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ABSTRACT

This work presents two dynamic programing algorithms to treat simple assembly line
balancing problem (SALBP) and bin-packing problem with precedence constraints (BPP-
P). While the former has been explored for many years, the latter has been studied only
recently. For BPP-P, our approach is the first to use dynamic programming and we pro-
vide one new optimal answer that was unknown until our algorithm was proposed (from
the instances used in the literature, 2 still remain unsolved). For both variants, our imple-
mentations are able to deal with the small instances commonly used in the literature. In
average, we treat these instances with execution times from miliseconds to few minutes.

We also present, for each algorithm explained, one way to reduce the search space:
an implementation of Jackson Dominance Rule and our approximation of Jackson Maxi-
mally Loaded station principle. The impact of these optimizations is discussed, measured
and compared to the state of the art algorithms.

Remarks are made about important works (from the past and current state of the art
algorithms) and surveys in order to make the interested reader able to find further informa-
tion regarding assembly line balancing problems (specially SALBP and BPP-P variants).

Keywords: Assembly line problems, sequencing problems, SALBP-1, BPP-P, combina-
torial optimization, operations research, dynamic programming.



RESUMO

Este trabalho apresenta dois algoritmos de Programação Dinâmica que tratam os pro-
blemas Simple Assembly Line Balancing Problem (SALBP) e Bin-Packing Problem with
Precedence Constraints (BPP-P). Enquanto o primeiro problema já foi longamente explo-
rado, o segundo só foi estudado anteriormente em um único artigo. Para o BPP-P, nossa
abordagem é a primeira a utilizar Programação Dinâmica e nós fornecemos uma nova
solução ótima que, até a publicação de nosso algoritmo, era desconhecida (duas instân-
cias do conjunto de testes consagrado pela literatura ainda continuam sem uma resposta
ótima). Para ambas variações, nossas implementações conseguem lidar com instâncias
pequenas comumente utilizadas na literatura. Em média, tratamos tais instâncias com
tempos de execução que vão de milissegundos até poucos minutos.

Também apresentamos, para cada algoritmo explicado, uma forma de reduzir o es-
paço de busca: uma implementação da regra de corte Jackson Dominance Rule e uma
aproximação do princípio de utilizar estações preenchidas de maneira ótima proposto por
Jackson. Os impactos dessas otimizações são discutidos, medidos e comparados com os
algoritmos do estado-da-arte.

Observações sobre trabalhos importantes (incluindo trabalhos antigos e algortimos
que são o estado-da-arte) e pesquisas são feitas com o intuito de direcionar ao leitor da
área mais informações sobre problemas de balanceamento de linhas de montagem (em
especial, as variantes SALBP e BPP-P).

Palavras-chave: Assembly line problems, sequencing problems, SALBP-1, BPP-P, com-
binatorial optimization, operations research, dynamic programming.
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1 INTRODUCTION

Problems related to assembly lines have been subject of study for many years in fields
like Operations Research, Combinatorial Optimization, Computational Complexity and
Mathematics. In a very simple and not formal manner, we could define such problems as
a set of tasks, each one with a cost information associated, and workstations which can
execute the referred tasks. An assignment of each task to one station is a solution to such
assembly line problem.

Interesting problems arise due to the large number of variations and constraints that
can be applied to this simple description. Using the workstations dimension, we could
think of different station models: parallel stations executing their tasks simultaneously;
a linear flow of stations; stations with different performance depending on which task
is being executed or the skills of the worker which operates the work station. Regard-
ing the tasks dimension, we can mention the presence or not of some kind of order (or
dependence) between tasks.

Towards the optimization subject, the most common variables are: the number of work
stations necessary to execute all tasks; the maximum processing time that can be assigned
to a single workstation (called cycle time); the amount of time that one station executes
no task (idle time).

Due to the combinatorial nature of these problems, besides computing a solution, we
are also interested in strategies to reduce the time necessary to retrieve a solution. The
combination of the above cited points – variations of models, constraints and optimization
subjects – may lead to different ways of treating these problems. Classical and state-of-
the-art algorithms may use branch-and-bound, dynamic programming or a combination
of these techniques (aiming to reduce the amount of time to evaluate partial solutions
and generate the final and optimal answer). Fathoming rules, lower and upper bounds
and different strategies to explore the generated partial solutions may be used in order
to optimize memory usage. Both problems presented here (SALBP-1 and BPP-P) are
NP-hard (see (Scholl e Becker 2006) and (Dell’Amico et al. 2012) for more information
about problems’ complexity).

Our goal in this thesis is to study the use of dynamic programming to solve ALBP.
SALBP-1 and BPP-P variants were used because they represent very simple models of
assembly lines. We focused on the implementation and adaptation of already known
algorithms and dynamic programming models. The analysis of the results also directed us
to explore how the problems’ properties could be used in order to reduce the search space
and, therefore, improve our implementation memory and execution time performance.

For further information regarding ALBP, consider accessing www.assembly-line-
balancing.de. This website provides extensive information about many variations of
ALBP, including important data sets, references and optimal (or best) answers to each
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instance.

1.1 Structure of this thesis

This work is organized as follows. Chapter 2 presents the SALBP-1 variant and Chap-
ter 3 presents the BPP-P. Both chapters present the problems with the same structure. First
we explain the relationship of the ALBP variant with this work and why we studied it (2.1
and 3.1). Then we make a brief review of important works that were used as basis of our
implementation, are considered to be on the state of the art or that compile a good source
of information for ALBP in general(2.2 and 3.2). Formal poblem definition is given in
2.3 and 3.3, together with examples of instances and optimal solutions. For each variant,
we present two algorithms to solve it: one that generates partial solutions in a task-based
way (2.4.1 and 3.4.1) and other that uses a station-based version to do this (2.4.2 and
3.4.2). Sections 2.5 and 3.5 will present fathoming rules to reduce the search space of
these algorithms. The results for each association of algorithm and fathoming rule and
the appropriate remarks are given in 2.6 and 3.6.

We observe that, since SALBP-1 and BPP-P are very similar, we will focus on ex-
plaining and defining each topic in Chapter 2. Chapter 3 will consider how SALBP-1
algorithms and definitions are adapted to deal with BPP-P.

Finally, Chapter 4 summarizes our contributions, considering also the possibilities of
how our algorithm could be extended.
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2 DYNAMIC PROGRAMMING FOR THE SIMPLE AS-
SEMBLY LINE BALANCING PROBLEM

2.1 Motivation

SALBP has been subject of study for many years. We can find publications from the
middle of the 50’s trying to deal with this balancing problem - like (Jackson 1956) - until
state of the art works as (Sewell e Jacobson 2012). Although more complex and inter-
esting variants of ALBP exist, SALBP is a good starting point, since its definitions and
constraints can be easily understood and could be adapted and mapped to more difficult
variants. Moreover, properties observed from SALBP behaviour were the basis for many
heuristics, reduction and fathoming rules, lower and upper bounds computation (used in
branch and bound algorithms), constructing an important framework that can be adapted
and used with less explored task-assignment problems.

SALBP is used here as a means to i) see how ALBP could be solved using purely dy-
namic programming techniques (the mainstream technique nowadays is branch and bound
or a mix of branch and bound and dynamic programming - called branch, bound and re-
member) and ii) see how we could use our implementations from SALBP in BPP-P, an
ALBP with almost no work done before. To the best of our knowledge, the algorithm pro-
posed here is the second to solve exactly this problem, being the first one to use dynamic
programming.

2.2 Related Work

From the 50s to the 70s, the focus was directed to strategies regarding successive ap-
proximations to the optimal answer (like (Held et al. 1963) and (Horowitz e Sahni 1976)),
using dynamic programing techniques together with formal propreties of the problem’s
definition. Since computer memory is also a hard constraint and, as a consequence,
many techniques to store, encode and decode generated partial solutions were born in
this context. Papers (Kao e Queyranne 1982), (Schrage e Baker 1978), (Lawler 1979)
and (Hoffmann 1963) are a good evidence of this evolution.

Current works tend to use branch and bound methods (sometimes associated with
dynamic programming), since the great number of fathoming, problem reducing and
preprocessing rules that were proposed can boost these algorithms. One of the
best algorithms for treating the SALBP-1 that evidence this strategy is presented by
(Sewell e Jacobson 2012), where also different strategies to find solutions in the search
space are presented.

For completeness, we remark the survey works in (Scholl e Klein 1999),
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Figure 2.1: Graph of an assembly line balancing problem. Inside the nodes, we have the
tasks’ labels. Below each node, the processing time for that task.

(Scholl e Becker 2006) and (Fleszar e Hindi 2003) that compile important data related to
properties of SALBP and how the classical algorithms were adapted and improved in new
methods for exact and approximate solutions of SALBP.

Finally, the interested reader may look to (Nicosia et al. 2002) where SALBP algo-
rithms are adapted to treat the case where the workstations are not identical.

2.3 Problem Definition

The simple assembly line balancing problem (SALBP) is defined as follows. Let
T = {1, 2, 3, ..., t} be the set of tasks to be assigned to the workstations. Each task i has a
processing time, called ti (a positive integer). Let P be a partial order relation expressed
as i → j (or i ≤ j), meaning that "task i should be executed before or with task j" (also
defined as i precedes j). All workstations are identical and have a capacity, called cycle
time (c), expressed in the same unit as the cost information of tasks.

When c is given and we try to minimize the necessary number of stations needed to
assign all tasks without violating the cycle time (i.e. the total time of the tasks allocated to
a station is less then c) and precedence constraints, we have the variant commonly known
as SALBP-1. We can represent this scenario graphically mapping the partial order relation
into the edges of a directed graph. T is the set of nodes of such graph - as presented at
Figure 2.1.

One possible optimal assignment for the precedence graph at Figure 2.1 with cycle
time 10 is shown at Figure 2.2.

2.4 Applying Dynamic Programming to SALBP-1

A feasible subset of tasks S is a set that for every task t ∈ S, all predecessors of
t are also in S. For a feasible subset S, Q(S) is defined as the set of tasks in S with-
out successors in S (formally, Q(S) = {j ∈ S : S − {j} is feasible}). The mini-
mum cost function for a feasible set F (S) is given by the recurrence relation 2.1 due to
(Kao e Queyranne 1982) and (Lawler 1979).

F (S) =

{
0 , S = ∅
minj∈Q(S){F (S), F (S − j) + ∆(F (S − j), tj)} otherwise

(2.1)
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Figure 2.2: Task assignment of one possible solution for SALBP-1 of instance in Figure
2.1 and cycle time = 10. The vertical axis represents the time units. From left to right, we
show the order the stations should appear in this assembly line.

∆ function definition is given in Equation 2.2:

∆(F, tj) =

{
tj , tj ≤ C − F (S) mod C
C − F (S) mod C + tj otherwise

(2.2)

This cost is computed through the ∆ function, reaching to two possibilities:

• Task j fits in the last station, so we just add its cost tj or,

• Task j does not fit. In this case, we open a new station and the new cost value is
incremented by the idle time of the last station and tj .

2.4.1 Task-based loop version

Algorithm 1 shows how we can translate Equations 2.1 and 2.2. Basically, at the i-th
step of the outer for loop, we generate feasible sets with i tasks, storing them and their
cost in Lpi . These feasible sets are obtained by means of adding the current free tasks to
the previous generated feasible sets in Lpi−1

. Initially we set Lp0 with pair (∅, 0). Task t is
said to be free if none of its predecessors are unassigned (δ− function computation). The
tasks already assigned of element S from Lpi are accessed using .tasks operation and, at
the moment we add one configuration to Lpi , we also update δ− information.

Algorithm 1 SALBP-1 task-based pseudocode
1: for m = 1→ |T | do . T is the set containing all tasks
2: for all S ∈ Lpm−1 do
3: for all j ∈ T : δ−(j) = 0 do
4: Lpm ← Lpm + (S.tasks+ j, F (S.tasks+ j))
5: end for
6: end for
7: end for

2.4.2 Station-based loop version

One of the main contributions regarding ALBP heuristics is the station-based strategy
proposed in (Hoffmann 1963). The goal here is very clear: at each step, we should gen-
erate a new partial solution with one more station. The idle time will be the minimum
possible for all stations processed until this step.
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We will present the implementation proposed by (Fleszar e Hindi 2003). The main
difference is that, while the original algorithm encourages using operations over the prece-
dence matrix of the instance graph, this one relies on expanding lists with partial solutions.

The Algorithm 2 assumes that we have a global list L with the current free tasks (in
the same sense as in Subsection 2.4.1). Configurations with the minimum idle time are
obtained as follows:

1. Call GETBESTLOAD(1) (start expanding from the first possible free task);

2. Use ADDNEWAVAILABLE to update L;

3. Recursively try to add the next element in L;

4. Returning from recursive calls, remove task added at step 2 and update L with
REMOVENEWAVAILABLE;

5. Try to add next element in L (equivalent to jump to first step).

If we reach the end of L list, we are at the base case: we should evaluate if the idle
time found is better than the current one for this configuration.

Algorithm 2 can be adapted to generate all maximally loaded states. We modify
GETBESTLOAD function, which gives us the Algorithm 3. In summary, the following
situations occur:

1. A new parameter, called m, will store the current max idle value for one recursion
branch. Max idle value is defined as the minimum processing time of the current
excluded tasks.

2. We have an external loop (that does not appear in Algorithm 3) that will call GET-
MAXLOADS, expanding all partial solutions generated at the previous step. List
L is set at this loop and GETMAXLOADS(1, ∞) is called here too. This means
that we are expanding the first element of L and no tasks were already excluded.
The number of steps of this loop indicate how many workstations were used. The
execution stops when we generate one partial solution that have all tasks assigned;

3. GETMAXLOADS will now fill the list Lp with all new maximal loads;

4. The condition to find one maximally loaded configuration is: if none of the already
excluded tasks fit in the last station, we are facing a maximally loaded partial solu-
tion.

2.5 Fathoming rules for SALBP-1

We present two fathoming rules, both relying on the same principle (as said in
(Jackson 1956)): an optimal task assignment will always have stations that are maximally
loaded (i.e., no other task could be added to one station).



18

Algorithm 2 Hoffmann best-load heuristic pseudocode
1: function ADDNEWAVAILABLE(i)
2: for all j ∈ S∗i do . S∗i are the direct successors of i.
3: δ−(j) = δ−(j)− 1
4: if δ−(j) = 0 then
5: L← L+ {j}
6: end if
7: end for
8: end function
9: function REMOVENEWAVAILABLE(i)

10: for all j ∈ S∗i do
11: if δ−(j) = 0 then
12: L← L− {j}
13: end if
14: δ−(j) = δ−(j) + 1
15: end for
16: end function
17: function GETBESTLOAD(q) . look to r-th element of L
18: for r = q → |L| do
19: i← Lr

20: if ti ≤ I(A) then
21: A← A+ i
22: ADDNEWAVAILABLE(i)
23: GETBESTLOAD(r + 1)
24: REMOVENEWAVAILABLE(i)
25: end if
26: if I(A) < I(A∗) then . I() returns the idle time.
27: A∗ ← A . A∗ is the current best configuration
28: end if . with minimum idle time.
29: end for
30: end function

Algorithm 3 SALBP-1 station-based pseudocode
1: function GETMAXLOADS(q,m)
2: for r = q → |L| do
3: i← Lr

4: if ti ≤ I(A) then . I() is the station’s idle time.
5: A← A+ i . A is the current configuration.
6: ADDNEWAVAILABLE(i) . being expanded.
7: GETBESTLOAD(r + 1,m)
8: REMOVENEWAVAILABLE(i)
9: m← min(m, ti)

10: end if
11: if I(A) < m then . maximally loaded station found
12: Lp ← Lp + A
13: end if
14: end for
15: end function
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2.5.1 Task-based loop rule

In the spirit of just expanding states that are maximally loaded (see maximum load
rule at (Jackson 1956)), we present Algorithm 4, which should be called between lines 6
and 7 of Algorithm 1.

Informally, we could define this rule as follows. For two partial solutions S1 and S2
with t tasks assigned, if S1 uses less workstations than S2, then we can cut S2.

A important remark is that this rule will not generate always maximally loaded con-
figurations. Once we are using a task-based procedure, there will be cases that is possible
to add (to all current partial solutions) more than one task to the last station. In such cases,
we should not cut these configurations, as they may lead (after some steps) to maximally
loaded partial solutions. This said, we should consider Algorithm 4 as an approximation
of what is done with the Maximum load rule.

Therefore, this rule will only be useful when the new partial solutions differ in the
number of stations. In this case, we should favor those configurations with less stations,
because they process the same amount of tasks with less station resources.

Algorithm 4 SALBP-1 task-based cut rule
1: . let current_stations be the minimum number
2: . of stations of current partial solutions.
3: function CUTOPENEDSTATIONS(Lpm)
4: for all L ∈ Lpm do
5: if stations(L) > current_stations then
6: Lpm ← Lpm − L . cut partial solutions that
7: end if . needed to open a new station.
8: end for
9: end function

2.5.2 Station-based loop rule

The Jackson Dominance rule (Jackson 1956) aims to cut the partial solutions that are
not maximally loaded. Informally, we could state that the Jackson Dominance rule will
exclude all partial solutions that, in their last station, have one task that is dominated by
an unassigned task. Task j dominates i if:

1. The followers of j (Fj) are, at least, the same as the followers of i;

2. The cost of j (tj) is, at least, the same of i;

3. i could be perfectly replaced by j (meaning that the cycle time and precedence
relationship are not violated).

What is intended with this procedure is to prioritize configurations that are maximally
loaded and that would allow more assignments in the next step (achieved through the
comparison of the followers sets).

Items 1 and 2 of this rule are formally expressed through Equation 2.3 (with addition
of one clause to prevent the existence of symmetric pairs).

Di =


{j : tj ≥ ti ∧ Fj ⊇ Fi}
{j : tj = ti ∧ Fj ⊇ Fi}
{j : tj = ti ∧ Fj = Fi ∧ i < j}

(2.3)
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The Di sets different from ∅ for the example of Figure 2.1 are

D2 = {1}
D6 = {5}
D8 = {7}

It is important to remark that these two steps take no cycle time information into
consideration. It is sufficient just to know the precedence relationship. The consequence
is that Di can be precomputed and retrieved during the execution of Algorithm 5, which
will effectively prune unnecessary partial solutions.

Algorithm 5 SALBP-1 station-based cut rule
1: function JACKSONRULE(A)
2: for all t ∈ A do
3: for all j ∈ Dt do
4: if j /∈ A ∧ CANREPLACE(t, j) then
5: return . A is pruned
6: end if
7: end for
8: end for
9: return Lp ← Lp + A . A is not pruned

10: end function

Function CANREPLACE(t, j) used in Algorithm 5 will deal with item "i could be
perfectly replaced by j (meaning that the cycle time and precedence relationship are not
violated)" defined before. It will return true if:

1. All predecessors of j are already assigned;

2. Exchanging j with t does not violate the cycle time in workstation A.

This fathoming rule should substitute line 12 of Algorithm 3.

2.6 Results

The tests were conducted with a Core i7 930 processor with 12 GiB of memory. The
development environment was: C++ language (together with Boost Libraries and Stan-
dard Template Library), Linux operating system and GCC compiler.

We used a time limit of one hour and also put limits to memory usage: no instance
can generate more than 106 states from one step to the other (column max Lp). However,
there is no limit to the total number of explored states.

For SALBP-1, we executed our algorithm for 269 well known instances of the lit-
erature. This data set is generated from 25 precedence graphs, varying the cycle time
constraint. For the four possible combinations of feasible set generation procedure and
cut rule (task-/station-based and without/with rule), we present the results grouped by
precedence graph, giving the number of tasks (t), instances (i), number of instances with
optimal answer found without reaching memory limit (s), number of instances with opti-
mal answer found reaching the memory limit (h) and instances where optimal answer is
not found (n). The averages of the following variables are also provided:

diff: absolute difference from the optimal answer;
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max Lp: maximum number of states generated at one loop step;

exp. states: total number of explored states;

time: execution time, in seconds;

alloc(%): percentage of assigned tasks;

In the following subsections, we present the results in Tables 2.1-2.8 and the remarks
about improvements and differences of each implementation.

Then, Table 2.10 compare the results of those tests with state-of-the-art algorithm in
(Sewell e Jacobson 2012).

2.6.1 Task-based without fathoming rule

Our algorithm provides the optimal answer in 76.95% cases with an average time of
194.30 seconds (in 57.25% of instances the best answer is obtained without the memory
limit). We can only reach the optimal answer (without reaching memory limit barrier)
for instances with less than 89 tasks (e.g., LUTZ2 and LUTZ3). For instances that are
completely unsolved, we can assign approximately 119, 122 and 71 tasks respectively
(BARTHOL2, BARTHOLD and SCHOLL). Since these values are close to 89, we could
loosely consider this value as the maximum number of tasks for an instance that we are
going to give the optimal answer. Differences occur since other variables may influence
the number of partial solutions (e.g., a bigger number of precedence relations implies in
more restrictions to assign tasks. So, the number of feasible configurations is reduced).

It is not our goal here to discuss and define the properties of the precedence graphs.
We suggest the reader to access the website mentioned in 2.6 for further information.

2.6.2 Task-based with fathoming rule

The optimal answer is reached in 80.30% cases with an average time of 167.81 sec-
onds (in 57.25% of instances the best answer is obtained without the memory limit). In
average, with the cut rule, time is reduced by 18.47%, max Lp is reduced by 13.65% and
the total number of searched states is reduced by 15.00%.

Regarding the maximum number of tasks between the solved instances, no improve-
ment occurred (we continue with 89). The instances solved remain the same. We also
note that a small number of instances changed from Not solved to Optimal with heuris-
tic status: 9. The percentage of allocated tasks in not solved instances improved (this can
be seen comparing entries BARTHOL2, BARTHOLD and SCHOLL of tables 2.1 and
2.3).

2.6.3 Station-based without fathoming rule

In 77.32% cases the optimal assignment is found (57.25% of instances without the
memory limit). This result is similar to what is shown in Subsection 2.6.1. Memory usage
is reduced by an order of magnitude in relation to task-based implementation without
fathoming rule. When we found the correct answer, the average time taken is 138.01
seconds.

Instances with at most 89 tasks are the ones that can be solved (which is similar to the
task-based version). The number of solved, optimal with heuristic and unsolved instances
is also close to the ones obtained before (154, 54 and 61, respectively).
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Table 2.1: Results for SALBP-1 grouped by graph - task-based without fathoming rule.
graph t i diff max Lp exp. states time(s) alloc(%) s h n

ARC83 83 16 0.00 255418.00 6499481.00 90.80 100.00% 16 0 0
ARC111 111 17 0.00 1000000.00 85925996.00 1719.89 100.00% 0 17 0

BARTHOL2 148 27 N/A 1000000.00 112649293.07 3599.97 81.13% 0 0 27
BARTHOLD 148 8 N/A 1000000.00 115575219.00 3599.91 83.11% 0 0 8
BOWMAN8 8 1 0.00 3.00 15.00 0.00 100.00% 1 0 0

BUXEY 29 7 0.00 164.00 2062.00 0.01 100.00% 7 0 0
GUNTHER 35 7 0.00 152.00 2289.00 0.01 100.00% 7 0 0

HAHN 53 5 0.00 989.00 6489.00 0.05 100.00% 5 0 0
HESKIA 28 6 0.00 38920.00 326601.00 2.41 100.00% 6 0 0

JACKSON 11 6 0.00 9.00 51.00 0.00 100.00% 6 0 0
JAESCHKE 9 5 0.00 4.00 17.00 0.00 100.00% 5 0 0

KILBRID 45 10 0.00 48786.00 626574.00 5.99 100.00% 10 0 0
LUTZ1 32 6 0.00 16.00 244.00 0.00 100.00% 6 0 0
LUTZ2 89 11 0.00 9431.00 122565.00 1.69 100.00% 11 0 0
LUTZ3 89 12 0.00 9431.00 122565.00 1.50 100.00% 12 0 0

MANSOOR 11 3 0.00 8.00 46.00 0.00 100.00% 3 0 0
MERTENS 7 6 0.00 5.00 21.00 0.00 100.00% 6 0 0

MITCHELL 21 6 0.00 26.00 199.00 0.00 100.00% 6 0 0
MUKHERJE 94 13 0.00 1000000.00 56231258.00 1593.43 100.00% 0 13 0

ROSZIEG 25 6 0.00 32.00 299.00 0.00 100.00% 6 0 0
SAWYER30 30 9 0.00 330.00 3995.00 0.02 100.00% 9 0 0

SCHOLL 297 26 N/A 1000000.00 60330039.46 3599.97 24.73% 0 0 26
TONGE70 70 16 0.00 227050.00 2514263.00 31.23 100.00% 16 0 0

WARNECKE 58 16 0.00 72884.00 861122.00 8.85 100.00% 16 0 0
WEE-MAG 75 24 0.04 1000000.00 51078881.00 818.93 100.00% 0 23 1

Table 2.2: Results for SALBP-1 - task-based loop without fathoming rule.
Instances % of total

Solved 154 57.25%
Optimal with heuristic 53 19.70%

Not solved 62 23.05%
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Table 2.3: Results for SALBP-1 grouped by graph - task-based with fathoming rule.
graph t i diff max Lp exp. states time(s) alloc(%) s h n

ARC83 83 16 0 235655.25 5980416.87 79.52 100% 16 0 0
ARC111 111 17 0 1000000 79662572.82 1466.44 100% 0 17 0

BARTHOL2 148 27 0.11 1000000 129230883.37 3577.54 93.56% 0 8 19
BARTHOLD 148 8 N/A 1000000 121068414.75 3599.95 86.82% 0 0 8
BOWMAN8 8 1 0 3 15 0 100% 1 0 0

BUXEY 29 7 0 139.14 1650 0 100% 7 0 0
GUNTHER 35 7 0 94.71 1301.71 0.00 100% 7 0 0

HAHN 53 5 0 874.8 5607.6 0.04 100% 5 0 0
HESKIA 28 6 0 34018.33 280677.33 1.91 100% 6 0 0

JACKSON 11 6 0 6.16 35.33 0 100% 6 0 0
JAESCHKE 9 5 0 2 11.8 0 100% 5 0 0

KILBRID 45 10 0 48503.2 620010.5 5.638 100% 10 0 0
LUTZ1 32 6 0 14.33 205.33 0 100% 6 0 0
LUTZ2 89 11 0 6132.54 85723.54 1.08 100% 11 0 0
LUTZ3 89 12 0 9161.58 112043.08 1.35 100% 12 0 0

MANSOOR 11 3 0 8 45 0 100% 3 0 0
MERTENS 7 6 0 4.66 19.5 0 100% 6 0 0

MITCHELL 21 6 0 20.33 149.33 0 100% 6 0 0
MUKHERJE 94 13 0 1000000 54739888.69 1430.6 100% 0 13 0

ROSZIEG 25 6 0 26 242 0 100% 6 0 0
SAWYER30 30 9 0 275.33 3310.33 0.01 100% 9 0 0

SCHOLL 297 26 N/A 1000000 64678185.26 3599.95 26.21% 0 0 26
TONGE70 70 16 0 198975.75 2150713.93 25.19 100% 16 0 0

WARNECKE 58 16 0 66217.62 772246.31 7.61 100% 16 0 0
WEE-MAG 75 24 0 1000000 46406823.87 672.60 100% 0 24 0

Table 2.4: Results for SALBP-1 - task-based loop with fathoming rule.
Instances % of total

Solved 154 57.25%
Optimal with heuristic 62 23.05%

Not solved 53 19.70%
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Table 2.5: Results for SALBP-1 grouped by graph - station-based without fathoming rule.
graph t i diff max Lp exp. states time(s) alloc(%) s h n

ARC83 83 16 0 668452.81 1203141.68 3328.28 59.86% 1 2 13
ARC111 111 17 N/A 268117.94 34035.70 3599.99 28.19% 0 0 17

BARTHOL2 148 27 N/A 442207.74 3709.66 3599.99 7.55% 0 0 27
BARTHOLD 148 8 N/A 575616 575616 3599.91 15.03% 0 0 8
BOWMAN8 8 1 0 4 5 0 100% 1 0 0

BUXEY 29 7 0 171.42 783.42 0 100% 7 0 0
GUNTHER 35 7 0 135.71 472 0 100% 7 0 0

HAHN 53 5 0 104.4 165 0.06 100% 5 0 0
HESKIA 28 6 0 3236.66 4674.83 1.31 100% 6 0 0

JACKSON 11 6 0 6 13.33 0 100% 6 0 0
JAESCHKE 9 5 0 1.8 6 0 100% 5 0 0

KILBRID 45 10 0 43460.7 122123.1 39.38 100% 10 0 0
LUTZ1 32 6 0 18.83 75.5 0 100% 6 0 0
LUTZ2 89 11 0 33513 244827.81 9.00 100% 11 0 0
LUTZ3 89 12 0 30944.75 88664.5 20.79 100% 12 0 0

MANSOOR 11 3 0 5.33 5 0 100% 3 0 0
MERTENS 7 6 0 4.66 8.5 0 100% 6 0 0

MITCHELL 21 6 0 17 27.5 0 100% 6 0 0
MUKHERJE 94 13 N/A 210809.61 211511.76 3599.94 23.56% 0 0 13

ROSZIEG 25 6 0 31 51.16 0 100% 6 0 0
SAWYER30 30 9 0 341.77 1479.66 0.00 100% 9 0 0

SCHOLL 297 26 N/A 244350.88 244350.88 3599.98 6.63% 0 0 26
TONGE70 70 16 0 566189.75 1207735.25 1227.34 100% 16 0 0

WARNECKE 58 16 0 138674.5 814144.31 29.40 100% 16 0 0
WEE-MAG 75 24 0.5 1000000 30503038.87 1294.97 100% 0 15 9

We can also note that most ARC83 instances are not solved, although these instances
have 83 tasks (less than our supposed limit). This is the case where other properties influ-
ence the results (in this case, the precendence relation, as shown in the website referred
in 2.6).

2.6.4 Station-based with fathoming rule

Using the Jackson rule, the number of instances solved is not improved. The average
time took to end the algorithm’s execution is reduced by 11.26% and memory usage is
reduced by 12.12%. The total explored states are reduced by 10.37%. Observing the
maximum memory usage, the improvement of this fathoming rule is similar to task-based
one. The impact is bigger in execution time.

Table 2.6: Results for SALBP-1 - station-based loop without fathoming rule.
Instances % of total

Solved 154 57.25%
Optimal with heuristic 54 20.07%

unsolved 61 22.68%
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Table 2.7: Results for SALBP-1 grouped by graph - station-based with fathoming rule.
graph t i diff max Lp exp. states time(s) alloc(%) s h n

ARC83 83 16 0.00 701628.38 1646792.75 3336.67 57.76% 1 2 13
ARC111 111 17 N/A 290693.06 338706.82 3599.99 28.93% 0 0 17

BARTHOL2 148 27 N/A 423450.59 130366.15 3599.99 7.33% 0 0 27
BARTHOLD 148 8 N/A 485882.25 485882.25 3599.94 15.29% 0 0 8
BOWMAN8 8 1 0.00 4.00 5.00 0.00 100.00% 1 0 0

BUXEY 29 7 0.00 170.57 776.00 0.00 100.00% 7 0 0
GUNTHER 35 7 0.00 116.00 423.00 0.00 100.00% 7 0 0

HAHN 53 5 0.00 41.80 60.40 0.03 100.00% 5 0 0
HESKIA 28 6 0.00 1651.00 2512.50 0.74 100.00% 6 0 0

JACKSON 11 6 0.00 5.33 11.83 0.00 100.00% 6 0 0
JAESCHKE 9 5 0.00 1.60 5.20 0.00 100.00% 5 0 0

KILBRID 45 10 0.00 27256.90 74938.10 28.71 100.00% 10 0 0
LUTZ1 32 6 0.00 16.00 65.17 0.00 100.00% 6 0 0
LUTZ2 89 11 0.00 28353.73 201037.73 7.70 100.00% 11 0 0
LUTZ3 89 12 0.00 10648.08 29655.83 7.11 100.00% 12 0 0

MANSOOR 11 3 0.00 5.00 5.00 0.00 100.00% 3 0 0
MERTENS 7 6 0.00 4.67 8.50 0.00 100.00% 6 0 0

MITCHELL 21 6 0.00 12.67 24.50 0.00 100.00% 6 0 0
MUKHERJE 94 13 N/A 145378.77 145970.85 3599.93 23.57% 0 0 13

ROSZIEG 25 6 0.00 24.67 44.33 0.00 100.00% 6 0 0
SAWYER30 30 9 0.00 331.44 1431.44 0.01 100.00% 9 0 0

SCHOLL 297 26 N/A 218242.08 218242.08 3599.99 6.50% 0 0 26
TONGE70 70 16 0.00 516153.88 1090615.75 1005.00 100.00% 16 0 0

WARNECKE 58 16 0.00 103443.50 648038.56 18.82 100.00% 16 0 0
WEE-MAG 75 24 0.04 1000000.00 28230963.08 578.47 100.00% 0 23 1

The status of the instances are exactly the same (154 were solved, 62 needed the
heuristic and 53 were not solved). The maximum number of tasks between solved in-
stances is also equal: 89.

2.6.5 Comparison to the state of the art

Table 2.9 gathers information from the four variants of the algorithm. The best case
is achieved with the task-based loop with fathoming rule. In Table 2.10 we compare
the number of solved (optimal answer without memory limit) and unsolved (memory
limit or not solved) instances of this implementation with the state of the art algorithm in
(Sewell e Jacobson 2012). As we observed before, all variants have a similar behaviour.
The bigger impact of the fathoming rules is in the execution time and happens in the

Table 2.8: Results for SALBP-1 - station-based loop with fathoming rule.
Instances % of total

Solved 154 57.25%
Optimal with heuristic 54 20.07%

Not solved 61 22.68%
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Table 2.9: Different SALBP-1 implementations results.
solved heuristic not solved

task 154 53 62
task with cut 154 62 53

station 154 54 61
station with cut 154 54 61

Table 2.10: Number of instances solved in SALBP-1 - comparisson with (Sewell e Jacob-
son 2012).

Our algorithm Sewell and Jacobson Our algorithm Sewell and Jacobson
solved 154 269 57.25% 100.00%

unsolved 115 0 42.75% 0.00%

station-based variant.
The best version of the algorithm presented in (Sewell e Jacobson 2012) solves all 269

intances with an average time of 0.43 seconds. Our best implementation is far from this
value. In only 67 instances we have average execution times comparable to them.
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3 DYNAMIC PROGRAMMING FOR THE BIN-PACKING
PROBLEM WITH PRECEDENCE CONSTRAINTS

3.1 Motivation

Until now, BPP-P has recieved little attention. Besides what is proposed here and in
(Dell’Amico et al. 2012), we could find no other related works regarding exact solution
of this problem. Although BPP-P is very close to SALBP and BPP, problems that have
been studied for many years, not even adaptations to treat BPP-P were proposed by other
authors.

As we noticed that algorithms and strategies studied by us for SALBP could be easily
extended to treat BPP-P, we decided to invest efforts in trying to solve and analyzing this
variant of ALBP.

3.2 Related Work

Although theoretical and history purposes may have motivated SALBP studies (as
it can be used as basis for real ALBP), (Dell’Amico et al. 2012) list several practical
situations that could be mapped into BPP-P: a special case of a multiprocessor scheduling
problem with a single resource constraint; strict precedences between parts and its metal
shields in a assembly line case-study from Motorola; dynamic reconfiguration of FPGAs
(Field-Programmable Gate Arrays) when implementing image processing applications,
like JPEG encoding.

3.3 Problem Definition

The bin packing problem (BPP) is defined by n items with non-negative weight (tj)
that should be allocated to identical bins of capacity c. Bin packing problem with prece-
dence constrains (BPP-P) extends BPP adding a precedence relation somehow different
from the one presented at Section 2.3: P ′ is a strict partial order relation expressed as
i→ j (or i < j), meaning that "task i should be executed before task j".

For the same graph of Figure 2.1, and cycle time c = 10, one optimal solution is that
of Figure 3.1. The difference of one workstation (or bin) comes from the strict partial
order relation defined before: second station should be split into two, since task 3 should
not be allocated together with tasks 4 and 6.
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Figure 3.1: Task assignment of one possible solution for BPP-P of instance in Figure 2.1
and cycle time = 10. The vertical axis represents the time units. From left to right, we
show the order the bins should appear in this assembly line.

3.4 Applying Dynamic Programming to BPP-P

Assuming that the difference between SALBP-1 and BPP-P is the strict precedence
relation of the latter, we propose adding one more condition to the function presented in
Section 2.4. The added condition will only consider that a task j fits in the last station
(called A) if none of its predecessors are assigned to A (as shown in Equation 3.1):

∆(F (S), tj) =

{
tj , (tj ≤ C − F (S) mod C) ∧ (preds(j) ∩ A = ∅)
C − F (S) mod C + tj otherwise

(3.1)

3.4.1 Task-based loop version

Besides the extension of the recurrence relation shown at Section 3.4, Algorithm 1
can also be used to deal with BPP-P with no other changes.

3.4.2 Station-based loop version

The modifications of Algorithm 3 to deal with BPP-P rely on the auxiliary functions
ADDNEWAVAILABLE and REMOVENEWAVAILABLE. In order to forbid one task
to be assigned to the same station of its predecessors, these auxiliary methods will just
update the current in-degree of task t followers. No task twith δ−(t) = 0 will be appended
to or deleted from L at these functions anymore. Once we finished the main procedure,
the external loop (the same referred at Subsection 2.4.2) will take care of retrieving the
in-degree information and updating the free tasks list L.

The adaptations are shown at Algorithm 6.

3.5 Fathoming rules for BPP-P

The motivation here is the same when we presented the pruning rules at Section 2.5
for SALBP-1: try to only generate configurations that are maximally loaded.

The adaptations (if necessary) are shown in the following subsections.
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Algorithm 6 BPP-P station-based adaptations pseudocode
1: function ADDNEWAVAILABLE(i)
2: for all j ∈ S∗i do
3: δ−(j) = δ−(j)− 1
4: end for
5: end function
6: function REMOVENEWAVAILABLE(i)
7: for all j ∈ S∗i do
8: δ−(j) = δ−(j) + 1
9: end for

10: end function

3.5.1 Task-based loop rule

The rule described at Section 2.5.1 can be applied to BPP-P without modification, be-
cause the observations made about maximal loads suffer no interference from the different
definitions of BPP-P.

Observe again that the soundness of this fathoming rule simply relies on the fact that a
partial solution P1 with one or more non-maximal loads could be substituted by another
partial solution P2 that has the same number of workstations (all of them maximally
loaded). It is easy to see that P2 has more tasks assigned than P1 (which moves us to
a better solution) and that a solution generated through P2 will have, at most, the same
number of stations of one generated through P1.

3.5.2 Station-based loop rule

The adaptation of the Jackson Rule (presented in subsection 2.5.2) is very simple for
BPP-P. In fact, Algorithm 5 stays the same as presented before. We just need to add a
third clause to the definition of CANREPLACE, resulting in:

1. All predecessors of j are already assigned;

2. Exchanging j with t does not violate the cycle time in station A.

3. No predecessor of j is currently assigned to station A.

3.6 Results

The same information related to the system configuration, data sets and measurements
provided at Section 2.6 is valid here. (Dell’Amico et al. 2012) proposed to use the same
data set of SALBP-1 and could prove optimality for 266 of the 269 instances. We use
their data as basis and, at the best case, we found the correct answer for 191 instances
(161 of them found without limiting memory usage). Regarding the three instances with-
out solution, we could find one new solution (WARNECKE, cycle time = 62. The best
number of bins is 30). Tables 3.1-3.8 collect the results for each implementation already
explained. Remarks regarding improvements and technical details are given in the fol-
lowing appropriate subsections.
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Table 3.1: Results for BPP-P grouped by graph - task-based without fathoming rule.
graph t i diff max Lp exp. states time(s) alloc(%) s h n

ARC83 83 16 0.00 1000000.00 45630859.44 787.14 100.00% 0 16 0
ARC111 111 17 1.06 1000000.00 85922549.82 1906.73 100.00% 0 6 11

BARTHOL2 148 27 N/A 1000000.00 82197346.11 3599.98 59.71% 0 0 27
BARTHOLD 148 8 N/A 1000000.00 88492764.13 3599.98 64.27% 0 0 8
BOWMAN8 8 1 0.00 5.00 20.00 0.00 100.00% 1 0 0

BUXEY 29 7 0.00 2435.00 26229.14 0.16 100.00% 7 0 0
GUNTHER 35 7 0.00 2148.29 24854.71 0.17 100.00% 7 0 0

HAHN 53 5 0.00 58762.00 299348.00 3.03 100.00% 5 0 0
HESKIA 28 6 0.17 1000000.00 12542968.83 145.85 100.00% 0 5 1

JACKSON 11 6 0.00 30.50 133.00 0.00 100.00% 1 5 0
JAESCHKE 9 5 0.00 6.80 24.60 0.00 100.00% 5 0 0

KILBRID 45 10 0.00 1000000.00 20317685.90 281.34 100.00% 0 10 0
LUTZ1 32 6 0.00 88.17 1001.17 0.00 100.00% 6 0 0
LUTZ2 89 11 0.00 756335.55 8395843.73 150.20 100.00% 7 4 0
LUTZ3 89 12 0.00 1000000.00 12168979.50 208.26 100.00% 0 12 0

MANSOOR 11 3 0.00 24.00 120.33 0.00 100.00% 3 0 0
MERTENS 7 6 0.00 12.17 39.50 0.00 100.00% 6 0 0

MITCHELL 21 6 0.00 130.50 836.83 0.00 100.00% 6 0 0
MUKHERJE 94 13 1.00 1000000.00 60372147.69 2213.95 100.00% 0 4 9

ROSZIEG 25 6 0.00 237.17 1746.17 0.00 100.00% 6 0 0
SAWYER30 30 9 0.00 6012.67 64074.11 0.43 100.00% 9 0 0

SCHOLL 297 26 N/A 1000000.00 54024362.92 3599.92 21.98% 0 0 26
TONGE70 70 16 0.06 1000000.00 31316595.50 504.95 100.00% 0 15 1

WARNECKE 58 16 0.06 1000000.00 18394216.50 263.53 100.00% 0 16 0
WEE-MAG 75 24 0.04 1000000.00 58149551.88 1110.89 100.00% 0 23 1

3.6.1 Task-based without fathoming rule

Optimal answer is reached in 68.77% (in only 27.51% of them this result is not due to
the memory limit), needing 172.79 seconds, in average. This great number of instances
that face the memory limit is reached because the state saved in memory here differs from
SALBP-1: when dealing with BPP-P in a task-based loop approach, besides from the
already allocated tasks, we need to store which tasks were assigned to the last bin.

For example, imagine state S1 with tasks 1,2,3,4 already assigned. Consider that
tasks 3 and 4 are at the last bin and represent S1 as {{1, 2, 3, 4}, {3, 4}}. We could
construct a state S2 with the same tasks as S1, but with just task 4 at the last bin
(S2 = {{1, 2, 3, 4}, {4}}). Both S1 and S2 have to be stored and treated apart. This
particular behaviour is due to BPP-P’s definition.

In the cases where we do not provide the optimal answer, in average, we allocate
approximately 83 tasks (graphs BARTHOL2, BARTHOLD and SCHOLL). Between in-
stances solved with no memory limit, the maximum number of allocated tasks is 89. This
range could be considered as the limit to when we give the correct answer and when this
does not happen.

Refer to Table 3.1 to see the results by precedence graph.
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Table 3.2: Results for BPP-P - task-based loop without fathoming rule.
Instances % of total

Solved 74 27.51%
Optimal with heuristic 111 41.26%

Not solved 84 31.23%

3.6.2 Task-based with fathoming rule

The presence of the proposed fathoming rule plays great influence here: although
the number of correct answers stays similar (69.52%), in 48.70% instances the result is
obtained without the 106 states limit. Cutting the time almost by the half (48.31%), we
achieve 131 cases of solution with no heuristic, reducing memory usage in 71.53%. See
Tables 3.3 for the average results by graph.

Regarding the maximum number of allocated tasks when we solve one instance, we
have an improvement: the fathoming rule makes this number change from 89 to 111
(graph ARC111). However, there are instances with less tasks that remain unsolved
(MUKHERJE, with 94 tasks). The data set from the website referred in Section 2.6
indicates that this may occurr due to the low number of edges present in this graph.

3.6.3 Station-based without fathoming rule

Hoffmann’s station-based strategy has a bigger impact than the task-based fathoming
rule. Actually, this partial solution generation procedure results in less memory usage
because it is not necessary anymore to store last bin’s information. Since we are always
loading one bin completely, in the next step, we just need to know which tasks were
already assigned (without taking care of last bin’s situation, since no other task would fit
in it).

The algorithm proposed by us, in a mean time of 81.05 seconds, gets the correct
number of bins in 65.06% of the instances. See Table 3.5 results grouped by precedence
graph.

Seven of thirteen instances of ARC111 estabilish the maximum number of tasks al-
located when we give the optimal answer without memory limit: 111 tasks. The same
situation regarding MUKHERJE instance explained in last subsection happens here. This
just evidences the importance of the precedence constraint when we analyze the memory
usage.

3.6.4 Station-based with fathoming rule

Associating Jackson’s Dominance rule has little influence on the number of correctly
answered instances: 71.00%. Execution time is reduced by 11.26% and memory con-
sumption is reduced by 12.12%.

The percentage of assigned tasks does not improve too much. The same can be said
about the maximum number of allocated tasks when we provide the optimal answer.

Accurate and detailed information is provided by Tables 3.7 and 3.8.

3.6.5 Comparison to the state of the art

Table 3.9 gathers information from the 4 implementations. The best case is achieved
with the station-based loop with fathoming rule. In Table 2.10 we compare this imple-
mentation with the state of the art algorithm in (Dell’Amico et al. 2012).
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Table 3.3: Results for BPP-P grouped by graph - task-based with fathoming rule.
graph t i diff max Lp exp. states time(s) alloc(%) s h n

ARC83 83 16 0.00 155424.94 1463115.44 21.87 100.00% 15 1 0
ARC111 111 17 0.76 824868.53 34950929.71 717.78 100.00% 4 3 10

BARTHOL2 148 27 N/A 1000000.00 109554788.78 3599.98 79.13% 0 0 27
BARTHOLD 148 8 N/A 1000000.00 122794115.63 3599.98 89.78% 0 0 8
BOWMAN8 8 1 0.00 2.00 11.00 0.00 100.00% 1 0 0

BUXEY 29 7 0.00 207.86 2330.57 0.01 100.00% 7 0 0
GUNTHER 35 7 0.00 30.14 298.71 0.00 100.00% 7 0 0

HAHN 53 5 0.00 27.00 248.60 0.00 100.00% 5 0 0
HESKIA 28 6 0.00 291152.67 2614904.67 21.71 100.00% 6 0 0

JACKSON 11 6 0.00 7.00 36.67 0.00 100.00% 6 0 0
JAESCHKE 9 5 0.00 3.00 15.40 0.00 100.00% 5 0 0

KILBRID 45 10 0.00 1000000.00 12914264.40 150.19 100.00% 0 10 0
LUTZ1 32 6 0.00 6.00 70.83 0.00 100.00% 6 0 0
LUTZ2 89 11 0.00 22108.64 178332.27 2.65 100.00% 11 0 0
LUTZ3 89 12 0.00 2482.25 11608.00 0.15 100.00% 12 0 0

MANSOOR 11 3 0.00 5.00 34.33 0.00 100.00% 3 0 0
MERTENS 7 6 0.00 6.50 22.33 0.00 100.00% 6 0 0

MITCHELL 21 6 0.00 6.17 45.33 0.00 100.00% 6 0 0
MUKHERJE 94 13 0.92 1000000.00 48546920.31 1510.83 100.00% 0 4 9

ROSZIEG 25 6 0.00 7.83 62.33 0.00 100.00% 6 0 0
SAWYER30 30 9 0.00 444.44 4884.67 0.03 100.00% 9 0 0

SCHOLL 297 26 N/A 1000000.00 59539219.73 3599.95 24.46% 0 0 26
TONGE70 70 16 0.00 14065.19 158943.38 1.76 100.00% 16 0 0

WARNECKE 58 16 0.06 1000000.00 15972212.25 207.49 100.00% 0 16 0
WEE-MAG 75 24 0.04 1000000.00 52951168.83 915.59 100.00% 0 23 1

Table 3.4: Results for BPP-P - task-based loop with fathoming rule.
Instances % of total

Solved 131 48.70%
Optimal with heuristic 56 20.82%

Not solved 82 30.48%
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Table 3.5: Results for BPP-P grouped by graph - station-based without fathoming rule.
graph t i diff max Lp exp. states time(s) alloc(%) s h n

ARC83 83 16 0.00 2729.94 8649.75 0.26 100.00% 16 0 0
ARC111 111 17 0.33 664014.29 6258362.59 1606.47 97.09% 7 4 6

BARTHOL2 148 27 N/A 468673.81 38724.52 3599.99 7.48% 0 0 27
BARTHOLD 148 8 N/A 639573.75 639573.75 3599.95 12.67% 0 0 8
BOWMAN8 8 1 0.00 1.00 4.00 0.00 100.00% 1 0 0

BUXEY 29 7 0.00 56.14 331.86 0.00 100.00% 7 0 0
GUNTHER 35 7 0.00 13.86 80.43 0.00 100.00% 7 0 0

HAHN 53 5 0.00 2.00 33.00 0.00 100.00% 5 0 0
HESKIA 28 6 0.00 108.83 279.00 0.00 100.00% 6 0 0

JACKSON 11 6 0.00 3.50 12.00 0.00 100.00% 6 0 0
JAESCHKE 9 5 0.00 1.60 7.20 0.00 100.00% 5 0 0

KILBRID 45 10 0.00 898.10 1997.10 0.04 100.00% 10 0 0
LUTZ1 32 6 0.00 3.00 44.67 0.00 100.00% 6 0 0
LUTZ2 89 11 0.00 3751.36 32390.91 0.36 100.00% 11 0 0
LUTZ3 89 12 0.00 117.25 226.00 0.00 100.00% 12 0 0

MANSOOR 11 3 0.00 2.67 10.67 0.00 100.00% 3 0 0
MERTENS 7 6 0.00 3.33 8.50 0.00 100.00% 6 0 0

MITCHELL 21 6 0.00 2.00 14.50 0.00 100.00% 6 0 0
MUKHERJE 94 13 N/A 63385.38 64162.23 3599.92 36.01% 0 0 13

ROSZIEG 25 6 0.00 4.00 15.50 0.00 100.00% 6 0 0
SAWYER30 30 9 0.00 113.56 639.56 0.00 100.00% 9 0 0

SCHOLL 297 26 N/A 394398.27 127541.31 3599.96 7.87% 0 0 26
TONGE70 70 16 0.00 1858.69 5850.69 0.12 100.00% 16 0 0

WARNECKE 58 16 0.06 137445.75 840400.63 13.81 100.00% 16 0 0
WEE-MAG 75 24 0.61 1000000.00 31424986.13 1293.12 99.39% 0 10 14

Table 3.6: Results for BPP-P - station-based loop without fathoming rule.
Instances % of total

Solved 161 59.85%
Optimal with heuristic 14 5.20%

Not solved 94 34.94%
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Table 3.7: Results for BPP-P grouped by graph - station-based with fathoming rule.
graph t i diff max Lp exp. states time(s) alloc(%) s h n

ARC83 83 16 0.00 2052.94 6726.94 0.18 100.00% 16 0 0
ARC111 111 17 0.06 612408.35 5561866.71 963.89 100.00% 7 9 1

BARTHOL2 148 27 N/A 484637.37 487945.37 3599.96 7.73% 0 0 27
BARTHOLD 148 8 N/A 539869.63 539869.63 3599.96 11.57% 0 0 8
BOWMAN8 8 1 0.00 1.00 4.00 0.00 100.00% 1 0 0

BUXEY 29 7 0.00 51.71 305.43 0.00 100.00% 7 0 0
GUNTHER 35 7 0.00 10.71 68.86 0.00 100.00% 7 0 0

HAHN 53 5 0.00 2.00 33.00 0.00 100.00% 5 0 0
HESKIA 28 6 0.00 86.17 222.67 0.01 100.00% 6 0 0

JACKSON 11 6 0.00 2.67 10.83 0.00 100.00% 6 0 0
JAESCHKE 9 5 0.00 1.60 6.40 0.00 100.00% 5 0 0

KILBRID 45 10 0.00 301.80 727.30 0.01 100.00% 10 0 0
LUTZ1 32 6 0.00 3.00 44.67 0.00 100.00% 6 0 0
LUTZ2 89 11 0.00 2730.91 22623.82 0.26 100.00% 11 0 0
LUTZ3 89 12 0.00 22.83 118.17 0.00 100.00% 12 0 0

MANSOOR 11 3 0.00 2.67 10.33 0.00 100.00% 3 0 0
MERTENS 7 6 0.00 3.33 8.50 0.00 100.00% 6 0 0

MITCHELL 21 6 0.00 2.00 14.33 0.00 100.00% 6 0 0
MUKHERJE 94 13 N/A 35096.00 35641.62 3599.99 35.02% 0 0 13

ROSZIEG 25 6 0.00 4.00 15.50 0.00 100.00% 6 0 0
SAWYER30 30 9 0.00 110.11 616.56 0.00 100.00% 9 0 0

SCHOLL 297 26 N/A 445202.50 448014.12 3599.98 8.21% 0 0 26
TONGE70 70 16 0.00 1732.94 5364.50 0.11 100.00% 16 0 0

WARNECKE 58 16 0.06 100461.25 671751.56 11.06 100.00% 16 0 0
WEE-MAG 75 24 0.13 1000000.00 30192088.04 560.58 100.00% 0 21 3

Table 3.8: Results for BPP-P - station-based loop with fathoming rule.
Instances % of total

Solved 161 59.85%
Optimal with heuristic 30 11.15%

Not solved 78 29.00%
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Table 3.9: Different BPP-P implementations results.
solved heuristic not solved

task 74 111 84
task with cut 131 56 82

station 161 14 94
station with cut 161 30 78

Table 3.10: Number of instances solved in BPP-P - comparison with (Dell’Amico et al.
2012).

Our algorithm Dell’Amico et al. Our algorithm Dell’Amico et al.
solved 161 266 59.85% 98.88%

unsolved 108 3 40.15% 1.12%

The fathoming rules implemented here have different impact in time and memory
usage. The bigger decrease is due to the task-based prune rule.

In (Dell’Amico et al. 2012), the average time to obtain the optimal solution is 157.20
seconds. In our best algorithm variant, when we obtain the optimal answer, our average
execution time is 73.14 seconds. Although their time is arround the double of ours, we
should observe that their solved instances percentage is much better.
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4 CONCLUSION

For both ALBP studied, we present two ways to apply dynamic programing model to
them: a task-based version (as shown in (Kao e Queyranne 1982), originaly proposed by
(Lawler 1979)) and our adaptation from (Hoffmann 1963) heuristic (taking in mind the
adaptation available in (Fleszar e Hindi 2003) and following the principle of Maximally
Loaded station observed by (Jackson 1956)). For each strategy, we provide two ways of
pruning the search space: station-based fathoming rule (mainly known as Jackson Dom-
inance Rule (Jackson 1956)) and a rule for the task-based version, which approximates
Jackson’s Maximally Loaded Rule.

Pseudocodes, detailed algorithm explanation and adaptations from SALBP-1 to BPP-
P are given. The results present and measure the impact of each kind of implementation,
giving also a comparison to state of the art algorithm in each variant. For BPP-P problem,
where 3 from 269 instances were still with no optimal solution, we prove a new optimal
answer (WARNECKE, cycle time 62).

As we could see, simply using dynamic programming and one fathoming rule is not
enough to solve large instances of ALBP. Although the rules used here (and better versions
of them) are implemented in state-of-the-art algorithms, definitely other strategies like
pre-processing techniques and lower and upper bounds tests are also very important when
we are trying to reduce the search space.

Regarding future works, the framework to treat ALBP produced here could be ex-
tended and aggregated with other methods and procedures used in ALBP handling, in
order to analyze their possible influence and usage in more complex scenarios. Also other
fathoming rules could be attached to the existing ones, in order to evaluate their impact
on the SALBP-1 and the BPP-P variants.
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