCIN has input buffering, that is, each input channel has a buffer to store the 
incoming flits. In SoCIN each input channel has FIFOs to store and to read flits before 
being sent to the output channel. Each FIFO buffer has the capability to store p flits of 
n+2 bits, where p is the parameter chosen at design time to satisfy the needs of the 
system. In this thesis we choose the value of p equal to 4. 

The control flow used for SoCIN is the handshake. The source informs the 
destination the intention to send a packet. The destination answer given is “yes” or 
“not”. If the answer is “yes” the source will send flits to be stored in the FIFO of the 
destination, for “no” the flit is not sent and stays stored at the source´s FIFO. The 
answer is “yes” when the destination has space in its FIFO buffer and “no” when FIFO 
is full. The signals val and ack, used to do the handshake protocol, are signals coming 
from the FIFO. These signals inform when the flit can be stored or not in the FIFO 
buffer. 
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3 STATE-OF-THE-ART TECHNIQUES TO COPE WITH 
FAULTS IN NOCS 

3.1  Faults in Network-on-Chip 
With the technology scaling and the transistors dimension shrinking, fault tolerance 

in the systems is becoming a key challenge for designing NoCs and research in the field 
has gained significant momentum. Fig.3.1 and Fig. 3.2 show the fault location in a 
NoC-based SoC. In fig 3.1, a core with permanent fault is shown.  The permanent fault 
can affect the correct functionality of the NoC, that is, it can happen in the router, or in 
the channel. In the worst case the fault can affect the routers and channels, as depicted 
in fig 3.2 (c). In the router, the fault can occur in all components of the router (crossbar, 
handshake protocol, buffers and others). The fault can happen in the channels, resulting 
in a shortcut between different channels, between the same channel, between the link 
and the VDD or between the link and the ground. The permanent fault can result in a 
wire-and, wire-or, stuck-at 0 or  stuck-at 1. 

 

 

SoC

router

router

router

router

router

router

router

router

Re-map the
tasks

 

 

Figure 3.1: Fault Location in a SoC NoC-based of the cores. 
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Figure 3.2: Fault Location in a SoC NoC-based (a) routers; (b) channels; (c) router and 
channels. 
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3.2  Related Works able to cope with Faults in NoC 
  

To protect the NoC infrastructure some works have proposed fault tolerant solutions 
with well-know techniques, such as Triple Modular Redundancy (TMR) or Time 
Redundancy (TR) (NICOLAIDIS, 2005) to protect the NoC against faulty components. 
However, most of these works based on hardware redundancy severely increase the area 
and power consumption to protect the NoC router, because when one triplicates the 
hardware, one also triplicates the power consumption. On the other hand, Time 
Redundancy decreases the performance of the NoC, since all information needs to be 
retransmitted or have a delay.  

  Hamming code is a linear error-correcting code. It can detect up to two 
simultaneous bit errors and correct single-bit errors. In (Frantz et al., 2006) the use of 
Hamming Code on the input buffers has been proposed to protect the FIFO data. The 
incoming data is encoded before being stored in the buffers and decoded when it leaves 
the buffers. This work protects the buffers. To protect the link another technique is used. 
The hamming code is implemented using a chain of XORs to code and decode the data, 
thus it shows huge area and performance overheads, around 50% increase in the area. 
Frantz’s works do not show results of performance, but Bo Fu and Ampadu (2008) 
shows a decrease of 30% in the throughput. Therefore, one can conclude that the use of 
hamming code is too expensive to be applied in all NoC components. 

The most common fault tolerance technique known is redundancy, as shown in (YU 
and AMPADU, 2008) and (ROSSI et al., 2005). In Yu and Ampadu (2008) the authors 
use adaptability to select the ECC (Error Correction Code) scheme. When data comes 
from the neighbor router, the router chooses the most effective ECC scheme to send the 
data trough the links. However, using the fault tolerance technique proposed in (YU and 
AMPADU, 2008) and (ROSSI et al., 2005) only the links are protected and, 
furthermore, in Yu and Ampadu this technique is specially used to avoid faults caused 
by noise, such as interference. In both methods no technique was used to protect the 
routers.  

To protect the link of the NoC the most common strategy used is to change the 
routing algorithm. The latency of the routing algorithm strategy is lower than re-
transmission and the cost is less than TMR. In Frazzetta et al. (2008), series of routing 
strategies to utilize NoC systems with partially faulty links are proposed.  

Frazzeta et al. (2008) proposes to use partially faulty links when the traffic in the 
network is high. The idea is to distribute the traffic uniformly between links. The links 
capacity can be split in 25%, 50%, 75% or 100%, according to the faults in the link.  
The names of the three strategies are Faulty Link Elimination Strategy, Partially Fault 
Links Usage Strategy and Partially Faulty Links Usage with Look-ahead strategy. In the 
first one, the faulty link is never used, in the second the faulty link can be used and in 
the last one the faulty link is used. Fig. 3.3 shows the architecture of the router. It has a 
block to verify the network congestion and an input and output register in the links to 
store pieces of the link before being used by the router. 

The analogy of Frazzeta’s work is with roads in real life.  For instance, when two 
roads go to the same place: one is empty of cars (no one is using the road), but only half 
of the road can be used; the second road is free of faults, but a lot of cars are using this 
road. Which one must be chosen? For Frazzeta, the first road is empty and is chosen. 
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The same is proposed for the network, if one part of the link can be used and the 
channel has low congestion, this channel must be used.  

With this proposal, Frazzetta et al. (2008), save, in the best case, 12% of energy 
consumption, because it can choose the minimum path even in the presence of a fault. 
However, the area overhead for the same strategy is almost 40%, but on the other hand 
the delay of the network is reduced by 50% for the same reasons that can reduce the 
energy consumption. In Frazzeta, only the links are protected, that is, the routers are 
vulnerable to fault detection. 

 

Figure 3.3: Frazzeta´s router. 

 

In Schonwald et al., (2007) a table is used that has the information about the number 
of hops needed in each port to send the packet from the source to the destination. This 
table is defined when the networks are initialized, each packet sends the number of hops 
and its address to the neighbor. In Fig. 3.4 the algorithm is used to avoid faults in a 5x5 
NoC. The faulty routers have the following coordinates: (1, 3) (2, 3) and (3, 3). For 
instance, if a core connected in router (2, 0) wants to send packets to the core that is 
connected in router (3, 4), the flit of the packets are sent to the following coordinates (2, 
1) and (2, 2). When the flit reaches the router in the position (2, 2), the router sends the 
flit to the router (3, 2), according to the algorithm. The router (2, 3) cannot respond, 
because it is faulty, thus the router (2,2) selects the router in the position (3, 2), from 
then on the routing flows normally, because there are not faults in following routers. 

The main drawback of Schonwald (2007) is that the table grows n2, where n is the 
number of routers in the network, since each position in the table needs four more 
memory positions - stored in each router - to address the new neighbor. Besides, time is  
needed to form the routing table, that is, all routers send information to all routers to 
store the right number of hops in the table, however this table does not use a virtual 
channel so the implementation is easier.  
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Figure 3.4: Faulty 5x5 Mesh with re-routing algorithm. 

 

KOIBUCHI et al., (2008) propose a Default Backup Path (DBP), which is a 
unidirectional path that connects all routers in only one way like a circle. When the 
router has a fault or the link is faulty, the DBP is enabled and used to send and receive 
the packets to/from the neighbors. The DBP is connected to the network interface. In 
order to use the default backup path and connect the routers to the network, a virtual 
channel is needed to forbid some turns. 

A set of wires of the DBP are used to send the packets in one direction and the other 
sets are used to send the packets in the opposite direction, although the use of a virtual 
channel makes the control of the NoC more complex and more prone to faults. One can 
observe that the DBP increases the power consumption in the links and the latency of 
the network, because when the DBP disables a router, the router components, such as 
FIFO, crossbar and arbiters are not used, only the link is used. So, by using the DBP 
path the packet takes more time being routed than in the original path.  

Table 3.1 shows all related works with the techniques used and the network part that 
are protected. The first four related works protect the NoC adding more hardware, they 
change the architecture to be fault tolerant. The last three present the routing algorithm 
as a fault tolerant technique, in this case the routing algorithm isolates the fault 
component. In the table 3.1 one notices that Frantz et al. (2006) can protect the link and 
the router at design level. In algorithm level there are two related works that protect the 
router and the link, however Schönwald does not use a virtual channel, such as the 
strategy proposed in this Thesis. 
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Table 3.1: Related Works 

Authors Protection of 
the link 

Protection of 
the router 

Technique used Adaptive 
Technique 

YU and 
AMPADU 

yes no Error 
Correction 
Code  

Yes, 
parametrical 
ECC 

ROSSI yes no Error 
Correction 
Code 

No 

FRANTZ yes yes Hamming 
Code in the 
router buffers. 

TMR in the 
links 

No 

NICOLAIDIS no yes TMR, buffers No 

FRAZZETTA yes no Routing 
Algorithm/ 
table 

Yes 

KOIBUCHI yes yes Routing 
algorithm/ 
virtual channel 

Yes 

SCHONWALD yes yes Routing 
algorithm/ 
table 

Yes 

 

 

The first four related works use redundancy techniques to protect the NoC against 
fault. They work at design level and use one technique to protect one part of the NoC, 
router or links or both. When comparing these techniques with the design level based 
strategy proposed in this thesis, our proposal does not use only one fault tolerant 
technique to protect the network. The proposal uses an adaptive scheme to isolate the 
faulty buffers and the fault column or row of the crossbar. TMR and Hamming Code are 
used to protect the FSMs and the links, respectively.  

The last three related works use an adaptive routing algorithm to protect the NoC 
against fault. However all these related works use a routing table or a virtual channel to 
implement the adaptive algorithm. This increases the area and the power consumption 
of the network. Our proposal at algorithm level does not use a virtual channel or routing 
tables to implement the adaptive routing algorithm, we use the advantage of the NoC-
Torus to re-route the packets through the fault-free paths. 

Another aspect is related to fig 3.5, in this figure the related works are split 
according to the part of the network that is protected and the strategy level used. Since 
Frazzeta et al. (2008) has the option of using adaptive routing and part of the link, it 
uses two level strategies, algorithm and design level.  In fig.3.5 we are able to see that 
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Frantz and Schönwald protect links and routers, Frantz at design level and Schönwald at 
algorithm level. These two works have the same aim and work at the same levels as the 
proposals of this thesis.  

 

Design-level
Algorithm-level

Y u and Ampadu
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L inks
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F rantz  et al.

Hamming C ode in the 
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the links
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adaptive routing
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Adaptive routing with 
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Link Router

 

Figure 3.5: Related Works. 
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4 STRATEGY BASED ON DESIGN-LEVEL: ADAPTIVE 
ROUTER 

The adaptive router proposed in this master thesis sustains performance and low 
power consumption. The design level strategy takes advantage of the fact that we can 
change the size of each buffer (number of slots) in accordance with the need of the 
application. From this idea, a fault-tolerant adaptive router is proposed to protect the 
buffers allowing further improvements in the performance of the system. 

 The underlying ideas of our fault-tolerant router lie in the fact that not all buffer 
slots have to work at the same data rate, i.e., some buffers have to endure larger traffic 
than others. This means that, in a NoC with the same buffer sizes for all channels, there 
is a set of buffers that are underutilized regarding the actual communication need. 

The buffers used in the router channels are responsible for storing the incoming 
packets from the links. A faulty buffer slot sends wrong information to other routers. 
This chapter presents a method to use the buffer slots of other channels when a fault in a 
certain buffer slot is detected. We focus on providing a fault-tolerant adaptive router 
(FTAR) to dynamically adapt the utilization of buffer words in the channels in 
accordance with the faults detected. In addition, the router uses Hamming Code and 
TMR to protect the data wires and the FSM (FIFO, handshake and arbiter) of the router, 
respectively. One extra column and row was added to protect the crossbar of the router. 
With the proposed strategy it is possible to increase the yield and the system lifetime 
while at the same time ensuring the system performance and low power consumptions 
when compared to other techniques of fault tolerance. The approach used in this Thesis 
goes in the direction of having a minimal overhead in terms of area and power, while 
maintaining the performance level and improving the yield and reliability of the system. 
We present some adaptive mechanisms that can be used to increase reliability without 
power or performance penalties. The next sub-section presents some proposals about 
heterogeneous SoCs and also reasons to use heterogeneous routers. 

4.1  Heterogeneous SoCs 
System-on-Chips (SoCs) are emerging as one of the technologies providing a way to 

support the growing design complexity of embedded systems, since they provide 
processor architectures adapted to selected problem classes, allied to programming 
flexibility. 

To ensure flexibility and performance, SoC combines several types of processor 
cores and data memory units of widely different size, leading to a very heterogeneous 
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architecture. The interconnection infrastructure must guarantee several contradictory 
goals, like high throughput for certain communication patterns, the possibility of a very 
fast partial routing update for very dynamic applications, reliability in critical 
applications, scalability, all with low power, low energy and low area overhead.   

Azimi et al., (2007) affirm that it is necessary to find a way to keep the off-die 
bandwidth manageable in system architectures with trade-offs like cost, power and 
performance.  Moreover, in a hardware context, the system must offer expressive 
flexibility with a scalable high-bandwidth, low-latency and power-efficiency to 
interconnect the cores allowing them to access memory and communicate with each 
other and with the rest of the system.       

Manferdelli et al., (2008) assure that to guarantee the increase in performance of 
general purpose CPUs, one needs to use massive parallel computing. For this, more 
independent CPUs, bigger caches and more independent memory controllers have been 
used and it is possible to find many applications that use heterogeneous processors with 
several memory controllers to provide a large memory interface.  One can find an 
example of this architecture on the Xbox360 (ANDREWS and BAKER, 2006). Fig.4.1 
shows a system block diagram of the Xbox, a platform with several cores and each core 
having specific throughput and bandwidth. The Xbox 360 has one CPU with 3 cores 
and 1 Mbytes of L2 Cache. The CPU communicates directly with the L2 Cache at 10.8 
Gbytes/s. The CPU has two memory controllers to communicate with an external 
memory, one BIU/IO Interface, a 3D accelerator core, a 10 Mbytes EDRAM memory 
and a Video output. The BIU/IO interface, in its turn, makes communication with the 
CPU, L2 Cache and with the IO/Chip and all these communications have different 
throughputs.  Therefore, a router must consider the possibility of different 
configurations to guarantee the QoS to every core, as well as the right bandwidth and 
throughput, while at the same time achieving the smallest possible area overhead and 
power dissipation.  

As another example of mixed communication behavior and requirement, there is a 
clear difference between cores in a SoC with out-of-order cores (OoCs) and in-order-
cores (IoCs), as shown in the Fig. 4.2, (MANFERDELLI et al., 2008). OoCs are larger 
and have a worse power performance than IoCs. OoCs can be VLW processors which 
use a huge amount of dates to compute at once and the IoC can be a RISC processor 
which compute less data at a time and communicates more than OoCs. Besides, there is 
more communication among IoCs than OoCs, thus the former need to have different 
interconnection characteristics among them in order to guarantee a higher 
communication bandwidth among IoC devices.  This is due to the fact that their 
communication with OoCs occurs in a much smaller scale. 

From the SoC examples of fig. 4.1 and fig. 4.2, one can see that each NoC has a 
different communication pattern. In a NoC several items can vary from design to 
design, like buffer depth of FIFOs, router topology, switch and arbiter (VESTIAS and 
NETO, 2006). In this manner, decisions such as throughput, latency and bandwidth are 
defined as a modification of the NoC architecture, most of the time being made at 
design time, trying to guarantee the performance of the system. However, whenever the 
product needs an update or has to change its functionality, most likely a huge change in 
the communication pattern will be observed and hence decisions performed at design 
time would mean either a loss in performance, or excessive power dissipation. Today, 
cell-phones are a good example of this continuous process of updating to integrate new 
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functions. The decision made at design time cannot guarantee the same performance for 
these new services. 

 

 

 

   

Figure 4.1:  Xbox 360 block diagram (ANDREWS and BAKER, 2006). 

 

         

Figure 4.2:  Example of different cores used in a SoC (MANFERDELLI et al., 2008). 
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4.2  A Quantitative Analysis of the Problem 
Four examples of real applications were simulated to analyze the behavior of the 

router. The applications used were the MPEG4 (Motion Picture Experts Group 4), 
VOPD (Video Object Plane Decoder) (BERTOZZI, D. et al., 2005), MWD (Multi-
Window Display) (SRINIVASAN and CHATHA, 2006) and Xbox (ANDREWS and 
BAKER, 2006). All have 12 cores, but with different communication patterns, as 
represented in each link bandwidth. 

A traffic simulator in Java was utilized to evaluate the network hotspots and the 
average latency using the adaptive and original routers. The distribution of the cores, in 
the NoC, was specified in accordance with the communication needs of the cores, 
reflecting a design time choice based on the original application.  

 

 

 

(a)      (b) 

     

(c)                                               (d) 

Figure 4.3: (a) MPEG4; (b) MWD; (c) Xbox; (d) VOPD task graphs. 
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 Figure 4.4:4x3 NoC for (a) MPEG4; (b) MWD; (c) Xbox; (d) VOPD. 

Fig. 4.5 shows the mean efficiency of MPEG4, VOPD, MWD and Xbox to the core 
graph of fig. 4.3 mapped to a NoC 4x3 with homogeneous buffer size. To compute the 
efficiency of each router in the network, first each core of the MPEG4, VOPD, MWD 
and Xbox were mapped to a specific router in the NoC according to figure 4.4. This 
mapping is used for all experiments shown in this thesis. 

In this thesis, efficiency represents how many of buffer slots are being used 
appropriately, in accordance with the necessity of the application. Fig. 4.5 represents the 
efficiency in accordance with the equation 4.1. This equation indicates the number of 
the buffer slots really used per number of buffers existing in each channel of the NoC. 
This proves that homogeneous routers use excessive buffers to some channels since not 
all channels present the same communication rate. In such cases, the extra buffers of the 
channel consume area and power unnecessarily.    
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The overall idea is to show how much of the buffer slot is used, assuming the size 
was chosen based on the maximum performance. 
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 The buffer is sized for the highest size to guarantee that all channels in a router will 
have low latency, that is, each router will have the highest amount of flip-flops to 
provide performance for that specific link. For instance, in a routerX it was noticed that 
at design time one channel of the routerX needs 8 buffer slots, so all channels of the 
routerX will have 8 buffer slots to guarantee performance. On the other hand, in a 
routerX+1 the maximum buffer slots needed is 2 and so all channels will have buffer 
slots equal to 2 in routerX+1. However, in this case, if the application is changed, 
probably the latency and the power consumption increase, since in some link there 
might not be enough buffers to ensure QoS. In Zeferino and Susin (2003), as the buffer 
depth increases the latency decreases, because the packet will be stored in the buffers 
and then will use less links when they are blocked. However, as the buffer depth 
increases the cost of the router increases too. 

One can see, in fig. 4.5 that in a buffer sized to the best performance case, around 
54% of the buffer slots are utilized and all the others are not. However, they are 
consuming power, but they are not contributing to reducing the latency or the number of 
hotspots in the network. These results were presented in VLSI-SoC (Matos et al.,2009) 
too. 

 

Figure 4.5: Efficiency of a homogeneous router. 

 

As one can notice, the SoC has a dynamic nature, in this case the fault tolerance 
technique for SoC needs to be dynamic too. The fault tolerant technique needs to be 
adaptive, to adapt to changes in the systems and to adapt to failures that will arise. The 
following sections present the proposed techniques, where the solutions are adaptive. 
The solutions adapt according to the requirement of the system, or according to the fault 
location, without the need for oversized features or re-design to avoid the faults. 

 

 

η 
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4.3  Adaptive Router Architecture 
 

If a NoC router has a larger buffer, the throughput will be larger and the latency in 
the network smaller, since it will have fewer flits stagnant on the network (WU and 
CHI, 2005). Nevertheless, there is a limit in the increase of the buffer depth. Since each 
communication will have its peculiarities, sizing the buffers for the worst case 
communication scenario will compromise not only the routing area, but power as well. 
However, if the router has a small buffer depth, the latency will be larger and the QoS 
may be compromised. The proposed solution is to have a heterogeneous router, in 
which each channel can have a different buffer size. In this situation, if a channel has a 
communication rate smaller than its neighbor, it may lend some of its buffer units that 
are not being used. In a different communication pattern, the roles may be inverted or 
changed at runtime, without a redesign step.   

In the adaptive router it is possible to dynamically reconfigure different buffer depths 
for each channel. A channel can lend part or the whole of its buffers in accordance with 
the requirements of the neighbor buffers. To reduce connection costs, each channel may 
only use the available buffer slots of its right and left neighbor channels. In such a case, 
each channel may have up to 3 times more buffer slots than its original buffer size 
planned at design time. When a channel fills its entire buffer it can borrow more buffer 
words from its neighbors. In this manner, some signals of each channel must be sent to 
the neighboring channels in order to control its stored flits. The information about how 
many units of the buffer are used for each channel is sent by an external control and this 
information can be dynamically altered outside the router on the fly. 

Fig. 4.6(a) shows the original and proposed input FIFO which contains 4 buffer slots. 
Comparing the two architectures, the new proposal uses more multiplexers to allow the 
reconfiguration. Fig. 4.7 is the new architecture and it shows the channel of fig. 4.6(b). 
Fig. 4.6 (b) presents the South Channel as an example. In this architecture it is possible 
to dynamically configure different buffer depths for channels. This architecture was 
present in the ARC workshop (Concatto et al., 2009). 

Each channel can receive three data inputs. Let us consider the South Channel as an 
example, having the following inputs: the own input (din_S), the right neighbor input 
(din_E) and the left neighbor input (din_W). For illustration purposes, let us assume we 
are using a router with FIFO depth equal to 4 and there is a router that needs to be 
configured as follows: South Channel with buffer depth equal to 9, East Channel with 
buffer depth equal to 2, West Channel with buffer depth equal to 1 and North Channel 
with FIFO depth equal to 4. In this case, the South Channel needs to borrow buffer units 
from its neighbors. As the East Channel occupies 2 of 4 units, this channel can lend 2 
units to its neighbor, but even then, the South Channel still needs 3 more buffer units. 
As the West Channel occupies only 1 unit, the 3 missing units can be lent to the South 
Channel.  

When the South Channel has a flit stored in the East Channel and this flit must be 
sent to the output, it is passed from the East Channel to the South Channel (d_E_S) and 
so it is directly sent to the output of the South Channel (dout_S) by a multiplexer. The 
South Channel has the following outputs: the own output (dout_S) and two more 
outputs (d_S_E and d_S_W) to send the flits stored in its channel but belonging to 
neighbor channels.   
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Figure 4.6: Input FIFO (a) Original; (b) proposed. 
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Figure 4.7: Proposed router architecture. 

 

Some rules were defined to enable the use of buffers from one channel to other 
channels. To reduce connections costs, each channel may only use the available buffer 
words of its right and left neighbor channels. When a channel fills all its buffers it can 
borrow more buffer words from its neighbors. First the channel asks for buffer words to 
the right neighbor and if it still needs more buffers, it tries to borrow from the left 
neighbor.  

In this manner, some signals of each channel must be sent for the neighboring 
channels in order to control its stored flits. The information about how many units of the 
buffer are used for each channel is sent by an external control (it is information received 
by an input pin of the router) and this information can be dynamically altered outside 
the router.  

In the proposed router architecture each channel knows how many of its own buffers 
are being used in the channel and how many are being borrowed from neighbors. Each 
channel controls its storage flits, being those units stored on its own buffer or in the 
neighbor channel buffers. In this design we are not considering the possibility of the 
Local Channel using neighbor buffers, only the South, North, West and East Channel of 
a router can make use of their adjacent neighbors. 
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The link between the router and the core, the Local Channel, is not shared in the 
network, rather it is a dedicated link between the core and the router. Therefore it was 
decided to not include the loan process in the Local channel. 

 In order to reduce routing and extra multiplexers, we adopted the strategy of 
changing the control part of each channel. Hence, the borrow/lent process is coordinated 
only by simple finite state machines and pointer management for each FIFO storage 
unit. This work was presented in the ISVLSI Congress (Matos et al., 2009). 

 

4.4  Performance Results of Adaptive Router Architecture 
This section shows the results of performance of the adaptive router, without any 

fault tolerance. In this chapter we prove that the adaptive router decreases the latency of 
the router in almost 80%. 

In order to define the buffer size to each channel in accordance with its need, we 
used a simple decision mechanism described by the Algorithm 4.1. This algorithm 
distributes buffer slots among the channels of each router. The algorithm 4.1 is very 
simple to implement, hence the reason it was chosen. This means that if a better 
algorithm were implemented the performance would be better. The algorithm 4.1 is 
implemented in Java by a cycle accurate simulator together with adaptive router shown 
in section 4.3.  

The applications (MPEG4, MWD, XBox, VOPD) used to observe the performance 
of the NoC were emulated. According to the mapping of fig. 4.4 and the core graph of 
fig. 4.3, the equation 4.2 was computed. 

 packet

bandwidth
freq

packetpercyclesnum =___

 (4.2) 

By explanation,  num_cycles_per_packets is the period that each core must send its 
packets, freq is network frequency, the bandwidth is given by the core graph and the 
packet is given by the application. The num_cycles_per_packets is given to the cycle 
accurate simulator to analyze the latency and throughput of the network. 

The simulator analyzes each channel individually and performs the buffer words 
distribution according to the number of hotspots. First the algorithm verifies the 
hotspots of each router. We consider hotspots those channels that receive a large 
number of flits and in such cases, require many buffers words because of contingency 
reasons. This way, whenever hotspots are detected, the algorithm verifies the possibility 
of borrowing the neighbor’s channel buffers units. When there is only one hotspot in the 
router, the buffer loaning process occurs between the right and left neighbors.  
Otherwise, if there are two hotspots in the router, the neighbor’s buffer words are 
divided between the hotspots. For these experiments, fixed-length packets of 80 flits 
were assumed and the link size was defined to be 16 bits. From these decisions, with the 
information of bandwidth presented in fig. 4.8 and with a defined frequency, we 
determined the interval in number of cycles that each packet is sent to the link. The 
bandwidth to each link considers the need of all cores that utilize it.   
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When a neighbor channel is used and it is not a hotspot, the channel will leave only 
one buffer word to the neighbor channel and will use the remaining buffer words. When 
there are three hotspots in a router, no buffer slots can be lent. The constant 
buffer_increase considered in the pseudocode refers to the channel buffer depth.  

 
 
 

Algorithm 3.1. Pseudocode to use the buffers of the router channels 
 

1 FOR router=0 to number_of_router DO 
2  FOR channel=0 to 3 DO  
3   IF  channel is hotspots THEN  
4    IF  number_hotspots_router = 1 THEN  
5     IF  buffer_right_neighbor is not used THEN  
6      buffer_channel = buffer_channel + buffer_increase; 
7      buffer_right_neigbord = buffer_right_neigbord – buffer_increase; 
8     ELSE   
9      buffer_channel = buffer_channel + (buffer_increase-1); 
10      buffer_right_neigbord = buffer_right_neigbord – (buffer_increase-1); 
11     END IF 
12     IF  buffer_left_neighbor is not used THEN           
13      buffer_channel = buffer_channel + buffer_increase; 
14      buffer_left_neigbord = buffer_left_neigbord – buffer_increase; 
15     ELSE   
16      buffer_channel = buffer_channel + (buffer_increase-1); 
17      buffer_left_neigbord = buffer_left_neigbord – (buffer_increase-1); 
18     END IF 
19    
20    ELSE IF  number_hotspots_router = 2 THEN  
21     IF buffer_right_neighbor is not used THEN           
22      buffer_channel = buffer_channel + buffer_increase; 
23      buffer_right_neigbord = buffer_right_neigbord – buffer_increase; 
24     ELSE IF right_neighbor_channel is not hotspots THEN  
25      buffer_channel = buffer_channel + (buffer_increase-1); 
26      buffer_right_neigbord = buffer_right_neigbord – (buffer_increase-1); 
27     ELSE IF buffer_left_neighbor is not used THEN      
28      buffer_channel = buffer_channel + buffer_increase; 
29      buffer_left_neigbord = buffer_left_neigbord – buffer_increase; 
30     ELSE   
31      buffer_channel = buffer_channel + (buffer_increase-1); 
32      buffer_left_neigbord = buffer_left_neigbord – (buffer_increase-1); 
33     END IF 
34    END IF 
35  END IF  
36  END FOR 
 

 

 

 

 

Using the algorithm 4.1 for buffer slots lending, we obtained the results of fig. 4.8, 
which presents the behavior of the NoC for the VOPD application using a 4x3 NoC (fig. 
4.4(d)) with buffer depth equal to 4. The X axis presents the input channels of all 12 
routers of the NoC and the Y axis represents the number of flits that need to wait for the 
availability of the buffer before being sent to the next router. 
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Equation 4.3 shows how the buffer_overhead is calculated, where flits_to_send refers 
to all flits that should be sent to a channel, according to a bandwidth required for a 
router with an infinitive buffer depth. The buffer_depth means the real buffer size of the 
channel.  

 

 

Fig. 4.8(a) depicts the results obtained with homogeneous routers and fig. 4.8(b) 
presents the reduction of hotspots obtained with the adaptive router. One can observe 
that with the adaptive router the number of hotspots was drastically reduced. In fig. 
4.8(a) there are 7 peaks over 3000 flits. In fig. 4.8(b) there are 3 peaks and none is 
higher than 5000 flits. This means that the adaptive router has 2.33 times less peaks than 
the original router. 

 
Figure 4.8: Number of flits overhead per router (a) in the original architecture (b) in the 

new router for VOPD 
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We analyzed four applications (MPEG4, MWD, VOPD and XBOX) that present 
different traffic conditions (for the mapping presented in fig. 4.4). We fixed the buffer 
size of the adaptive router to 4 and sized the buffer of the original router in order to 
have the same latency as the adaptive ones. In this case, to reach the same average 
latency obtained with the adaptive router, the homogeneous router needed much larger 
buffers, as it can be seen in fig. 4.9.  

In fig. 4.9 each application has two columns, the first column is the adaptive router 
with buffer depth equal to 4 and the second is the buffer size of a router fixed at design 
time required to reach the same latency performance. Observing the results presented in 
fig. 4.9, we verify that the buffer depth greatly influences the average latency. As these 
applications present different bandwidths in the links and a different number of 
connections among the cores, we can confirm that to have the same average latency 
obtained with the adaptive router, larger and for many cases useless buffer depths were 
required by the homogeneous router.  

In fig. 4.9 we observed that the MWD application presented the smaller latency 
results to the adaptive router and thus to obtain the same latency value, the 
homogeneous router required a buffer with 11 positions. This can be explained due to 
the traffic behavior of the MWD application, since there are few connections among the 
cores. In this case, as there are many buffer units which are not used, they could be lent 
to the channels in use. This experiment proves that it is possible to use a single NoC 
with the adaptive router to obtain low latency results for any application.   

 

 

 

Figure 4.9: Four applications with buffer depth of the original router sized in order to 
obtain the same latency of an adaptive router with buffer depth equal to 4. 

 

Adaptive Router 

Original Router 
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With the adaptive router we also verified that there was a better distribution of flits in 
the network. Fig. 4.10 shows the number of flits that need to wait for the availability of 
the buffer to be sent to the next router. We called this situation buffer overhead and the 
high values of buffer overhead represent the hotspots, i.e., channels that need a larger 
buffer depth. 

In the X axis of fig. 4.10 one can see how many channels have approximately the 
same number of buffer overheads (flits that could not be stored in the first time). Hence, 
fig. 4.10 shows the number of channels that generate the network congestion, for the 
original router in fig 4.10(a) and for the adaptive one in fig. 4.10(b). One can observe 
that for the original router there are 10 channels (first two columns in fig. 4.10(a)) that 
potentially decrease the performance of the NOC. However, for the proposed router one 
has only 2 channels that decrease the performance and with a much smaller buffer 
overhead value, since the buffer lending/borrowing process better distributes the storage 
of flits in the NoC. This experiment shows that for the same buffer size, the adaptive 
router uses the buffer slots more efficiently and hence less power is wasted. 
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(a) 

               

                             (b) 

Figure 4.10: Occurrences of flits that need to wait the availability of the buffer to be 
sent to the next router to MPEG4 application for (a) original and (b) adaptive routers. 
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4.5  Fault Tolerant Adaptive Router (FTAR) 
 

When a fault is detected in a set of buffer units in a FIFO, the FIFO is not totally 
useless. Only the buffer unit, to which the faulty flip-flops belong, must be discarded. 
This buffer unit is isolated and the next buffer word in the FIFO is used. Nevertheless, 
when all fault-free buffer units of the channel are being used by the application (due to a 
certain traffic pattern, for example), the faulty buffers need to be replaced. In this case, 
the buffers of a neighbor channel are used to substitute the defective buffer unit. As the 
cores connected to the NoC present different communication requirements, not all 
channels need to use all their buffers, in their full size, all the time. Of course, for some 
buffers there will be a tradeoff between performance and fault tolerance. For example, 
when all units of the buffer in the FIFO are faulty in a single channel, then at least one 
buffer slot must be borrowed from a neighbor. A channel can borrow more than one 
buffer unit from its right and left neighbor channel. 

Fig. 4.11(c) shows the fault tolerant strategy proposed for the buffer slots to isolate a 
fault in a flip-flop. Fig 4.11(a) shows a buffer with all slots fault-free, but fig. 4.11(b) 
presents the FF3 faulty, in this case a router without a fault tolerant technique will lose 
this buffer and consequently the channel. Fig.4.11(c) shows the fault tolerant technique 
proposed for buffers. The FF3 is isolated and the fault free buffer slots continue to be 
used. All channels in the router have the ability to avoid the fault in their buffer slots. 
The Local Channel does not have the ability to lend or to borrow slots from the 
neighbors. 

F F 1

F F 2

F F 3

F F 4

F F 1

F F 2

F aulty

F F 3

F F 4

F F 1

F F 2

F aulty

F F 3

F F 4

F F 1

F F 2

F F 4

F F 1

F F 2

F F 4
 

(a)                     (b)                                 (c) 

Figure 4.11: Buffer slots (a) fault free; (b) faulty; (c) isolating a fault. 

Fig. 4.13 shows the adaptive (fig. 4.13(a)) and the fault tolerant adaptive buffer (fig. 
4.13(b)). Fig. 4.13(b) shows that there is a faulty_buffer signal that informs the buffer 
control which is faulty. According to the faulty_buffer signal, the buffer slot can be used 
or not. If the flip-flop is faulty the control bypasses and uses the next flip-flop. Only if 
needed, to sustain performance, buffer slots are borrowed, following algorithm 4.1. 

As in the adaptive router without fault tolerance, the FTAR must send some signals to 
the neighboring channels in order to control the stored flits. Each channel receives three 
data inputs. Let us consider the South Channel as an example, having the following 
inputs: the own input (din_S), the right neighbor input (din_E) and the left neighbor 
input (din_W), as shown in Fig. 4.13(b). For illustration purposes, let us assume we are 
using a router with buffer depth equal to 4 and the South Channel has three faulty buffer 
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units, as depicted in fig. 4.12(b). In such a case, the South Channel needs to borrow one 
buffer unit from its neighbor channel. Let us consider that East Channel can lend part of 
its buffer, then, as the fault in South Channel is signalized, the flit is sent to data input of 
the East Channel and it is stored in these buffers units. When the flit belonging to South 
Channel stored in the East Channel is required, it must be sent to the output, passing 
from the East Channel to the South Channel (d_E_S) and so it is directly sent to the 
output of the South Channel (dout_S) by a multiplexer. The South Channel has the 
following outputs: its own output (dout_S) and two more outputs (d_S_E and d_S_W) to 
send the flits stored in its channel but belonging to neighbor channels. Firstly, in the 
occurrence of faults, the channel borrows a buffer from the right adjacent channel. In 
this design we are not considering the possibility of the Local Channel using neighbor 
buffers, but the Local Channel has the ability to isolate the faulty buffers.  

 

   (a)    (b)    (c) 

Figure 4.12: (a) router designed with buffer depth 4; (b) an example of faulty buffer; (c) 
reconfiguration of the buffers to meet the faulty buffer demand. 
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Figure 4.13: Input FIFO (a) adaptive; (b) fault tolerant adaptive. 
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4.6 Fault Tolerance Solutions 

4.6.1 Links 

The idea of the strategy based on design-level is to combine four fault tolerance 
methods to tolerate permanent faults, each one targeting a different part of the circuit to 
allow the smallest possible area and performance overhead. To obtain a fault tolerant 
NoC, we use the adaptive router as a solution to faulty buffer units, since wasting all 
buffer slots, in terms of cost, is unacceptable. At the link level, any defect in the metal 
contacts could compromise a wire and must also be mitigated and hence hamming code 
is used to protect the links, as shown in fig. 4.14. Hamming encoding occurs also in the 
network interface and the links are decoded before entering the buffer of the FIFO. For 
a channel with 34 bits (32 data + 2 control), 6 bits are needed to include the hamming 
code. 

 

 
Figure 4.14: Hamming code in the NoC links. E – encoding code, D – decoding code as 

proposed by Frantz et al, 2006 

 

4.6.2 Switch Matrix 

One column and one row were added to protect the crossbar of the router. When a 
fault occurs in the crossbar it can be isolated and the extra column and/or row are used. 
Fig. 4.15 shows one example where the West Channel wants to send packets to the 
North Channel. For instance, if the row used by the West Channel  in the crossbar is 
faulty, the multiplexer in the input of the crossbar is activate to use the extra row, then 
the flit is sent to the extra row, isolating the fault. As only one extra row and column 
were added, each switch matrix can tolerate one fault in the crossbar. 
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Figure 4.15: RASoC switch matrix. 

 

4.6.3 Finite States Machines 

The TMR strategy was used to tolerate fault in the FSMs of the router. There is not 
redundancy in the FSM or it is very difficult to find these redundancies. The easiest way 
to protect FSMs is TMR. For that reason were used TMR in all FSMs.  

Most of the FSMs in the router architecture are simple and consequently small. For 
example, the FSM that controls the FIFO is very small, it has only three states. We have 
chosen TMR to protect the control of the FIFO, since the TMR scheme triplicates the 
Finite State Machine. 

 For the FSM in the FIFO we added 3 registers (2 bits) and 1 voter to choose the right 
output of FSM. All these methods have the goal of ensuring the integrity and reliability 
of the data that passes through the NoC in the presence of permanent faults. The TMR 
was also used for the handshake protocol and the arbiter, but as shown in the results, the 
cost is lower than for using TMR for all the router. 
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4.7  Performance and Synthesis Results 
 

4.7.1 FTAR Evaluation  

A traffic simulator in Java was utilized to evaluate the average latency using a 
homogeneous, adaptive, fault tolerant adaptive routers. The distribution of the cores in 
the NoC was specified in accordance with the communication needs of the cores, 
reflecting a design time choice, being based on the original application. For our 
experiments, a 4x3 NoC was used. 

To simulate the FTAR we have implemented a very simple buffer distribution 
algorithm in Java as shown in the pseudocode of algorithm 4.1. In the presence of faulty 
buffers, the algorithm bypasses the faulty buffer and, in accordance with the need of the 
application, more buffer units can be obtained from neighbor buffers.  

Firstly, the algorithm verifies which are the channels with faulty buffer words and, in 
accordance with number_faulty_buffers (which has the number of defective buffer 
words in the channel), decrements the depth of these buffers. The faults are diagnosed 
off-line and are not in the scope of this work. Subsequently the pseudocode of the 
algorithm 4.1 is implemented considering now only the non-defective buffers. This code 
verifies the total number of flits that passes over each channel. If the channel presents 
the number of flits above a certain threshold, it is considered one hotspot. The threshold 
is considered as the mean value between the two extremes of the total number of flits 
that cross the NoC channels. In this way, when hotspots are detected, the algorithm 
verifies the possibility to borrow the neighbor’s channel buffers. When there is only one 
hotspot in the router, the loan of buffers occurs between the right and left neighbors.  
Otherwise, if there are two hotspots in the router, the neighbor buffers are divided 
between the hotspots. When a neighbor channel is used and it is not a hotspot, the 
channel will leave only one buffer to the neighbor channel and will use the remaining 
buffers. When there are three hotspots in a router, no buffer can be lent. The constant 
buffer_increase considered in the pseudocode refers to the channel buffer depth. The 
algorithm 4.1 does not consider the Local Channel. 

In order to verify the use of the fault tolerant adaptive router we performed some 
simulations by randomly assigning faults in the buffers. Firstly we verified the 
possibility of the occurrence of defects in a router connected to a processor and a cache. 
To define the occurrence of faults, a defect density per cm² as shown in (FLYNN and 
HUNG, 2005) has been used. We considered a 90nm process technology that presents 
0.28 defects/cm² for memory and 0.14 defects/cm² for a microprocessor. We also 
considered that one has, for each NoC node, a microprocessor with a small cache size 
for instructions and data (16K/16K), like the ARM11 MP Core processor, with total 
area equal to 2.54mm² (ARM - online). As the router area is very small compared with 
the microprocessor and memories, its value does not influence the calculation of the 
number of defects. With the defect density above mentioned, the average value for 
defects is 0.21 defects/cm². Let us imagine the worst case (and as of today, probably 
unlikely) scenario where the faults occurring in the node that includes processor, 
memory and a NoC router  are concentrated only in the buffers of the  NoC. The NoC 
faults number is given by (4.2),    

)2.4(TNXNAXDDFaults=  
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where DD refers to defect density, NA is the area of a single node containing a router, 
microprocessor and memory and TN is the total number of NoC nodes. Considering a 
4x3 NoC used in our experiments, the occurrence of faults will be approximately 0.065 
defects for the entire NoC. However, in the near future, either CMOS (Complementary 
Metal Oxide Semiconductor) technology will aggressively scale or it will be replaced 
by nanoscale technologies. In both cases, in the same die size, the SoCs will show a 
great increase in complexity and more permanent faults will occur due to process 
parameters (DUMITRAS et al., 2003). In this context, we analyze the occurrence of a 
single fault in a NoC (reflecting current technologies), after this, we verify the behavior 
of a NoC if more faults happen (in a future technological scenario). For this later case 
we considered 2 faults in the whole NOC and for an extreme case, we considered the 
occurrence of 6 faults in the NoC, hence assuming a higher defect ratio of the current 
technology, aligned to what is foreseen in (HON and NAEIMI, 2008). 

A cycle accurate traffic simulator in Java was utilized to evaluate the faults impact 
in the network (average latency) using the adaptive and original routers. The 
distribution of the cores, in the NoC, was specified in accordance with the 
communication needs of the cores, reflecting a design time choice, being based on the 
original application.  

Using the mapping of fig. 4.4, the simulator explained in section 4.4 with the 
modification to be fault tolerant, we simulated 2 applications with the traffic simulator 
to verify the behavior of the NoC in the presence of faults in the buffers. These 
applications are MPEG4 and VOPD (BERTOZZI et al., 2005). First, we verified the 
behavior of the NoC considering a single fault, after we introduced 2 and 6 faulty 
buffers randomly and we analyzed the latency of the NoC for those cases. All the 
possibilities of faults above defined were simulated with random injection, totaling 50 
simulations in the occurrence of each fault scenario (1, 2 and 6 faults in the buffers) for 
each application. We defined the buffer depth equal to 4 and the packet size contains 40 
flits. We verified the latency results for three situations: for the original router without 
faults, for FTAR with the three fault possibilities (1, 2 and 6 simultaneous faults) and 
for the adaptive router (AR) without faults. Fig. 4.16 presents the average latency 
results obtained for VOPD and MEPG4 applications.  

 



 

47 

 

0

15

30

45

60

75

90

original 
FTAR -1 fault

FTAR -2 

faults
FTAR - 6 

faults
AR

68

34
35

36
34

82

61
61 63

61

VOPD

MPEG4

L
a

te
n

c
y

 

Figure 4.16: Latency results for three situations using the original, adaptive and fault-
tolerant router. 

 

In accordance with fig. 4.16, we verify that for the VOPD and MPEG4 applications, 
the FTAR with faulty buffers shows a minimal increment in the latency when compared 
with the adaptive router, but once compared with the original router, it still shows great 
gains in terms of performance (roughly 50% improvement), thanks to the available 
reconfiguration, even in the presence of random fabrication faults. These results were 
presented in Concatto et al. (2009) - SBCCI. 

4.7.2 FTAR Area, Power and Frequency Results 

The proposed fault-tolerant adaptive router was described in VHDL. ModelSim tool 
was used to simulate the code and Synopsys Power Compiler was used for synthesis. 
We analyzed the average power consumption, area and frequency results to a TCMS 
CMOS 0.18um process technology using the Synopsys Power Compiler tool. Table 4.1 
presents results of two architectures (original and FTAR routers) with buffer depth 
equal to 4.  We can see that the FTAR has larger power and area and smaller frequency, 
which are all disadvantages under this comparison. However, for the same buffer depth, 
the FTAR shows a lower latency (as shown in fig. 4.16) and it is tolerant to multiple 
simultaneous permanent faults. 

Table 4.2 presents the results of synthesis to the original, AR, FTAR and FTAR + 
Hamming code, but now we require both NoCs (original and adaptive) to have the same 
latency values (same number of cycles with a 100MHz clock). Table 4.2 shows that the 
router with FTAR presents low power and high performance and this is explained 
because the proposed FTAR dynamically adapts the buffer depth in accordance with its 
need. In this case, no unnecessary buffers are used, as opposed to in the original router 
and hence the power consumption is reduced.  
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Table 4.1: Synthesis results to Original and FTAR router 

 

We have also compared the proposed solution with a router fully protected by TMR. 
The area overhead of a TMR router is 1068 µm² and the power consumption is 
56.43mW. In this case, taking the numbers of Table 4.2 as a reference, the proposed 
solution would be 1.77 times smaller than TMR, with 2.73 times less power dissipation, 
with the same latency and withstanding multiple faults even in different blocks 
(something that could make a TMR circuit fail), in both cases the network is fully 
protected. 

Using the combination of techniques here proposed, 100% of the NOC circuit is now 
protected (links, buffers, switch matrix and fsm). These results were presented in 
Concatto et al. (2009) -DSNoC too. 

 

Table 4.2: Synthesis results to Original, Adaptive (RA), FTAR, FTAR(link) and 
FTAR(link, buffer, switch matrix, fsm) router 

 

 Original 
router 

RA FTAR FTAR(link) 

FTAR(link, 
buffer, 
switch 

matrix, fsm)  

Buffer Depth 9  4  4  4  4 

Area (µm2) 356  337  354  394  603 

Power Consumption 
(mW@100MHz) 16.81  9.34  10.43  14.07  18.47 

Frequency (MHz) 225  230  225  185  185 

 

The four composed methods (TMR, Hamming, switch matrix and FTAR) present 
hardware overhead, but significantly improve the reliability, the yield, reduce power 
and still increase the performance of the system when compared with the original 
router. 

 Original router FTAR 

Buffer Depth 4 4 

Area (µm2) 182 354 

Power Consumption (mW@100MHz) 8.5 10.43 

Frequency (MHz) 273 225 
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5 STRATEGY BASED ON ALGORITHM-LEVEL: 
ADAPTIVE ROUTING ALGORITHM 

In this chapter we show that adaptive routing algorithm is a technique that one can 
use to avoid faulty links and routers, but first we review routing algorithms 
classification. Finally, at the end of this chapter we present a proposal of dynamic 
routing algorithm to avoid faulty links and routers using XY routing algorithm in a NoC 
Torus and results. 

5.1  Introduction 
The routing algorithm substantially affects the performance and the communications 

of the entire network. In a NoC the routing algorithm is used to determine the path of a 
packet traversing from the source to the destination (BENINI and DE MICHELI, 2002).  

The routing algorithm, according to SCHONWALD et al., (2007), can be classified 
in three categories depending on the degree of adaptability: 

I. Non-adaptive – which only uses one of the shortest paths between source and 
destination; 

II.  Partially adaptive – which use some of the shortest paths between the source and 
destination, but not all packets are allowed to use any path; 

III.  Fully adaptive – which allow to route packets on any path. 

Partially and fully adaptive can be distinguished whether they are minimal or non-
minimal. Minimal routing algorithms only use the shortest path between sender and 
receiver. A non-minimal routing algorithm does not use only the shortest path 
(SCHONWALD et al., 2007).  

It is possible to find another classification of routing algorithms: deterministic or 
adaptive. In a deterministic routing algorithm the transmission of the packet is done 
using information about the source and the destination, i.e., in a XY routing algorithm, 
the packets first are sent in the X axis and then along the Y axis. The deterministic 
routing can be easily implemented and the latency of the packets is low, when there is 
no congestion or faults in the network. However, the throughput of the network 
decreases when the rate of packets injection or the rate of faults in the network 
increases. 

 In the adaptive routing algorithm, the path of the packets is chosen according to 
the congestion or faults in the network. When the network is congested or faulty, 
another path is chosen to avoid the faulty path. The adaptive algorithm can increase the 
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throughput and decrease the latency, nevertheless it adds overhead in terms of silicon 
area and energy consumption (ZHU et al., 2007). The next section presents the 
proposed routing algorithm. 

5.2  Fault Tolerant Routing Algorithm (FTRA) 
 We base our analysis on a packet-switching network model called SoCIN 
(ZEFERINO and SUSIN, 2003), which is composed of routers named Router 
Architecture for Systems on Chip (RASoC). The RASoC router consists of five input 
and five output ports. One pair of I/O ports (called the local channel, L) is dedicated to 
the connection between the router and the core; the remaining four pairs (north - N, 
south - S, west - W and east - E) connect the RASoC router with four adjacent routers. 
These ports include two unidirectional opposite channels, each with data, framing 
(known as beginning and end of packet signals) and handshake communication signals.  

The router is a VHDL soft core, with parameters in three dimensions: 
communication channel width, input buffer depth and routing information width. The 
architecture uses the wormhole switching approach and a deterministic source based 
routing algorithm. The wormhole approach breaks a packet into multiple flow control 
units called flits and its size is equal to the channel width. The first flit is a header with 
destination address followed by a set of payload flits and a tail flit.  

Networks that use the wormhole switching approach have the target node address in 
the packet header, which is the first flit of the packet. By reaching a router in the path, 
the header allocates the path for the oncoming flits that carry the payload.  

The network uses credit-based flow-control and XY routing, where a packet is first 
routed on the X direction and then on the Y direction before reaching its destination 
(ZEFERINO and SUSIN, 2003). RASoC applies the handshake protocol for link flow 
control and uses Round-Robin arbitration and input buffering. 

Unless stated otherwise, the experiments presented are based on the RASoC 
configured as follows: communication channels with a four-position input buffer depth 
and the links with a 10-bit data width. Each communication link actually has 12 bits: 
eight bits for data, two extra wires for control (stored in the input buffer), called framing 
bits or the bop and eop bits, and two signals for the communication handshake between 
routers (val and ack). We assume that, in each node, a core is connected to a router 
through a network interface (NI) or wrapper. 

Each router has in the network interface one TDG (Test Data Generator) and one 
TED (Test Error Detection) that sends and receives the test vector in the diagnosis 
phase, as depicted in fig. 5.1. The data interconnect wires consist of 8-bit wires, 
disregarding the four available control wires (bop, eop, ack, val).The diagnosis is made 
off-line, that is, when the NoC is not used. The fault location is sent to the router 
through a signal and this information is sent to the router to be used when the NoC is 
on-line.  
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Figure 5.1: 3x3Torus-NoC with BIST in the NI. 
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The adaptive routing proposed for the torus NoC consists of dynamically changing 
the target address in a header when the original address uses a faulty channel. This 
change is performed by the router (based on the data that was sent to the router when 
the diagnosis was performed) on each header that tries to use the faulty channel. 

In a torus network of size mxm, a packet has two possible routes in the same 
direction: it may proceed X steps one way (positive) or m – X steps the other way 
(negative). So, for instance, in a 3x3 NoC, a packet from router01 to route02 can be 
transmitted with a single step (X=1) to the East or with 2 steps (m - X = 3 – 1 = 2) to the 
West.  

To implement the dynamic routing strategy, the router must store the fault location 
and the network size, so that it can calculate the new number of steps for the packet 
when necessary. Thus, when calculating the output port for a given packet, the routing 
algorithm first checks the list of faulty channels (which has been previously filled in 
after the diagnosis process and through the NI). If the original output channel is 
indicated as faulty, the alternative (longer) path replaces the original one in the packet 
header and the packet is routed normally. Fig. 5.2 shows the original path without 
faults. In fig. 5.2 and 5.3 we remove the links that are not used to send the packets 
between node 3 to node 5. 
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Figure 5.2: Routing Algorithm without fault. 
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Figure 5.3: Proposed Routing Algorithm with faulty channels. 
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In fig. 5.3 there is a short-circuit between one wire in the channel NI01_to_router01 
with a wire in the channel router02_to_router05. Thus, for the fault shown in fig. 5.3, a 
packet traveling from NI03 to NI05 will have its header changed in router02, due to the 
faulty channel in router2_to_router5. Instead of using the direct channel 
router02_to_router05, the header will take the feedback link router02_to_router08 and 
then the channel router08_to_router05 to achieve the target node.  

We note that the adaptive routing can tackle the faults affecting only the channels 
between two routers. Links between a router and a core are not considered, because for 
those links there is no path redundancy. Faults affecting those links must be tackled by 
either using spare wires in the channel or by a new distribution of tasks among the other 
cores. 

The adaptive routing algorithm can avoid the faulty routers, this can be done by 
modeling the faulty router as if all input channels were faulty.  For instance, the 
neighbors of a faulty router understand the fault as if their own output channels were 
faulty. 

For the SoCIN NoC in an mxm fault-free torus topology, a packet travels no more 
than m-1 steps from source to destination if m is odd, or m steps if m is even. Although 
each flit in the message will be re-routed, the impact on the overall message is at most 
(m+n-2) steps, because of the wormhole switching approach. Thus, we can conclude 
that the impact on system performance is really minimal. 

In the original RaSoc’s implementation, one input channel is not internally connected 
to the output channel with the same direction. As we see in fig. 5.4(a), for example, the 
input Lin is connected to four outputs, instead of five. The connection that is missing 
needs to exist for our purposes, since when the router notices a fault, sometimes the 
message is sent to the output by the same direction it arrived. So for the adaptive routing 
algorithm to work properly we connect all inputs to all outputs. One can see in fig. 
5.4(b) that Lin is connected to Lout, the same does not happen in fig. 5.4(a) for the old 
architecture. 
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(a) 

 

      (b) 

 Figure 5.4: (a) Original Router and (b) new interconnections inside the router. 

 

 

5.3  Performance and Synthesis Results 

5.3.1 FTRA Evaluation 

To evaluate the proposed technique a 3x3 Torus SoCIN NoC was implemented in 
VHDL together with a fault injection mechanism capable of inserting AND-shorts 
between all pairs of data wires in the network. The simulation was performed using 
ModelSim tool. 

In our experimental setup a test bench simulates the ATE. Diagnosis is done by 
analyzing the responses of the TEDs and then comparing the erroneous flits (number is 
given by TED counters) against the expected contents.  

Under the single fault assumption, the proposed adaptive routing guarantees that all 
messages will correctly arrive at the destination nodes for all diagnosed faults. The 
faults that cannot be tackled are: 

(i) a shortcut between two outputs of the same router, in the same direction but 
in different ways; either north to south or east to west.  

(ii)  a short-cut between two inputs of the same router, in the same direction but 
in different ways either north to south or east to west.   
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In the first case, the router becomes unable to route any message in that direction, 
making it unusable and limiting the network’s capability. In the second case, the 
problem is that the router cannot receive any message coming from that direction, also 
making it unusable. The mentioned limits are showed in fig. 5.5.    

 

 

Figure 5.5: Fault limits of proposed routing algorithm. 

 

As demonstrated in table 5.1, for our case study we have 288 (36 router to router 
channels x 8 data bits) data wires connecting routers. The number of data lines that can 
be shorted together is thus 41,328, as shown in equation 5.1. For each router, 
considering the exception cases described above, the proposed solution cannot deal with 
shorts involving 4 possible combinations of channels (either north to south or east to 
west. inputs and outputs). However, for each of these combinations, only shorts 
between wires in opposite directions will cause routing problems. For example, 
combining the data wires of N and S inputs we have a total of 120 possible shorts. 
Hence, in each combination of channels, we have 64 combinations of wires (8 wires of 
one channel x 8 wires of the other) where we might have limitations to tolerate the fault. 
With 4 combinations of channels in each router, we have 4x64=256 possible shorts that 
cause problems, reaching 2,304 (256x9 routers) in the entire network. This value 
represents 5.57% of the 41,328 wires in the NoC. These results were published at 
IOLTA Concatto et. al (2009) . 
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Table 5.1: Results for a 3x3 NoC Torus topology 

 

In the torus NoC, the alternative path is always longer compared to the original one. 
Nevertheless, we expect a minimum overhead, because the number of extra hops added 
to the communication is at most (m+n-2), where m and n are the respective paths in the 
X and Y dimensions of the network. Moreover the larger the NoC, the smaller is the 
impact on performance of the adaptive routing, since the affected channels (assuming a 
single fault) represent a smaller percentage of all active channels in the network. 

We have chosen two communication patterns commonly used to evaluate 
interconnection networks (Duato et al., 1997) namely, the matrix transpose and butterfly 
models, to base our analysis. Such models have been largely used as benchmarks for the 
evaluation and comparison of network performance.  In Matrix Transpose the node with 
binary co-ordinates an-1, an-2, …, a1and a0 communicates with the node an/2-1,…, a0, 
an-1,… and an/2. The Butterfly traffic is formed by swapping the most and least 
significant bits: the node with binary co-ordinates an-1, an-2, …, a1 and a0 
communicates with  the node a1, a0, …, an-1, an-2.  

To estimate the performance penalty of the proposed solution, a high-level model of 
the SoCIN NoC was implemented in Java together with the defined communication 
models and a simpler fault injection mechanism. Since the granularity of the routing 
algorithm is the channel, only one fault per link can be considered in this analysis. Thus, 
instead of injecting all possible shorts among wires from rr_links, we have considered 
only shorts between any two rr_links and one fault related to intra-link shorts. This 
approach reduces the number of injected faults to the number of rr_links plus the 
combination of all rr_links in groups of two. For each injected fault, alternative paths 
are defined in the simulated network following the proposed adaptive routing algorithm.  

Fig. 5.6 shows the results of the performance analysis for the two patterns of 
communications and three NoC sizes. One can observe that the average number of hops 
for the matrix transpose application increased only 8% in the 3x3 NoC. This impact was 
smaller for the 5x5 NoC (4%) and even smaller for 7x7 NoC (2%), as expected.  

In the butterfly traffic there are more nodes sending messages than in the matrix 
transpose model, hence more channels are used. However, a fault affects less 
communications in the butterfly pattern compared to the matrix transpose model. This 
explains the smaller impact on the average communication cost for the same faults in 
the butterfly model. Thus, the matrix transpose model has a higher impact in 
performance compared to the butterfly one.  

We note that although the average performance penalty is minimal, the designer can 
easily extract the exact penalty caused by each diagnosed fault in the NoC. For instance, 
in a 7x7 NoC the average number of hops for the transpose model increases by only 2% 
(considering all faults). However, for some communications, the effect of a fault can be 
important. For the same system, a total of 1,228 faults (out of the total 4,851 faults) lead 

total # of channels 
between routers 

total # of shorts 
between rr_links 

total # of shorts 
limitation for 

one router 

#total of shorts limitation 
for 3x3 NoC 

36 41,328 
256 

(64X4channels) 
2,304 (256X9routers) 
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to a worst case scenario in terms of performance penalty on individual communications. 
For those faults, three communications are affected out of all 41 communications 
defined. The number of hops in the affected communications changes from 2, 6 and 4 
respectively in the fault-free NoC to 7, 11 and 9 respectively in the faulty NoC. Thus, 
the performance penalty on some communications can be as high as 5 hops in this case. 
If, for the communications affected by the fault, the penalty imposed by the adaptive 
routing is not affordable, system-level techniques such as redistribution of tasks among 
functional units should be used to keep system performance. 

 

Figure 5.6: Average numbers of hops for NoC Torus. 

 

5.3.2 FTRA Area, Power and Frequency Results 

We analyzed the area and frequency results of the original and proposed router. 
Results were obtained for a CMOS 0.18um process technology using the Synopsys 
Power Compiler tool. Table 5.2 shows that the throughput is 115Mbits/s for 32-bits 
words and FIFO size equal to 4. 

The area overhead for the adaptive routing is minimum, the reasons for this is that 
the routing algorithm only adds two adders to re-recalculate the new path. However as 
we have BIST in the network interface to execute the test and diagnose the fault 
location, the area overhead increases. The area overhead with BIST is 50% of the area 
of the RASoC router. 

The adaptive routing algorithm does not use virtual channels to avoid the deadlock. 
As we are using the XY-routing algorithm, the deadlock does not happen and we do not 
need to use the routing table, because we are still working with a regular network. As 
we do not use the routing table and virtual channels, our area is smaller than the 
techniques that use routing table or virtual channels.  
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In terms of clock cycles, the experiments have shown that the number of cycles that 
the router takes to transmit the message from an input to an output port remains the 
same as the original RaSoC, that is, the router has three clock cycles of latency to 
retransmit the packet from the input to the output. However, the number of hops, with 
the use of adaptive routing algorithm in some cases will increase, because some new 
path will have more intermediate routers. 

The frequency is the same with BIST or without BIST, because the BIST runs in 
parallel with the router. The power consumption in the router remains almost the same, 
because the increase of hardware was very small. The power consumption will probably 
increase in the links, since when a link is faulty, the packet will travel perhaps through 
more hops in the network. 

 

  

Table 5.2: Synthesis results to Original and FTRA (Fault Tolerant Routing Algorithm) 
router 

 

 Area (µm2) Frequency (MHz) Power Consumption 
(mW @ 100 MHz) 

Original 182 273 8.55 

FTRA 183 270 8.58 
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6 COMPARING FTRA AND FTAR WITH RELATED 
WORKS 

The FTRA and FTAR works can be confronted with Frantz et al. (2006) and 
Schönwald et al. (2007), because all of them protect the routers and channels. FTRA 
and Frantz works at design level and protect router and link. FTRA and Schönwald 
work at algorithm level and can protect link and router. Frantz et al. (2006) technique is 
a design level based technique. The buffers and the links are protected. Hamming Code 
protects the packets in the buffers and in the link. In Frantz the results about 
performance are not shown. The synthesis results show that the area overhead increases 
significantly, however according to Frantz, 100% of the network is protected. Reading 
this work, we observe that no strategy is shown to protect the switch or the FSM. 

Table 6.1 shows some particularities of the compared works. The table presents:  
type of faults (transient, intermittent, permanent) that the techniques protect, the 
topology and routing needed and how faults are located. Table 6.2 is another 
observation about the compared works. Table 6.2 shows the area overhead, frequency 
penalty and area vulnerable to fault in each proposal. 

 Frantz has the ability to protect NoC against tree kinds of faults and it is the most 
generic work. In Frantz the type of technique used is independent of detection and 
location; however the overhead of this work is high. Table 6.2 shows that the area 
overhead of Frantz’s work is 56%, however this result is only for channel width equal to 
8. To encode 8 data bits using hamming code one needs 3 bits for encoding, resulting in 
a link with 11 bits. For 32 data bits one needs 6 bits for coding, resulting in a link equal 
to 38 bits. Concluding, the area overhead is increased when buffer depth and channel 
width increases. Hamming code is implemented by a cascade of XOR. For 8 bits the 
depth of cascade is 3 levels of XORs, however for 32 bits the depth is 5 levels of XORs, 
so the frequency will decrease. 

FTAR (link, buffer, fsm, switch matrix) protects the NoC against permanent fault 
and the parts protected by hamming code and TMR are protected against transient faults 
too. Related to topology and routing, FTAR is also generic. FTAR (buffers and 
crossbar) are based on faults detection and location, because the buffers and crossbar 
need to know the location of faults to avoid them, but the FSM and links are 
independent of detection and location. Since FTAR is very generic the price is paid in 
area and frequency, as shown in table 6.1, where the area overhead is 80% and the 
frequency penalty is 34%, however these results are for 32 bits of data and a buffer 
depth equal to 4. We can see that the FTAR (link, buffer, fsm, switch matrix) can 
tolerate the faults and sustain the performance.  
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Frantz seems to be a good strategy, because its overhead is lower than FTAR. In 
Frantz the channel width is 8 bits and in FTAR it is 32 bits. FTAR has a lower area 
overhead and less frequency penalty when compared with Frantz, when comparing the 
same channel width in each. Another difference between Frantz and FTAR is that in 
Frantz, a technique to protect the crossbar or the FSM of the router is not shown, 
because of concerns about transient fault, however for permanent faults is important to 
protect these parts too. 

Schönwald protects NoC against permanent faults and related to topology and 
routing it is as generic as Frantz. Schönwald works at algorithm level like FTRA. It is 
based on faults detection and location, as shown in table 6.1. Schönwald needs to know 
the locations of faults to avoid them. The location of faults is used to build the routing 
table, as shown in table 6.3. According to the faulty link the routing table is updated to 
avoid the faults. As a routing table is used, the routing algorithm is independent. The 
results about performance are not shown in the paper and therefore we do not have an 
argument to discuss. However, using another works which implement routing tables and 
show their results, we can conclude that the area overhead will be high, since to 
implement routing tables too much memory is used and, as was written in chapter 3, this 
routing table grows n2, where n is the number of cores. 

Schönwald et al. (2007) works at algorithm level. To route the packets between the 
network Schönwald uses tables (memories) to store the number of hops that each router 
needs to reach the destinations router in the networks. Table 6.3 has a piece of the table 
from a routing table. Each router has a routing table with all routers in the network 
followed by the number of hops in each direction (north, south, west and east). In such a 
case, each router that is included in the network will be added as a destination router in 
the routing table of other routers. The same does not happen with FTRA, because the  
FTRA solution uses adaptive XY routing algorithm. 

FTRA is the technique that has lower area overhead and less frequency penalty as 
shown in table 6.2. However as one can see, FTRA is very specific (table 6.1), it is only 
for torus network and XY routing.  For single fault, FTRA shows that the performance 
overhead is less than 10% for a NoC 3x3 and even less when the network increases its 
size.  The strategy at algorithm level has better results in performance and the area 
overhead is minimal because it does not use a table, nevertheless FTRA can only be 
applied in torus topology. 

The results about fault tolerance presented in Schönwald show that it can tolerate 
much more faults than the XY-routing algorithm without fault tolerance. This is evident 
because Schönwald compares a non fault tolerant XY routing algorithm with his work, 
which has a fault tolerant technique. The FTRA has an adaptive XY algorithm that 
isolates faults. Related to Schönwald, it is a better solution if the NoC is a torus 
topology, because its penalty is very low, as one can see in table 6.2. 
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Table 6.1: Analysis of the proposals. 

Technique  Type of faults  NoC Topology  Routing 
Algorithm  

How faults are 
located  

Frantz  transient, 
intermittent, 
Permanent. 

independent independent do not need 

FTAR (link, 
buffer, fsm, 

switch matrix) 
permanent* independent* independent 

4 register 
with 4 bits for 

each router 

Schönwald  permanent independent independent 
Table for 

each router 

FTRA permanent Torus XY 
1 register 4 

bits for each 
router 

Table 6.2: Analyze of the proposals Overheads. 

Technique Area Overhead 
(%) 

Frequency penalty 
(%) 

AVF 

Frantz 56* 20* 0* 
FTAR (link, buffer, fsm, switch 
matrix) 

80 34   0 

Schönwald NS NS 0 

FTRA 1 0 0* 

Table 6.3: Routing Table of a router in a NoC used in Schönwald. 

Port North East South West 

Number of 
hops to 
destination 0 

2 4 4 2 

Number of 
hops to 
destination 1 

1 3 5 3 

Number of 
hops to 
destination 2 

2 2 4 4 

Number of 
hops to 
destination 3 

3 5 3 1 
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7 CONCLUSION 

 

The nanoscale manufacturing process is becoming less and less reliable, thus leading 
to lower yield. Consequently, the performance of NoCs architectures will be severely 
affected due to the presence of permanent faults.  Therefore, it is important that future 
Network-on-Chip be adaptive at run-time, so that one could avoid known failures. 

In this work, two techniques to increase the yield and reliability of NoC were 
proposed. The first strategy uses an adaptive router to protect the buffers and sustain the 
performance of the system, hamming code to assure reliable links and triplicates the 
state machine of the input buffer for tolerating permanent data errors. The fault-tolerant 
adaptive router can still dynamically replace a faulty buffer word of the FIFO, 
borrowing flip-flops from the neighbor channel. 

Experimental results demonstrated that the combination of FTAR (Fault Tolerant 
adaptive Router), Hamming Code, TMR and switch matrix shows penalties on 
frequency and area, but thanks to the reconfiguration scheme, one can sustain 
performance and reduce power dissipation, with 100% of the router area protected when 
compared with the non-fault tolerant adaptive router.  With the fault tolerance technique 
at design level, it is possible to protect the buffers FIFO, the FSM FIFO and the link.  

The buffers are protected only against permanent faults, but the link and the FSM 
FIFO are protected against soft errors too. The link can only recover from a single fault, 
but the FSM FIFO with TMR and the buffers FIFO with the adaptive scheme can 
recover from more than one fault. However the recovery behavior from the faults has 
limits. The limit for the FIFO buffers is when all buffers from its neighbors and their 
own are faulty. The limit of TMR technique is when there are two FSM FIFOs with a 
wrong answer. When some of the components that are not protected are reached by a 
permanent fault, the scheme at design level cannot protect the NoC. 

The second strategy tolerates interconnect shorts in NoC communication channels 
for a 2-D Torus and faults in the router.  With the proposed scheme one can tolerate a 
fault that affects one or two channels for NoC Torus larger than 2x2 and faulty routers 
thus increase the yield. The current work includes the analysis of the limits of the 
adaptive routing algorithm. Almost 95% of the channels between routers can be re-
routed. This means that 66% of total channels of NoC can have the packets re-routed. 
One can see that the area overhead of the adaptive routing algorithm is small, as is the 
power consumption. However, the power consumption of the whole system will 
increase, because with the adaptive algorithm the packets stay longer in the channels 
when the channel is faulty. 
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7.1 Future Work  
 

For the FTAR, as future work, we intend to change the protecting of the link, that is, 
replace the hamming code with another technique and make high level simulations to 
have performance results. 

FTAR with hamming protects the wires, however hamming code corrects the link 
from single faults. As future work we intend to protect the wires from the link using half 
duplex channels, as in YING-CHERNG et al., (2009).  The use of half duplex channels 
can increase the performance and at the same time reduce the power consumption when 
compared with hamming code. 

For the adaptive routing algorithm, the links between the node and router do not 
have a redundant path, so as future work one must add a solution for these channels and 
accomplish some experiment results to discover the latency and the power consumption 
of the whole system when the adaptive algorithm is used. 

With these researches we saw that there are other ways to look at NoC and search 
for another kind of protection without loss in performance. With this thesis we started to 
study more about NoC topologies, adaptive NoC and we verify that there is a huge field 
in the research. As there are generic microprocessors, maybe it is possible to have a 
generic NoC that can adapt itself at run-time to guarantee some degree of performance 
and adaptability.  
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