UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMATICA
CURSO DE CIENCIA DA COMPUTACAO

FEDERICO WASSERMAN

hNode - multiscreen alert hub and message
exchange server

Trabalho de Graduagao.

Trabalho realizado em Convénio de Dupla
Diplomagdo com o INP-Grenoble

Porto Alegre, Junho de 2013

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos Alexandre Netto

Vice-Reitor: Prof. Rui Vicente Oppermann

Pré-Reitora de Graduagdo: Prof. Sérgio Roberto Kieling Franco

Diretor do Instituto de Informética: Prof. Luis da Cunha Lamb

Coordenador do Curso de Ciéncia da Computacao: Prof. Raul Fernando Weber
Bibliotecéria-Chefe do Instituto de Informatica: Beatriz Regina Bastos Haro

O seguinte documento apresenta o trabalho realizado como projeto de fim de
estudos na Franca dentro de um acordo de dupla diplomagao. O objetivo foi a criacido de
um servidor denominado hNode para uma plataforma de mensagens estruturada
chamada Hubiquitus que teve suas origens no protocolo de mensagens XMPP usado em
varios programas populares de chat, como por exemplo o Google Talk.

O servidor hNode junto com Hubiquitus oferecem uma plataforma que conecta
através de mensagens diferentes componentes dentro de uma rede de forma sincrona.
Toda troca de mensagens dentro da plataforma € estruturada, permitindo que os
diferentes componentes possam ser automatizados. O objetivo desta plataforma nao é
simplesmente passar mensagens textuais, mas, permitir aos componentes executar agoes

especificas ao receber certas mensagens.

O desenvolvimento foi realizado durante um estdgio de tempo integral com duracio
de seis meses na empresa Novedia, localizada em Paris, Franca. A empresa ¢é
especializada em solucdes personalizadas de software além de oferecer servicos de
consultoria e minera¢do de dados. Hubiquitus, sendo uma plataforma que serve de base
para varios projetos da empresa e de terceiros, € disponibilizado sob uma licenca GPL,
estando acessivel na plataforma web GitHub.

Atualmente, a biblioteca estd sendo utilizada em vérios projetos de cddigo tanto
aberto quanto fechado. Entre outros, existem projetos da Novedia para automacgdo de
prédios cujos elevadores monitoram o seu préprio estado e informam de forma
automadtica o técnico mais proximo em caso de problemas usando a plataforma (que
suporta geolocalizacdo e estado dos clientes). Existe também outro projeto que consiste
numa pagina web onde cada cliente recebe informag¢do em tempo real das emissdes de
televisdo usando dados do twitter para analisar quais sao as emissdes mais comentadas.

O projeto incluiu além do desenvolvimento do servidor, a criagdo da especificagdo
Hubiquitus, j4 que o desenvolvimento dele e do cliente ajudaram a definir a propria
especificacdo que executariam. Este processo foi feito de forma iterativa por uma
equipe que trabalhou em diferentes aspectos da plataforma, incluindo usudrios que
utilizavam a biblioteca para desenvolvimento dos seus proprios projetos.

O servidor hNode constréi sobre os pontos positivos de XMPP. Ele continua sendo
utilizado para realizar certas tarefas de forma transparente aos clientes, ja que ele tem

todo um sistema extensivel de autenticacdo, é estdvel e pode ser executado em
ambientes distribuidos.

A diferenca de XMPP que lhe deu origem, Hubiquitus tem uma estrutura rigida de
mensagens definida usando JSON contra o XML usado por XMPP. Isto traz dois
grandes beneficios para os objetivos da plataforma: o primeiro estd relacionado ao fato
de que o servidor foi escrito usando a linguagem JavaScript na plataforma NodelS,
fazendo com que toda mensagem que o servidor precise tratar fosse vista como um
objeto nativo. A segunda vantagem estd no fato de que usando uma estrutura melhor
definida e mais rigida que a especificada por XMPP, a automac¢do do processamento de
mensagens, seja para filtragem ou para serem usadas na execugdo de comandos é muito
mais eficiente e simples de usar.

O servidor XMPP que ¢ utilizado como suporte pelo hNode oferece a autenticacio e
a distribuicdo de mensagens, ou seja, quando uma mensagem ¢ publicada, ¢ XMPP que

decide quem deve receber a mensagem. Todavia, XMPP € visto como uma plataforma
de suporte que pode ser substituida a qualquer momento ji que € completamente
transparente para os usudrios Hubiquitus. Isto quer dizer, que um usudrio Hubiquitus
envia suas credenciais para o0 hNode e nio para o servidor XMPP diretamente e € ele
que mantém duas conexdes: uma com o cliente final que s6 se comunica com o hNode e
outra simulando um cliente conectado a rede XMPP para ter atualizacdes de estado e
poder enviar as mensagens.

Um dos grandes grupos de clientes da plataforma € formado por usudrios méveis
que t€m conexdes instaveis (passagem de 3G a EDGE, etc.). Isto provoca queda nas
conexdes com o servico Hubiquitus que usa uma conexao bidirecional entre o cliente e
o servidor. Considerando que cada cliente € stateful, ja que hNode mantém uma
conexdo com o servidor XMPP para cada um deles além da conexdo com o cliente, a
reconexdo causa sobrecarga no sistema e um atraso perceptivel pelos clientes, pois
autenticacdes completas demoram ao envolver varios pontos que podem ndo ser locais
entre eles.

Para contornar este problema, as conexdes XMPP dos clientes permanecem abertas
no servidor durante um curto periodo uma vez que a conexao cliente é perdida de forma
irregular e 0 mesmo pode realizar uma conexdo chamada de reattach para recuperar
uma sessdo existente. Isso quer dizer que o cliente recuperard o seu antigo estado
reutilizando a sua antiga conexao XMPP.

A introdu¢@o de um comando de reattach quando a conexao € estabelecida gera um
inconveniente: € necessdrio introduzir uma forma relativamente segura para recuperar
uma sessao sem a utilizacdo da senha, que é desconhecida pelo hNode. O uso somente
do usudrio e um identificador de sessdo ndo € suficiente j4 que um atacante pode ouvir
uma unica mensagem e obter todas as informacdes necessdrias para roubar a sessdo de
outra pessoa.

Para isso, um contador € enviado com cada mensagem e deve ser enviado com o
pedido de recuperacdo de sessdo. Isso tenta garantir a autenticidade da pessoa, ja que s6
ela deveria saber o estado atual do contador. Isto faz com que atacantes que procurem
por mensagens do tipo reattach ndao possam reproduzi-las ji que o contador serd
invdlido e ele ndo saberd o novo estado. Porém, isto ndo garante completa seguranca ja
que o atacante pode deduzir o contador a partir de mensagens antigas. Tendo isto em
consideragdo, a funcionalidade € opcional no servidor e pode ser desativada.

A principal forma de comunicacdo entre os diferentes componentes ao utilizar a
plataforma Hubiquitus € com o modelo publish-subscribe. Isto quer dizer que os
clientes enviam pedidos de subscricdo a canais onde informacdo é publicada e
automaticamente recebem mensagens enviadas para esse canal. O sistema permite filtrar
mensagens de interesse dentro das publicacdes aos quais o cliente estd subscrito, usada,
por exemplo, por clientes mdveis que s6 querem receber mensagens de pessoas dentro
da mesma drea.

A publicacdo de uma mensagem € feita em duas etapas. Primeiro ela é enviada para
o hNode que verifica se o cliente tem autorizacdo para publicar no canal e a validade da
formatacdo e posteriormente ele envia essa mensagem para o servidor XMPP para que a
mensagem seja distribuida para as pessoas subscritas. Quando uma mensagem chega via
XMPP para um cliente, o0 hNode pode processa-la antes de envid-la ao propriamente ao

cliente final. Logo ele compara para ver se a mensagem € relevante baseado em filtros
que o cliente aplicou, descartando as outras. Isto proporciona a possibilidade de usar um
sistema de filtros mesmo em clientes mdveis, ja que o processamento estd sendo feito
num servidor e a mensagem nunca € enviada, evitando até mesmo o uso de banda.

A especificacdo prevé um sistema de envio de mensagens tipadas usando uma
estrutura especial que denota um comando. Este, diferente de uma simples mensagem,
ndo contém texto a ser lido por um usudrio final, mas sim uma acdo a ser executada.
Eles foram principalmente criados com o intuito de enviar agdes ao servidor, como por
exemplo a subscri¢do a um canal. Contudo, como os comandos sdo encapsulados em
mensagens € nao t€ém nenhuma restricao no seu uso, é possivel que um cliente qualquer
receba um comando e execute uma agdo personalizada. O hNode, por ser um servidor,
oferece varios comandos para serem executados. Eles podem ser complexos ou simples:
no caso de uma subscricdo, um cliente envia o pedido de inscricdo a um canal ao
servidor e este analisard as credenciais para decidir se o pedido serd aceito.

Virias outras funcionalidades foram adicionadas ao servidor para permitir 0s casos
de uso bdsico de troca de mensagens dentro de uma rede, seguindo a especificacdo
Hubiquitus. Eles s@o o comando de publicagdo e envio de mensagens, criagdo e a
subscri¢do de canais , além dos comandos administrativos para se desassociar de um
canal e editar os mesmos.

Todas estas funcionalidades sao implementadas em forma de plugins para o
servidor. Esses sdo arquivos seguindo uma estrutura que sdo lidos na inicializa¢do do
hNode, durante a qual registram identificadores que sdo usados pelos clientes quando
querem invocar o comando. Isto proporciona uma plataforma extensivel para futuras
melhorias e para que terceiros possam adicionar as suas funcionalidades especificas
relacionadas a sua ldgica de negdcios no servidor.

Dar aos plugins total liberdade de executarem codigo no servidor induz a um
problema de seguranca pois eles podem comprometer funcionalidades basicas do
servidor se tiverem completo acesso e ndo € facilmente contorndvel sem limitar a
utilidade dos comandos.

Neste contexto o servidor toma duas precaugdes: A primeira € executar o c6digo
oferecendo acesso restrito aos outros componentes, funcionando como uma caixa de
areia. Como estar completamente isolado ndo € benéfico, o servidor providencia certas
informacdes bdésicas além de métodos controlados para acessar o banco de dados. A
segunda precaucdo é que durante o carregamento do servidor, quando os plugins sao
registrados, uma andlise estdtica que procura constru¢des consideradas perigosas € feita
e inibe o uso dos mesmos.

O modelo publish-subscribe faz o fato de persistir as mensagens dentro de um canal
natural, o que permite aos comandos acessd-las posteriormente. Para isso, os hNode
estdo conectados a um banco de dados e dependendo das opcdes especificadas na
mensagem e no canal onde ela estd sendo publicada, elas podem ser preservadas.

O banco de dados escolhido para o servidor foi mongoDB. Ele é um banco de dados
NO-SQL que trabalha num modelo de documentos JSON armazenados em colecdes,
permitindo salvar informac¢des sem precisar nenhuma conversao. O fato de trabalhar no
modelo de documentos implica que eles ndo t€ém estrutura definida, e para uma

especificacdo que evolui seguidamente e que pode conter informagdes varidveis, facilita
0 seu armazenamento e permite uma adaptacdo entre diferentes versoes.

A camada de abstracdo criada para o banco de dados é disponibilizada para os
plugins. Isto possibilitou a criacdo de alguns comandos que permitem recuperar logs e
estatisticas em relacao as mensagens publicadas, como por exemplo, a recuperaciao das
ultimas mensagens de um dado canal ou a recuperacdo de todas as mensagens nos
canais subscritos contendo uma frase.

Usos deste tipo de plugins podem ser mais personalizados seguindo a l6gica de
negdcios da aplicacdo. Por exemplo, no caso da pdgina que faz um comparativo das
emissdes mais populares, o carregamento inicial precisa de um estado para mostrar ao
cliente até que informagdes em tempo real cheguem. Isto pode ser obtido pedindo as
ultimas mensagens publicadas no canal, assim podendo chegar num estado coerente
com os clientes ji conectados e podendo atualizar de forma correta quando novas
mensagens chegarem.

Hubiquitus define uma estrutura chamada hChannel. Ela define o que € um canal.
Ele ¢ um objeto com um identificador usado pelos clientes para requisitar uma
subscri¢do ou publicar nele, incluindo as permissdes das contas autorizadas a publicar e
se subscrever além de metadados que enriquecem todas as mensagens publicadas como
por exemplo localizacdo, etiquetas e outros.

Isso significa que para cada pedido de publicacdo feito por um cliente, o servidor
precisa acessar essa estrutura para fazer verificacdes e enriquecer as mensagens antes de
serem propriamente publicadas. A versdo inicial desenvolvida do servidor fazia um
pedido ao banco de dados por publicagdo pedindo o canal em questdo, mas isto causa
acessos IPC e, potencialmente , ao sistema de arquivos, consequentemente aumentando
a laténcia percebida pelos usudrios ao fazer publicacgoes.

Seguindo um desenvolvimento iterativo, ap6s uma primeira implementagdo que
fazia pedidos ao banco de dados para recuperar cada canal, foi criada uma segunda
versdo que faz um pedido inicial ao banco de dados para carregar em memdria os canais
existentes, o que gerou um grande ganho no desempenho.

Na mesma linha, outra habilidade implementada no servidor hNode foi a
possibilidade de ser executado de forma distribuida e coordenada, oferecendo
balanceamento de carga e potenciais diminui¢des de laténcia ja que os clientes podem
estar se conectando a um servidor mais préximo geograficamente.

No entanto, a introducdo desta capacidade traz a luz um problema recorrente em
varios aplicativos que sdo executados em multiplas instancias: divergéncias nos estados
das estruturas mantidas em memoria.

Como todo hNode tem uma conta interna que se conecta ao servidor XMPP, ele
mesmo pode estar subscrito a um canal e publicar mensagens. Em termos de
sincronismo, as instancias podem usar um canal de administracdo no qual elas estdo
subscritas para trocar mensagens. L.ogo, as instancias podem reagir atualizando suas
caches se uma mensagem ¢ enviada quando um canal € alterado. Desta forma,
implementando um modelo de sincronismo de caches usando o préprio modelo
Hubiquitus. Para executar estas tarefas, as camadas de abstracdo do banco de dados
criadas que permitem criar ganchos quando agdes sdo terminadas e para mensagens

recebidas foram utilizadas, fazendo com que o servidor atualize sua cache na recep¢ao
de mensagens de controle e emita uma mensagem quando um canal € salvo.

Esta aplicacdo de Hubiquitus para o préprio servidor demonstrou o potencial da
plataforma em diversos contextos, ja que o préoprio servidor o utiliza para se gerenciar.

Em termos de desenvolvimento do projeto, ele foi feito usando uma abordagem
Scrum entre varios membros da equipe que trabalhavam em diversas dreas, tendo como
ponto em comum o uso ou desenvolvimento de Hubiquitus.

O empreendimento foi levado a cabo em etapas que tém funcionalidades completas
at¢ o momento da sua publicacio e recebiam posteriores corre¢des de erros se
necessdrio. Isto possibilitava diferentes grupos, dentro e fora da empresa, a utilizar
rapidamente a biblioteca para seus projetos enquanto novas versdes eram desenvolvidas.

Como a iniciativa foi na sua completude em codigo aberto e a sua publicacio foi
feita na plataforma GitHub, retorno foi recebido da comunidade rapidamente e foi
possivel interagir com outros grandes projetos para ter cooperardao mutua.

Atualmente Hubiquitus continua sendo desenvolvido usando como base as
estruturas e o servidor criado neste projeto.

Grenoble

)
NOVEDIA Y

Grenoble INP — ENSIMAG
Ecole Nationale Supérieure d’Informatique et de Mathématiques Appliquées

Projet de fin d’études Report

Done at Novedia Solutions

hNode - multiscreen alert hub and
message exchange server

Wasserman Federico
3e année — Option ISI

06 février 2012 — 07 juillet 2012

Novedia Group Internship Manager
94/96 rue de Paris Bureau Etienne
92100 Boulogne Billancourt Pedagogic Tutor

Roncancio Claudia

Abstract

Development of a server for Hubiquitus, a near real-time message
exchange API with support for remote command execution includ-
ing improvements to its specification, validated through a client that
connects to it through a web interface.

Keywords: Real-time, alert hub, publish-subscribe, message ex-
change, synchronous HTTP, multi-screen

CONTENTS

Contents

1 Novedia Group and Hubiquitus

1.1 About the Company
1.2 Introduction and history of Hubiquitus

2 Project Organization and Objectives

2.1 Project Organization
2.2 Planningo oo
2.3 Document Organization

3 Hubiquitus Data Models

3.1 hChannel Data Model
3.2 hMessage Data Model
3.3 hCommand Data Model
3.4 hResult Data Model

4 Hubiquitus Server: hNode

4.1 Technologies and Tools
4.2 Server Architecture
4.3 Deployment
4.4 Client connection and authentication
4.5 Session Reattachment
4.6 Message Handling and Distribution
4.6.1 Message Reception and Publishing
4.6.2 hCommand Handling
4.7 Database Component for hNode: MongoDB
4.7.1 Database Structure
4.7.2 hNode to MongoDB Connection Layer
4.8 Command System

4.8.1 Available resources for command execution

4.8.2 Publish-Subscribe hCommands

4.8.3 Database hCommands
4.9 Message Filtering System
4.10 Distributed Cache for hChannels
4.11 Validation

5 Conclusion
6 Assessment
Appendices

A XMPP

30

31

32

32

CONTENTS

B Scrum

C Figures

32

34

1 NOVEDIA GROUP AND HUBIQUITUS

1 Novedia Group and Hubiquitus

1.1 About the Company

Novedia Group[9] is a Boulogne-Billancourt-based Group that has 4
branches, two specializing in marketing, communication and interac-
tivity and other two specializing in technological knowledge.

Novedia Solutions, where this project was developed, is the branch
that handles new technologies, for clients or for itself, creating complex
software or software needing a deployment that are not simple websites
or mobile applications. Also from the technological branches there
is Novedia Decision that deals not in the software development but
Business Intelligence creating data warehouses to analyze clients data.

From the communication and marketing branches there are Nove-
dia Agency that deals with everything that is mobile software related
or “front-end” for applications and Novedia Consulting that offers
consulting plans for clients that need help to take decisions after an
analysis of the client’s data and needs.

Even though there are several branches that have different tasks
they can do joint projects, for example, the front-end for a software
being developed by Novedia Solutions can be made by Novedia Agency
and big software projects that are not suitable to be made at Novedia
Agency can be made at Novedia Solutions and then finished.

1.2 Introduction and history of Hubiquitus

Several Message Exchange protocols exist today, one of the most pop-
ular being XMPP (See appendix A), a protocol meant for chatting
between clients.

Over the course of time, there was a need of a similar protocol
but more structured, allowing computers to automatically parse and
understand their content.

From this line of thought, the idea of Hubiquitus appears. It com-
bines a publish-subscribe messaging protocol, adding a well defined
structure for analyzing and handling messages with a command sys-
tem that allows the remote execution of actions using messages.

Before the beginning of this project, Hubiquitus was used inside
Novedia as a synonym for a pure XMPP system deployment. This
means that they performed publish-subscribe using a XMPP mod-
ule, but without the Hubiquitus defined structures or the commands
support.

The publish-subscribe model used is a restricted broadcast model.
It is a pattern where a publisher sends a message that is then processed
by a server that broadcasts it to all subscribed users.

2 PROJECT ORGANIZATION AND OBJECTIVES

Contrary to a generic broadcast pattern, the publish-subscribe one
only broadcast messages to users subscribed to receive it. Subscribe
refers to the intention to receive a kind of message, generally by an
identifier, while the publisher uses that tag to send the message.

In fall 2011 a data-model and a more detailed deployment specifi-
cation, including a database and different client-communication pro-
tocols started to be developed to allow data mining, give actors a
command system and reduce exchange latency.

The document born from this development is known as Hubiqui-
tus Reference Guide, a Creative Commons[3] licensed document that
contains the possible deployments scenarios, how the clients commu-
nicate, the structures understood by the framework and specifies a
command sending system for actors to use.

The basic message exchange described by Hubiquitus is done through
the use of a Publish-subscribe model using JSON[13] structures, that
allows users to store them in database if wanted. In the case of Hu-
biquitus, clients are subscribed to hChannels and messages have a
channel stamp to identify to which channel belongs to.

2 Project Organization and Objectives

2.1 Project Organization

The project had two sides: the development of a server that imple-
mented the Hubiquitus Reference Guide and the improvement of such
document.

The modification of the Guide was needed as it was a draft and
changes were made by the team that worked in different aspects of
Hubiquitus.

The development was done through an agile methodology: Scrum
(see appendix B). Daily meetings meetings were done with the Hu-
biquitus group to discuss the advancement of each person and a small
discussion of reference changes. If more time was needed for a par-
ticular point, a separate meeting was scheduled only with concerned
parties.

For the task planning, a free software called RallyDev[16] was used.
It automatically created charts for knowing project advancement, or-
ganized tasks and allowed a global view of what all project members
were working on.

Objectives (“User Stories” in Scrum nomenclature) were set inside
RallyDev for each Sprint (a fixed duration period) and were validated
at the end of each one of them.

2 PROJECT ORGANIZATION AND OBJECTIVES

Through the development of the project the server was usable,
even though it did not have all the features. This lead to a version
concept that defined a set of features proposed to early adopters.

The versioning was decided from a feature perspective, while user
stories set in sprints were technical oriented.

Because of this early release method, new features were added
at each version and old ones reimplemented if needed be. If a better
solution was found that better aligned new features with existing ones,
it was adopted.

2.2 Planning

The development was done in sprints arranged in milestones (de-
scribed as versions in Hubiquitus). Each sprint had a duration of
about 2 weeks, depending on the overall complexity of user stories
assigned.

The following is a list of the tasks done for each sprint separated
in versions, managed through the RallyDev software. This list does
not include meetings and time spent modifying the reference.

Version 1
Sprint 0 Sprint 1
User Story Complexity | User Story Complexity
XMPP Study 2 Establish socket from a client to the server 1
Socket.|O Study 2 Create connection protocol 2
XMPP Publish Subscribe (XEP-0060) Study 2 Implement Full cannection (including XMPP part) 2
Parse and send XMPP messages to client 1
Version 2
Sprint 2
User Story Complexity
Receive subscribe packet and send XMPP equivalent 2
Receive publish packet and send XMPP equivalent 1
Receive unsubscribe packet and send XMPP equivalent 1
Receive list subscriptions packet and send XMPP equivalent. 1
Receive get messages packet and send XMPP eqguivalent. 2

2 PROJECT ORGANIZATION AND OBJECTIVES

Version 3
Sprint 3 Sprint 4
User Story Complexity User Story Complexity
Reattach: Allow to reuse XMPP connection 2 Connect: Add error codes 1
Allow to di and erase t 2 Allow clients to see technical errors from server 1
Connect: Readapt connection process 1 Connect hNode to XMPP using a Component connection 8
Allow the execution of a command in hNode 2
Sprint 5 Sprint 6
User Story Complexity || User Story Complexity
Change XMPP tags when sending commands 2 Create command GetLastMessages 1
Create hPublish command to publish using hNode 3 Create command for hChannel creation 5
Create hSubscribe command to subscribe using hNode 5 Create local cache for hChanne! list 1
Create hUnsubscribe to unsubscribe using hNode 1 Async save and publication of hMessages 2
Create hGetSubscriptions 2 Command controller instance per user not centralized 2
Allow the obtention of channel list 3 Allow the obtention of channel list 3
Allow commands to override default timeout 1
Add transient support for commands 1
Version 4
Sprint 7
User Story Complexity
Create hRelevantMessages command 2
Create hiefThreads command 1
0.5
1
Change driver for MongoDB 3
Create admin channel for distributed cache 2
Use client connection instead of component one 2
Add fitters for ption and related 4
2

Use fiters in getLastMessages, hGetThread,
hGetThreads and hGetRek it

2.3 Document Organization

The document is divided in three parts: first, in section 3, the nec-
essary information about Hubiquitus is presented to understand the
server. Following, in section 4, are details about the server developed.

This section starts with a server overview, followed by the tech-
nologies used. After, the architecture and deployment are shown,
explained in detail on subsequent subsections, comprehending solu-
tions developed. This section concludes with the details of the server

validation.

3 HUBIQUITUS DATA MODELS

The third part of the document refers to the project conclusion
and a personal assessment with an appendix to offer more technical
documents.

3 Hubiquitus Data Models

The data models in Hubiquitus are the structures understood by
clients and servers of the network. These structures are mainly en-
velopes for the data itself that allow efficient processing and indexing.

They are defined as JSON[13] encoded objects, making them portable
to different systems and languages.

The format was chosen as a compromise between format struc-
ture overhead and human readability. It is also closely related to
Javascript, as is a subset of it, allowing deep integration with web
technologies, that are the main applications of the Hubiquitus APIL.

3.1 hChannel Data Model

The publish-subscribe model uses an identifier in the data sent to
discover which clients are subscribed and should receive the message.
A hChannel is the structure in Hubiquitus that contains that identifier.

This structure also acts as a permission controller, having a list
of members that are clients allowed to publish and retrieve messages
from the channel stored in the database.

Besides identifying and controlling permissions, the hChannel has
metadata that extends published messages properties, adapting them
accordingly to channel parameters.

The full structure of a hChannel model can be seen in the image
4 in the appendix.

3.2 hMessage Data Model

Sending data through the network implies the creation of a hMessage
structure, an envelope for the data that wants to be sent containing
metadata (that can be later extended or changed by channel specifi-
cation).

This envelope allows the identification of the content by its date,
publisher and the channel it belongs to, allowing the correct publica-
tion, also having other optional attributes like location.

Even though the payload is user-dependent and can be any UTF-8
encoded character, certain payloads with defined structures are de-
scribed in the Hubiquitus Reference Guide and can be specified accom-

4 HUBIQUITUS SERVER: HNODE

panied by a type property correctly set to allow command execution
over these special payloads possible.

The full structure of a hMessage model can be seen in figure 3 in
the appendix.

3.3 hCommand Data Model

Commands are actions that can be executed on the server or another
actor. A command can be a directive for the server to retrieve a certain
kind of messages, unsubscribe from a channel or a custom action not
related to Hubiquitus like shutting down a computer.

Commands are defined as a pair: a hCommand and a hResult. The
execution instructions and parameters are given in the hCommand,
while the hResult contains the response.

A hCommand is identified by its ¢md attribute that is user-defined
and can be any string, thus allowing the creation of arbitrary com-
mands. As with hMessage type, certain cmd keywords are reserved
for commands that are part of the Hubiquitus core, and a server im-
plementing the reference specification must support them. Some of
those commands include the subscription and unsubscription from a
channel, the channel creation and generic message retrieval.

The complete structure of a hCommand can be seen in image 5 in
the appendix.

3.4 hResult Data Model

The counterpart to a hCommand is a hResult, containing the response
to the execution of a command. This response can be a simple suc-
cess or failure code, or more complex data, like an array of retrieved
messages from the database.

This response is expected to always arrive, even if the command
fails or times out. The timing out must be insured by the actor exe-
cuting the command, while the nonexistence of the receiver must be
insured by the server to which the sender is connected.

The complete structure of a hResult can be seen in figure 6 in the
appendix.

4 Hubiquitus Server: hNode

The reference implementation of a Hubiquitus Server is the hNode.
It is closely related to the Hubiquitus Reference Guide as they were
written in parallel and while the definitions of the guide define the

10

4 HUBIQUITUS SERVER: HNODE

server’s behavior, when a change was needed the latter modified the
former after an initial implementation.

The server’s name derives from the platform used to run it, NodeJS[15],
a Javascript server-side application interpreter built from the Chrome
Javascript Engine.

In essence, the server has three main tasks: allow clients to connect
to it maintaining a session, execute arbitrary commands in the form
of hCommands and process incoming and outgoing hMessages using
the model publish-subscribe, filtering or modifying them.

4.1 Technologies and Tools

While the server itself uses NodeJS as a framework, being Javascript
it’s language, several other supporting technologies and tools were
used.

The choice of NodeJS as a platform to run the server comes from
the advantages in relation to Hubiquitus and its paradigm: a com-
pletely asynchronous model.

As all Hubiquitus is defined using JSON that is a subset of Javascript
object model, Javascript as a language integrates seamlessly with the
Reference objects as they can be used without modification from the
specification.

The asynchronous model, while not related to the Hubiquitus Spec-
ification, is a paradigm created to handle different requests without
overloading servers, as ongoing tasks can be put on a queue for execu-
tion when the processor frees up. They can be seen when programming
as threads working in parallel, as no assumptions over the execution
order can be made.

From a supporting point of view, the project uses GIT[7] as a
versioning system, more specifically a website that hosts a GIT server
called GitHub[8], a mix of a versioning server with a social network.

Since the project is open source, the use of such a website allows
code access to everyone, interaction with other projects and Hubiqui-
tus promotion.

As all libraries used are also open source, and almost all of them
are also hosted in GitHub, the usage also allowed the correction of
bugs in said libraries by sending patches to interested parties.

Other technologies include XMPP (see appendix A) from which
Hubiquitus originated that acts as a supporting server for handling
messages and authentication, as explained in section 4.6, and Mon-
goDB, the database used to store all server documents, having a sep-
arate chapter to describe it in section 4.7.

In the tools context, for validation purposes, the Mocha Framework

4 HUBIQUITUS SERVER: HNODE 12

[11] tool was used described in section 4.11 while RallyDev software
[16] functioned as a manager for project activities, as was shown in
section 2.1.

4.2 Server Architecture

The server is a mix of connectors and a sandbox environment for
command execution.

The latter because the main task of the server is to execute generic
commands following a syntax, and while the execution was passed to
the command, a server component controls that execution so that
in case of an error, the control flow returns to the server instead of
crashing.

The former because message handling and authentication are con-
trolled by XMPP, as can be seen in sections 4.4 and 4.6. As a result
of this choice, modules are needed to translate the Hubiquitus login
packet and messages arriving from the XMPP network in the form of
XML.

As such, the server architecture can be seen in figure 1. This
architecture is explained in detail in the following sections.

SocketiO Connector hClient
[

XMPP Connector

4'/

Command

Controller hAdmin

XMPP Server

Client I L

Mongo Abstraction Validator ‘
Layer

<Commands..>

MongoDB

Figure 1: System Architecture where hClient handles parsing and filtering,
hAdmin is the server XMPP connector and Commands is an alias for all
available commands. Also, shown are the mongo connector, the command
controller, the client connector (SocketIO connector) and a structure valida-
tor module.

4 HUBIQUITUS SERVER: HNODE

4.3 Deployment

The simplest deployment of a hNode is an instance of the hNode
accompanied by a XMPP Server and a MongoDB database.

This deployment has a potential performance loss as NodeJS is
not multithreaded. Meaning that hNode must handle all connections
with the same thread even though they are completely asynchronous
and self contained.

This poses a problem when there are an increasing number of
clients and forking a process for each client becomes heavy as for
each one an instance of NodeJS must be launched and it consumes
approximately 10MB.

The solution found is to launch several instances of hNode, each
listening to a different port and for the clients connected to the same
port, a monothread model is used.

This leads to a load balancing that is client dependent, meaning
that the server charge will depend on how random is the choosing of
connecting ports by the clients.

Thus, a second type of deployment can be made using several
instances of hNode connected to the same XMPP server. This func-
tioning is assured from the hNode side as it synchronizes its instances
by using systems like the distributed cache (explained in section 4.10).

This is the expected hNode form of deployment.

4.4 Client connection and authentication

The HTTP protocol was thought as a model where clients requested
data from servers and they responded in a process called polling.

Through the years, developers started to feel the need for servers to
send data asynchronously to clients. The client would make a request
to the server and if no data was available, the request would stay
opened until new data arrived, and if the request ended, a new one
would be made automatically, being called long-polling.

In recent years, a new protocol called WebSocket was conceived,
one that can be seen as an extension of long-polling. The basic idea
is that after the initial request, the connection will stay opened indef-
initely, minimizing the overhead imposed by subsequent requests in
long-polling.

With the advent of this protocol and several others competing
ones, the choice of the best protocol depended on browser support,
sometimes making WebSockets a bad choice if older browsers should
be supported.

Most of the clients connecting to hNode do so from a web browser.
Because of that, the server needs to support a wide range of browsers

13

4 HUBIQUITUS SERVER: HNODE

using compatible protocols, while minimizing the overhead from older
protocols since a lot of data will transit. To solve this dilemma, a
library called socket.io[17] was chosen.

This library proposes an abstraction from the protocol used sup-
porting several and choosing, in order of priority, the best available
for the current user, thus allowing the server and client to be coded
once while letting it handle handshake and transport idiosyncrasies.

While a handshake is done through socket.io to establish a con-
nection to hNode, the authentication is handled by a XMPP server
backend that serves as a signaling and authentication provider.

The usage of XMPP as a backend for authentication purposes al-
lows the use of several connectors for handling connection, like authen-
tication through LDAP servers. Also because of the communication
model of XMPP, a contact list is kept, informing of status changes
from people in that list, making it a simple and efficient signaling
system.

This structure makes the client connection a multi-step process:

1. Client establishes a connection through socket.io to hNode.
2. Once handshaked server opens a client connection to XMPP.

3. Once authenticated, inform client of successful connection.

4.5 Session Reattachment

Even though the XMPP backend that handles authentication is gen-
erally connected to the hNode through a fast connection, or is even
executing locally, there is an overhead of establishing a new connec-
tion, making a handshake, etc.

This problem is worsened because one of the client target platforms
for the use of Hubiquitus are mobile web browser ones, that tend to
have a unstable link and doing a re-connection each time would make
the user experience lagging.

Taking this into account, a feature called reattach was imple-
mented. In simple terms, it leaves the XMPP connection opened for
a while after the client connection closes abnormally to allow a new
connection to be created and reuse the same XMPP one.

Not only the XMPP connection is kept opened when the client
socket is closed, but also all the Hubiquitus context, meaning that
actions affecting the active session will continue to be valid after a
re-connection.

To implement this feature a reattachment protocol was created.
This was needed to identify the session to which the user needed to
be reattached and to forbid other users of stealing sessions.

14

4 HUBIQUITUS SERVER: HNODE

The steps for reattaching are as follows:
1. Client establishes a connection through socket.io to hNode.
2. Client sends a reattach packet.

3. Client acquires the old XMPP connection and the Hubiquitus
Context and is informed of successful reattachment. In case of
failure or destroyed context by timeout, a new connection packet
must be sent to authentify the user, without establishing another
connection through socket.io.

The Reattach Packet is a JSON object containing the identifying
information of the session. It is sent once an initial connection is
completed and it is composed of three attributes:

Publisher
A full JID[1] obtained after a successful connection to the XMPP
Server.

JID is the user identifier form used by XMPP, hence by Hu-
biquitus and has a general form <user>Q@Q<domain>. The full
part refers to a classic JID added of a resource that serves as an
identifier between different connections of the same user, having
a final structure <user>Q<domain>/ <resource>.

This can be considered a unique id in the network, as XMPP
handles the resources it grants.

SID
A session ID given by socket.io at connection time. This works
as another unique identifier between the hNode instance as it is
used by socket.io to differentiate between all the open sockets
that handles.

Even though it seems redundant to use this value once a unique
identifier is also given, this works as a password as it is only
known to the user and the server, while the full JID is public as
it is the address of a specific client.

RID
The RID, short for Request 1D, initiates as a random number
given by hNode. This random number is then increased when a
hMessage, hCommand or hResult transits through the socket.

Transit is understood as the reception of a message or the send-
ing of a command.

While the Publisher works as an identifier and the SID as a pass-
word, these two values can not guard against a replay attack. This
is because those values do not change over time, as after an initial
connection they remain constant.

15

4 HUBIQUITUS SERVER: HNODE

This is what RID addresses. Because it depends on messages ex-
changed and they cause a modification of a local value while the value
itself is only transferred once and not all packets sent cause a modifi-
cation it inhibits the use of a replay attack.

Even though ideally those three values would match against the
ones stored in the client session, in practice, tests have shown that after
a disconnection sometimes messages were sent, changing the value on
one side while remaining constant in the other.

This discrepancy made the reattach process useless, generally fail-
ing to reattach and forcing the user to send another packet, effectively
increasing connection time.

The solution found was to allow a small window of accepted RIDs.
This means that instead of matching the sent RID against the value
stored in the server, it is tested against a small range of values, by
default RID plus or minus 5.

Although this brings again the replay attack problem, the replay
window is kept small enough to be difficult to explore.

Because all these tests are performed within the hNode, the reat-
tachment dramatically reduces the connection time of a client, spe-
cially if authentication is done through the use of an external service
like LDAP, that adds another connection step besides the XMPP one.

Even though this feature is part of the hNode server and can be
implemented by clients, it is not defined in the Hubiquitus Reference
Guide as part of the Hubiquitus Core Reference.

4.6 Message Handling and Distribution

hMessages are published in hChannels, where all subscribed members
receive it following the publish-subscribe pattern. This action is done
through a hCommand with the identifier hPublish.

XMPP specifies a publish-subscribe model[5] that can be used with
the XMPP protocol. In the specification messages are published to
nodes, that are the equivalent to hChannels in Hubiquitus nomencla-
ture.

Because XMPP servers have already implemented this feature,
the publish-subscribe implementation used in hNode uses the XMPP
server as a backend. This allows users to publish hMessages that
are ligther than XMPP stanzas as they use JSON and are tailored
for Hubiquitus, while the server, that has a fast link to the XMPP
server, sends the heavier XMPP stanza, thus reducing bandwidth and
response time client to server.

16

4 HUBIQUITUS SERVER: HNODE

4.6.1 Message Reception and Publishing

As a result of using XMPP as a backend, when a user subscribes
using a subscription hCommand, in addition to store the Hubiquitus
subscription in the database it will subscribe the user at the XMPP
server using the XMPP protocol.

The same can be said of hPublish. It will validate the hMessage
but instead of handling the distribution, it will publish it at the XMPP
server via a XML stanza and let it handle it.

Consequently, each connected client (hClient in the architecture
image shown in figure 1) has an instance of a XML parser for stanzas
arriving from the XMPP server that will extract the encoded hMessage
and properly send it through the socket to the client.

It is important to highlight that the use of a XMPP server for
handling message distribution can be changed at any given time as it
is transparent to the user.

4.6.2 hCommand Handling

In the special case of sending a hCommand that is not directed to

the hlNode itself for execution, but to a command capable client, the

hCommand will be sent using XMPP, encoding it inside a XML stanza.
This is implemented in such a way for two main reasons:

1. Not all connected clients are necessarily connected to the same
hNode instance. hNode is prepared to be executed in an envi-
ronment with multiple instances, mainly for load balancing pur-
poses. Meaning that is the XMPP server that knows all clients.

2. The current implementation does not have a full list of connected
clients to the instance for sending commands without passing
through XMPP. While this list could speed up the hCommand
sending and later reception of the hResult, it would not solve the
other items.

In conclusion, XMPP is the link that ties together the different
servers and clients. While the server is focused in creating a high-level
interface for more complex operations, low level ones, like the knowl-
edge of all connected clients enabling the distribution of messages is
left to the XMPP server.

4.7 Database Component for hNode: Mon-
goDB

The selected database to store hMessages, hChannels and other Hu-
biquitus objects is MongoDB.

17

4 HUBIQUITUS SERVER: HNODE

This is a NO-SQL database, working on a document model, mean-
ing that what is stored in the database are JSON documents and they
are separated in collections that group them without imposing struc-
ture equality contrary to the SQL model that stores lines in tables
having fixed columns for all elements.

The reason for using this model are as follows:

1. hMessages payload are user-defined, potentially having differ-
ent types, and other structures that tend to evolve over time.
A NO-SQL approach with a document model allowed different
documents to be stored in same categories, even though they do
not share the same structure.

2. Documents stored in the database are JSON encoded. Since
Hubiquitus has all its structures defined using JSON objects,
this solution permitted the storage of native Hubiquitus objects
directly to the database, making the transition of Hubiquitus-
network to storage a seamless one.

3. On-the-fly collections creation. Meaning that a new collection
can be created at run-time without affecting the database. A
useful feature for making a horizontal partitioning when storing
messages.

4. Horizontal partitioning capabilities (Sharding in MongoDB), are
meant to be done in a collection based approach. This implies
that each collection can be ultimately sharded to a different lo-
cation, allowing an easy and fast data distribution if needed for
a deployment.

4.7.1 Database Structure

The database is divided in collections that contain documents. All
documents stored are Hubiquitus Data model ones with small mod-
ification, save special internal documents used to accelerate certain
actions.

The collections with the documents structure they contain are de-
picted in figure 2. Although a document structure is present, this
does not mean that other JSON objects cannot be stored in those
collections, but that the database, as of now, stores them like this.

18

4 HUBIQUITUS SERVER: HNODE

- owher : String
- location : Object

- active : Boolean
- headers : Object

- participants : String[]

hSubscriptions

- jid : String
- subs : String[]

- priority : Number
- relevance : Date

- location : Object

- author : String

- publisher : String
- published : Date

- headers : Object

- payload : Object

hChannels <<hChannelX>> hResults
- chid : String - msgid : String - reqid : String
- chdesc : String - convid : String -cmd : String
- priority : Number - type : String - status : Number

- result : Object/Array

hCommands

- reqid : String

- requester : String
- sender : String

- entity : String

- sent: Date

-cmd : String

- params : Object

19

Figure 2: Mongo Collections, where <<hChannel X >> depicts the channel

name

Each hChannel has their own collection for storing their hMes-
sages, that is what the special collection <<hChannelX >> shown in
the picture characterizes. This allows sharding hMessages from same
channel to the same location, optimizing partitions.

Since not all hMessages are stored in database and some channels
will never have persisted messages, the creation is done at run-time
when the first hMessage that needs to be persisted is received.

4.7.2 hNode to MongoDB Connection Layer

The driver used to connect the database to hNode can be seen as very
primitive: each time a document is persisted, options must be passed,
a callback needs to be specified, etc.

As a result of those limitations, an abstraction layer was made.
Simplifying access to the database through the usage of methods that
store in the correct collection and the correct format Hubiquitus doc-
uments.

These documents can be stored receiving a confirmation of the
recording process through a callback or nothing if the storage wants
to be done completely asynchronously and go through an adaptation
process to optimize disk usage.

1. hMessages are passed through a method that will store them to
a collection having the name of the channel (a new collection is
created if needed).

2. The hMessage msgid is generated by the hNode at publishing
time and considered unique, so it is used as primary key (PK)

4 HUBIQUITUS SERVER: HNODE

in the database. By using this value, there is no need to use the
automatically generated PK by MongoDB.

3. hChannels chid are also considered unique and thus used as pri-
mary keys, discarding the one generated by MongoDB.

4. hCommands and hResults have a ReqID, an identifier that is sent
by the client to correlate result to command. This value can not
be considered unique as nothing guarantees its singularity.

As a result, the received ReqlD is forgotten and a new one is
generated only for storing purposes, so as to correlate a hResult
to a hCommand.

5. All Structures are stripped of empty JSON attributes and default
values. This means that is the responsibility of the hCommand
retrieving data to reconstruct missing attributes with default
ones and left others empty if needed.

These modifications, even though just change one or two fields are
considered valuable, as a lot of messages can be exchanged, and each
time irrelevant data would be stored.

Because the structure of the database is well defined, the collection
where the documents will be stored is abstracted, as the user will call
the helper function that will correctly store it in the right collection.

Since a high level storing interface was created, some features were
added to the standard persisting mechanism provided by the driver:
Validation and Hooks.

Validation
Validation refers to the action of verifying a document before
storage, if the validation does not pass, the document will not
be persisted.
This validation is done through the application of functions in
a asynchronous fashion. hCommands or the hNode itself add
functions to a list of validators, and if all functions validate the
document, it can be stored.
To validate a document, a validator must trigger a callback at the
end passing a return value, informing if the document analyzed
passed or not.
This construction is useful for three main reasons: It executes
asynchronously not blocking other connections, it is generic so as
to be applied to different Hubiquitus documents without modifi-
cations and allows specification evolution as a new validator can
be added instead of altering existing code.

Hooks
The hook concept in hNode is used in what is called onSave

20

4 HUBIQUITUS SERVER: HNODE

functions. These are a group of functions that will be executed,
if and only if, the storage of a document succeeds. This means,
if it passes validation and no error is reported from the database
at persisting time.

This feature, as the validators, works asynchronously. A function
is added that needs to trigger a callback at the end and there is no
guarantee in which order the onSave functions will be executed.

onSave functions allow the addition of third-party triggers as a
system administrator may want for instance to receive an email
when a publication is correctly persisted. Currently, it is used
for the cache synchronization mechanism as shown in the section
4.10.

In case the caller wants a confirmation that everything went
correctly, the callback passed will only be executed once all the
onSave functions are finished.

These features are generic and applied in a collection based ap-
proach, allowing collection-based customization, making it a matter
of calling a method

add{Saver|Validator}((Collection), (Function))

This brings a problem in the case of hMessages that are not all
stored in the same collection but sometimes global triggers applied to
all hMessages are wanted.

As a result, there are two ways to add hooks and validators to
hMessages: through the use of the collection where the hMessages
will be stored, triggering the hooks when a message in that specific
hChannel is stored or by the use of a wvirtual collection called hMes-
sages.

This collection does not exist in MongoDB, but the hNode under-
stands that it refers to the whole set of hMessages and will be applied
to all hMessages. Triggers added to a collection and to the wvirtual
collection will be all executed asynchronously.

4.8 Command System

The command system is the component charged of executing received
commands from clients destined to the server.

Because of the commands nature, the system works as a controller,
passing the control flow to an external plugin, possibly created by a
system administrator.

A command is identified by the hCommand c¢md attribute and the
controller expects a result from the plugin that will be formatted as a
hResult for later sending to the client that executed the command.

21

4 HUBIQUITUS SERVER: HNODE

The general sequence followed by the execution of a command is
as follows:

1. Analyze the structure of the received packet to check validity.

2. Check if the command must be persisted in the database. In
that case do so asynchronously.

3. Search for a file named <cmd>.js inside the defined command
folder.

4. Check if command overrides the default timeout for commands.
And launch a timer for the command execution.

5. Launch the command inside a try-catch block to avoid crashing.
6. Receive result from the command, catch error or timeout

7. Format it to a hResult, persist it asynchronously if needed and
send result to client.

Since hCommands are what administrators that deploy the server
will want to extend to add their customized actions, this allows a
flexible and elegant way to execute external sources.

The only requirement is that the plugin follow a small and well
defined structure that is to have a initialize method with a specific
signature and that at the end of the execution a callback function
passed as a parameter to the initial method is triggered.

Each client connection has its own instance of this controller, al-
lowing a completely asynchronous execution between the connected
clients. This is also useful because it allows the controller to pass the
commands certain attributes about the client executing the command
to customize its execution.

Even though the Command Controller acts as a supervisor of the
commands, it does not restrict their usage, meaning that they have
full access to the database and to the XMPP connection of the client.

4.8.1 Available resources for command execution

When the initial method from a hCommand is called by the controller,
three parameters are passed: the received hCommand, a callback that
has to be called when the method finishes executing and a context.

While the hCommand is the exact object as received by the con-
troller, allowing the plugin to review the sender and arguments sent
with the command for correct execution, the context allows access to
the stored attributes of the running client.

In particular, the context provides the following high-level meth-
ods:

22

4 HUBIQUITUS SERVER: HNODE

Message Filtering
This method allows the usage of filters, as explained in section
4.9, inside commands. This is useful when commands need to
retrieve messages from the database, but not all of them are
relevant for the connected user.

The usage of this method is not mandatory but it cannot use
filters selectively. It is expected that commands that find the
need to filter messages do so. The function works as a black
box for the command that will receive a list containing only the
messages that are valid according to the tests.

1Q Sender
Because some commands need to execute administrative tasks
and modify the user status at XMPP level, the client’s XMPP
account is available to the commands for using.

1Q is a type of message that can be sent through XMPP, gener-
ally used to perform administrative tasks. It shares some prop-
erties with hCommands as both expect a response after sending
the message.

Since the library used to connect to the XMPP server is not
a high-level one, only providing basic support for sending and
receiving raw XML stanzas, a convenience method was created.

This method receives XML content that the command wants to
send, envelops it inside a proper IQ stanza as defined by XMPP
and sends it using the client’s XMPP connection. Once a re-
sponse is received, the method will call a callback sent by the
command to continue execution.

Even though the command provides a callback that will be ex-
ecuted after the reception of a response, the command is not
obliged to wait for the dispatch and reception, as all is executed
asynchronously.

In addition to the context and other parameters received through
the initial method, there are two notable singletons that can be ac-
cessed through the import of files:

Server XMPP Account
The server XMPP account is almost equivalent in structure and
functioning to that of a client account.

It is a special account that is created at XMPP level and used
solely by hNode instances. It is not defined in Hubiquitus refer-
ence guide, but provides several advantages compared to always
using the client’s account.

4 HUBIQUITUS SERVER: HNODE

The main purpose of using this account is the sending of XMPP
1Qs that are not necessarily tied to the user, like the creation of
a channel, that at XMPP level are not owned by the clients.

This account will also be used for internal purposes and not
directly via a hCommand, as is the case with the distributed
cache, as shown in section 4.10.

Database Connection
The database connection is the singleton that allows access to
MongoDB through the application.

All tasks performed using this module are executed asynchronously
and allow the saving, retrieval and validation of objects.

The methods and available functionality are described in section
4.7.

4.8.2 Publish-Subscribe hCommands

While hCommands are extensible and only need to follow certain
guidelines to work, some default commands are already provided to
allow users to perform Hubiquitus related operations. One of the in-
stalled groups is the Publish-subscribe one.

This is a set of commands that share a common trace: they all
need to use XMPP to perform a part of the action as hNode relies
on XMPP for distribution and handling of messages, as explained in
section 4.6.

The commands that comprise this genre of commands are the fol-
lowing:

hChannel Creation and Updating Command
The creation and updating of a hChannel is done through the
same command. This arrangement works because to update a
channel, the whole description with the new values is needed, not
only a delta. Thus the difference between updating and creating
resides in the fact of the previous existence of the hChannel chid.

It is worth noting that the updating process differs a little from
the creation in terms of members handling. This happens when
a user is removed from the members’ list as their user must be
unsubscribed from the hChannel (the contrary does not happen
as a new member starts off just having the right to publish and
after they decide if they want to subscribe).

Finally, channels are created using the hNode XMPP account
that will own all channels at XMPP level. This structure allows
the management of all channel aspects at any given time, as this
account is always connected while the server is running, enabling

4 HUBIQUITUS SERVER: HNODE

other users to manage the channel even though the owner is
offline.

hChannel Subscribe and Unsubscribe Commands
Subscribe and Unsubscribe commands are two different com-
mands that share common tasks: both alter the same MongoDB
collection and both send a subscription-related XMPP stanza to
alter the client status.

What these commands do is evaluate the current status of the
user, alter it in the database and send a XMPP stanza that will
effectively change the status at handling level.

Even though the XMPP stanzas could be sent using the clients’
XMPP account, the one performing these tasks is the hNode one.
Thus allowing other commands to call on these hCommands to
act on behalf of other clients.

If the clients account were used, the executor of the command
should have been the client as only the user himself and the
owner of the channel can alter subscriptions status.

This way, as the hNode is the XMPP owner of all channels, it
is free to alter everyone’s subscription. Consequently the user in
question would not need to be online.

Publish Command
The publish command receives as an argument the hMessage to
be published. This message will be processed, validated and,
if successful, will be published using XMPP so that the XMPP
server handles the distribution.

Because no errors are handled from XMPP as the stanzas are
created in the server and are expected to be correct, once the
hMessage is validated, a hResult informing of a successful pub-
lication is sent to the user, while the real publishing and persis-
tence in database are done asynchronously.

Even though XMPP has a sender, this attribute is ignored as the
one in the hMessage is used. This allows, as with the subscription
commands, to use the hNode account, enabling other commands
to send a hMessage in behalf of another user.

If the process, that access the disk and sends a network message
were done synchronously, the server would remain blocked for
attending other requests. But as a result of this organization, the
process is highly asynchronous and does not block the hNode.

Other commands that handle publish-subscribe actions were also
created. These commands query the current status of subscriptions
and channels and send the result to the user. Since this actions do

4 HUBIQUITUS SERVER: HNODE

not need to make any changes at XMPP level, they are limited to
querying data stored in MongoDB.

It is important to highlight that while the subscription and publi-
cation are done through commands, that are initiated by the user, the
reception is not done through a hCommand, as it is initiated server
side and as such is handled by the hClient in hNode.

This reception is done through the client module that handles on-
line messages as explained in section 4.6.

4.8.3 Database hCommands

Another group of implemented commands are the ones used to retrieve
hMessages from the database. These commands perform queries using
the native interface provided by the MongoDB driver available for
NodelJS.

Due to the fact that the hNode tries to adapt to generic situations,
leaving space for administrators to add support for their own needs, in
general terms, they are generic queries that format the output to make
them Hubiquitus compliant as seen in the Hubiquitus Data Model
section.

hGetLastMessages
Retrieves from the database the N last messages, as passed in
the command parameters. Contrary to first impressions, getting
N messages is not an atomic query specifying a quantity, as
the filters that are applied to the messages alter the result and
subsequent queries might be made.

hRelevantMessages
Similar to hGetLastMessages, instead of returning an array of
N last messages, returns all published hMessages in a hChannel
that are allowed through the filter.

hGetThread
Using the convid attribute from a hMessage, retrieves all pub-
lished messages having the same conversation ID in order of pub-
lication.

hGetThreads
Retrieve from a channel an array of IDs corresponding to all
different conversation IDs in a hChannel.

Two algorithms were implemented to retrieve this array: one us-
ing map-reduce[12], and the other not. Both having a complexity
O(N) where N is the quantity of messages, but map-reduce hav-
ing a bigger constant.

26

4 HUBIQUITUS SERVER: HNODE

Test made showed that map-reduce was slower when executed in
a single machine environment. Possible explanations are the use
of another algorithm and the lost of parallelism as it is a single
machine and the algorithm was conceived to be parallel.

Consequently, an algorithm thought for a single machine environ-
ment execution was created that is only faster than map-reduce
if the latter is not executed distributively.

4.9 Message Filtering System

Filters allow the selective reception of hMessages through a session.
This means that while the user is connected, once he sets a filter to
receive only certain hMessages, not matching ones will be ignored.

To do so, an object defined as a hFilterTemplate was created. This
object sent by the user contains filtering attributes that hMessages
must match, having a few special restrictions. For making this match,
the template structure is similar to that of a hMessage and only filled
attributes will be compared.

The system allows enchaining several filters. Contrary to the nor-
mal usage of a NodeJS application where all filters would be applied
asynchronously and later a callback would be called, the filters must
be applied in order.

The reason for this implementation is that a filter may stop more
messages than others, thus the other filters would not need to be
executed. This means that a performance decision is left to the user
that can accelerate the execution of all tasks just by changing the
order of set filters.

A special attribute of the template is the radius one. This attribute
calculates a radius from a certain location set also in the template and
only allows messages inside of it.

To calculate this radius the Haversine formula[14] is used. This
form starts showing small meter errors in calculation at distances big-
ger than 10.000 kilometers[2]. Because the radius was an attribute
meant to be used inside cities, or between cities, these errors are ac-
ceptable, as they are in the order of meters.

Since Javascript allows object introspection, a hMessage is matched
against the template using a recursive function that covers all object’s
attributes. The method will verify if the attribute in the filter exists
and in that case if it is a basic type that can be compared for equality
(not by reference). If not, it will recursively analyze the content of the
attribute until it finds a basic type to check.

Filters are applied automatically to all incoming messages and they
do not interfere with publication. This means that while a user filters

27

4 HUBIQUITUS SERVER: HNODE

certain messages coming from a hChannel, it can still publish those
kinds of messages to it.

The support of this feature inside hCommands is optional and is
provided through the use of the same function that filters incoming
messages and is available through the reference to the user that hCom-
mands have while they are executing.

To allow the management of the filters, three comands were cre-
ated:

hSetFilter
A hCommand that receives as a parameter a hFilterTemplate
and adds it in order to the list of filters to apply. In case the
filter exists (verified by the name attribute), it will substitute
the old one.

hUnsetFilter
Removes a filter applied identified by the name passed as a pa-
rameter.

hListFilters
Returns an array of hFilterTemplates that are currently being
applied in order of application.

4.10 Distributed Cache for hChannels

One of the most accessed objects when executing hCommands are the
hChannels ones. This is due to the fact that hChannels contain per-
missions for accessing hMessages, altering subscriptions or publishing.

Two actions are almost always executed when a hCommand runs:
member verification and activeness of the channel. This leads to
frequent database access to retrieve information, meaning a possible
speed loss as this may cause disk accesses.

Considering that the hNode needs to be synced between different
instances, as explained in the section about deployment (section 4.3),
a common approach would be to use a third party software component
like Memcached [4], a general-purpose memory caching system. While
this procedure solves the problem, it adds another layer of complexion
to the deployment and a lot of unused features.

Since hNode had some restrictions to what Memcached features
offered and synchronization could be done through the use of Hubig-
uitus system through a hChannel, a self-developed cache system was
created. This cache was created keeping in mind the following hNode
constraints:

e hChannels are not numerous.

28

4 HUBIQUITUS SERVER: HNODE

e hChannels are rarely updated or created after an initial setup.

e cache states need to be shared between different instances of
hNode.

e small temporary discrepancies between instances are admissible.

The resulting cache is seen as a normal Javascript object available
to the plugins executing commands. This allows a cache system of
key-value pairs (as is the nature of Javascript objects) that recovers
the value synchronously with one memory access.

Because of the channels’ number constraint, they are all kept in
memory, dismissing the possibility of a cache miss, meaning that if the
channel was not found in the object, it can be assumed nonexistent.

Initial cache load is done at server start-up by a database query
and subsequent modifications are received through a special hNode
administration channel: hChannelAdmin. This channel is exclusive
to hNode and the only member and subscriber is the hNode XMPP
account.

hMessages for cache updating have a type set to hChannel and a
full JSON hChannel as a payload. Once a hChannel is updated or
created, a hMessage is published and, as subscribers, received by all
hNode instances. When the message is received, the cache will be
updated to mirror new modifications.

This is possible as a result of a read-only cache and special func-
tions created for saving in the database. The MongoDB abstraction
layer created as shown in section 4.7.2. allows the use of methods to
save a hChannel, and when that successfully happens, automatically
trigger a function (onSave hooks).

The triggered function is configured at start-up and is responsible
for publishing the hMessage needed for updating. The message parser
in the hNode account is in charge of reading the hMessage triggering
another function that will update the cache when a hMessage of type
hChannel is received.

Because the hMessage type and hNode onSave features are used,
this process remains generic so that it can be used to speed up other
parts of the system that actively access the database if needed in the
future.

4.11 Validation

The validation of the server has two faces: the automatic one through
the use of a Test-Driven-Development(TDD) model and a manual
through the use of a client that connects to the hNode using a web
interface.

29

5 CONCLUSION

The first validation was done every time a task was finished, while
both of them were executed at the end of each sprint for accepting the
user stories marked as finished.

The TDD model was applied to all server component, being a mix
of integration and unitary tests. This is a result of the deep integration
of the server with XMPP and MongoDB while mocks for these two
components were not available and were not created.

This model is based on the idea of writing tests first and then code
the functions. As a result, more than two hundred tests were written
to comply with the specification.

Since everything is written in Javascript and has asynchronous
calls, the software used for testing needed support for it. Consequently
the application chosen was Mocha[l1].

Mocha is a Javascript testing suite with support for asynchronous
tests, coded in a Behavioral testing fashion. This means that tests
are separated in classes and each test has a mandatory promise that
needs to fulfill, for instance “should return a client connection”.

For the manual validation, a Javascript web-client that uses socket.io
to connect to the hNode was created. It is composed of a basic html
page with buttons, depicted in the appendix figure 7, and scripts for
connecting and allowing the use of server functions.

The scripts done for connection and interaction can be used as
clients for other projects as they are generic and work as a library.
They were put together with the html page to allow a simple demon-
stration of the hNode capabilities and features and for validation pur-
poses.

Since the client library was also done in Javascript and is even
NodeJS compatible, a TDD methodology was also used, with more
than a hundred tests. They allowed integration tests to be done client
side in relation to the hNode by using also Mocha.

5 Conclusion

Hubiquitus and hNode were not thought to be written from scratch
without reusing already existing technologies. Instead, it uses strong
points of different solutions to create a new protocol and improve the
weaknesses while adding new functionality.

Currently, Hubiquitus is used for different projects, ranging from
websites doing a showcase of television viewers in real-time [10], to
projects monitoring buildings.

This shows Hubiquitus flexibility. By itself it does not provide a
solution, but works as a tool to create systems and implement ideas.

30

6 ASSESSMENT

The project future has different paths ahead, some already hav-
ing a draft in the Reference Guide as Bots (special automatic clients
performing publishing messages and capable of receiving commands)
and others only discussed at meetings as direct connections between
clients after an initial discovery to reduce latency.

As of today, there are eighteen thousand lines of code written, with
code refactored. This was done to adapt to new features, as shown in
figure 8 of the appendix, exposing the intense activity on the server.

Taking today and the future into account, it is safe to say that
Hubiquitus is a work in progress, with no deadline to be concluded.
Each time a new feature is added, a new version is released and code
is changed, being this feature a user suggestion or an internal need of
a Novedia project.

6 Assessment

The experience of working in a big company with a team of people
is something new to my curriculum. Having worked in small teams
inside StartUps, the change is considerable.

The usage of scrum showed very good results, although several
critics where discussed between the team at the beginning. This con-
cluded with a few adaptations to normal Scrum by not using certain
features as Complexity Cards and each person deciding their own com-
plexity for their user stories.

From a developing point of view, the usage of a new technology
as Javascript was interesting. Specially when a change of context was
needed and the client library needed to be developed and I had to
use the same language with a different purpose (web usage) as the
platforms were different.

Each step taken needed studies as I was generally the only person
to deal with each library, server or platform used. Thus, the studying
came from tutorials, manuals and communities, giving me a good
connection with renown developers.

Overall the project was a very satisfying experience: a mix of
developing using new technologies and discussions over specifications
without fear to change what was already developed because a better
way was found when the specification changed.

31

Appendices
A XMPP

XMPP is a streaming XML Protocol[6] for exchanging data. In this
protocol a connection is established when each side opens a specific
XML tag while everything that happens in this connection will be
well-formatted children XML stanzas of the initial tag.

The user identification is done by using a structure called a JID

32

(Jabber ID), a unique user identifier in the form of [user@domain/resource.

The peculiarity of this ID is the fact that uses the notion of resource.
A resource is an identifier given by the server to distinguish separate
connected sessions of the same user. The protocol defines that a mes-
sage from another client sent to a JID without the resource will be
broadcasted to all the connected users matching the JID while the use
of a specific resource sends the message only to that session.

XMPP establishes a connection protocol and different types of
recognized stanzas. The types include message, iq and presence, each
one of them having a different role.

A message stanza is the basic type used to send a message between
two clients. They do not impose any restrictions to the content inside
the tag and when XMPP is used as a normal messaging protocol, a
chat client will show the content of this tag as the chat message sent
by another client.

An ig stanza is one that requires a response. There is no restriction
as to whom this stanza is sent but it is expected that the destination
will respond to the sender with another ig indicating the success or
failure of the operation, maybe with a result content.

Finally there is the presence stanza. This stanza is a special mes-
sage sent to the server so that it can broadcast the new status to the
clients.

Several extensions were made to the basic XMPP protocol, the
most important for Hubiquitus is the Publish-Subscribe one. This
extension uses iq stanzas to publish and receive items and is very
popular for broadcasting purposes.

Each extension adds a new syntax inside the tags that must be
followed and each one has a specification available, as is the case of
the Publish-Subscribe one[5].

B Scrum

Scrum is an agile methodology used in several companies.

B SCRUM

In Scrum there is a backlog, a set of tasks to do called user stories
organized by priority and complexity using complexity points (defined
by the developers). From this backlog, stories are selected to be done
in a defined time period called sprint.

This division allows a set of stories to be finished and approved
at the end of small development cycles, while the complexity points
and priority help decide which tasks will be done at each development
stage.

Another concept used in Scrum is that of an Epic. An epic is a set
of user stories, bigger than a sprint but that are related somehow. A
development team can use an epic to establish bigger objectives and
decide how to prioritize.

A normal development cycle is composed of an initial meeting to
choose stories for the sprint and divide them in tasks to complete
them. Following, a short daily meeting is done through the whole
cycle to know the advancement of each person in the group and discuss
problems.

At the end of each cycle, a Sprint Review is done to evaluate the
difficulties and successes of the sprint and validate the user stories
done.

33

FIGURES

C Figures

Property | JSON Format | Description

msgid String Provides a permanent, universally unique identifier for the message in Yes
the form of an absolute |RI.

chid String The unigue 1D of the channel through which the message is published. Yes
convid String The |D of the conversation to which the message belongs. Yes
type String The type of the message payload. No
Drigrity. Mumber The message priority. Yes
relevance Date Date until which the message is considered as relevant. No
transient Boolean Indicates if the message must be persisted. Mo
location Chiect The geographical location to which the message refers. No
author String The J|D of the author (the object or device at the origin of the message). No
publisher String The JID of the client that published the message. Yes
published Date The date at which the message has been published. Yes
headers Qbiect A key-value pair map with metadata. No
payload Dbject ariable content of the message. No

Figure 3: hMessage Structure

Property JSON Format | Description Mandatery

chid String Provides a permanent, universally unique identifier for Yes
the channel in the form of an absolute |RI.

chdesc String Topic of the channel in comprehensible form. No
priority Mumber The default priority of the published messages Mo
location Object The default messages geographical location Mo
owner String The channel creator JID. Yes
participants String Array A list of authorized entities J1Ds to publish messages. Yes
active Boolean If active actions on the channel are permitted. Yes
headers Obiect A Headers object in the form of a key-value pair map. Mo

Figure 4: hChannel Structure

FIGURES

Eroperty. | J8QN Format | Description Mandatory
reqid String Request |1D, used for correlation purposes. Yes
requester String JI0 specified if command sent on behalf of someone else. Mo
sender String Command request senders JID. Yes
entity String JID of the destination of the command Yes
sent Date The date at which the command has been requested. Yes
cmd String The name of the command to execute. Yes
params Obiject The parameters to pass to the command. Mo
transient Boolean If false, the message will be persisted in the database if available. No

Figure 5: hCommand Structure

Property | JSQN Format | Description Mandatory
cmd String Corresponds to the hCommand cmd sent. Yes
reqid String Request 1D, used for correlation purposes. Yesg
status Number 0 if correct, other value in case of error. Yes

result Obiect or Array | Optional result data sent with annexed to the object Mo

Figure 6: hResult Structure

35

C FIGURES 36

Complete Test - Mozilla Firefox

{icomplete Test

&= | @ file:///home/wasser/hubiquitusjs/examples/browser/comg ~ & | 4§~

General

Login:
Password:
Channel ID:
Message:

hOPTIONS

@ BOSH

© Socket.I0
Server Host:
Server Port:
Endpoint:

Controls

| Connect || Disconnect || Publish || Subscribe || Unsubscribe || GetMessages || GetSubscriptions |
| send hEcho || GetThread || GetThreads || ListFilters || SetFilter | UnsetFilter || GetRelevant |
Transient hEcho &

Transient hMessage &

Set Relevance Header? &

| Build Measure || Build Alert || Build Ack || Build Convstate | send Built Message &

| Clear |

Status:
Last Received Message in Real time:

Figure 7: Screenshot of a demo client that connects to the server and executes
all commands

C FIGURES 37

Additions and Deletions per wesk and Total lines
35k =

=gk
3k =

=gk

=gk

-1

saul |ejoL

500 =

=
1
Additions and Deletions

=3k

500 =

0301 0401 o501 0801 07/01 0801

Figure 8: Graph showing code modification through the project. Green line
are additions while red are deletions. The blue line is the total code lines in
the project. Extracted from GitHub

REFERENCES 38

References

1]

Saint Andre. Extensible messaging and presence protocol
(xmpp): Address format. http://www.rfc-editor.org/rfc/
rfc6122.txt, 2012.

Robert G. Chamberlain. Best way to calculate great cir-
cle distances. http://www.movable-type.co.uk/scripts/
gis-faq-5.1.html, 2012.

Creative Commons. Creative commons license homepage. http:
//creativecommons.org/, 2012.

Brad Fitzpatrick. Memcached homepage. http://memcached.
org/, 2012.

XMPP Foundation. Publish subscribe xmpp extension. http:
//xmpp . org/extensions/xep-0060.html, 2012.

XMPP Foundation. Xmpp introduction. http://xmpp.org/
about-xmpp/faq/, 2012.

GIT. Git version control homepage. http://git-scm.com/,
2012.

GitHub. Github homepage. https://www.github.com/, 2012.

Novedia Group. Novedia group homepage. http://www.
novediagroup.com/, 2012.

Novedia Group. Socialtv homepage. http://
socialtv-livebattle.fr/, 2012.

Holowaychuk. Mocha test framework homepage. http://
visionmedia.github.com/mocha/, 2012.

Eliot Horowitz. Mapreduce documentation for mongodb. http:
//www .mongodb.org/display/DOCS/MapReduce, 2012.

JSON. Json homepage. http://www.json.org/, 2012.

Movable Type Ltd. Haversine implementation in javascript.
http://www.movable-type.co.uk/scripts/latlong.html,
2012.

Node.JS. Nodejs homepage. http://www.nodejs.org/, 2012.

RallyDev. Rallydev homepage. http://www.rallydev.com/,
2012.

Guillermo Rauch. Socket.io homepage. http://socket.io/,
2012.

