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ABSTRACT

The association rule mining technique emerged with the objective to find novel,
useful, and previously unknown associations from transactional databases, and a large
amount of association rule mining algorithms have been proposed in the last decade.
Their main drawback, which is a well known problem, is the generation of large
amounts of frequent patterns and association rules. In geographic databases the problem
of mining spatial association rules increases significantly. Besides the large amount of
generated patterns and rules, many patterns are well known geographic domain
associations, normally explicitly represented in geographic database schemas. The
majority of existing algorithms do not warrant the elimination of all well known
geographic dependences. The result is that the same associations represented in
geographic database schemas are extracted by spatial association rule mining algorithms
and presented to the user. The problem of mining spatial association rules from
geographic databases requires at least three main steps: compute spatial relationships,
generate frequent patterns, and extract association rules. The first step is the most effort
demanding and time consuming task in the rule mining process, but has received little
attention in the literature. The second and third steps have been considered the main
problem in transactional association rule mining and have been addressed as two
different problems: frequent pattern mining and association rule mining. Well known
geographic dependences which generate well known patterns may appear in the three
main steps of the spatial association rule mining process. Aiming to eliminate well
known dependences and generate more interesting patterns, this thesis presents a
framework with three main methods for mining frequent geographic patterns using
knowledge constraints. Semantic knowledge is used to avoid the generation of patterns
that are previously known as non-interesting. The first method reduces the input
problem, and all well known dependences that can be eliminated without loosing
information are removed in data preprocessing. The second method eliminates
combinations of pairs of geographic objects with dependences, during the frequent set
generation. A third method presents a new approach to generate non-redundant frequent
sets, the maximal generalized frequent sets without dependences. This method reduces
the number of frequent patterns very significantly, and by consequence, the number of
association rules.

Keywords: spatial data mining, knowledge discovery in geographic databases, geo-
ontologies, geographic database schemas, geographic domain knowledge, spatial
association rules, geographic data preprocessing, frequent geographic pattern mining



Melhorando a Mineracéao de Regras de Associacdo Espacial em Bancos de
Dados Geograficos

RESUMO

A técnica de mineracdo de regras de associag¢do surgiu com o objetivo de encontrar
conhecimento novo, Util e previamente desconhecido em bancos de dados transacionais,
e uma grande quantidade de algoritmos de mineracéo de regras de associacdo tem sido
proposta na ultima década. O maior e mais bem conhecido problema destes algoritmos é
a geracdo de grandes quantidades de conjuntos freqlientes e regras de associacdo. Em
bancos de dados geogréficos o problema de mineracdo de regras de associagao espacial
aumenta significativamente. Além da grande quantidade de regras e padrdes gerados a
maioria sdo associa¢des do dominio geografico, e sdo bem conhecidas, normalmente
explicitamente representadas no esquema do banco de dados. A maioria dos algoritmos
de mineracdo de regras de associagdo ndo garantem a eliminagdo de dependéncias
geograficas conhecidas a priori. O resultado € que as mesmas associa¢des representadas
nos esquemas do banco de dados sédo extraidas pelos algoritmos de mineragdo de regras
de associacdo e apresentadas ao usuario. O problema de mineracdo de regras de
associacdo espacial pode ser dividido em trés etapas principais: extracdo dos
relacionamentos espaciais, geracdo dos conjuntos frequientes e geracdo das regras de
associacdo. A primeira etapa € a mais custosa tanto em tempo de processamento quanto
pelo esforco requerido do usuério. A segunda e terceira etapas tém sido consideradas o
maior problema na mineracgdo de regras de associacdo em bancos de dados transacionais
e tem sido abordadas como dois problemas diferentes: “frequent pattern mining” e
“association rule mining”. Dependéncias geograficas bem conhecidas aparecem nas trés
etapas do processo. Tendo como objetivo a eliminagdo dessas dependéncias na
mineracdo de regras de associacdo espacial essa tese apresenta um framework com trés
novos métodos para mineracdo de regras de associacdo utilizando restricdes semanticas
como conhecimento a priori. O primeiro método reduz os dados de entrada do
algoritmo, e dependéncias geogréaficas sdo eliminadas parcialmente sem que haja perda
de informacéo. O segundo método elimina combinacdes de pares de objetos geograficos
com dependéncias durante a geracdo dos conjuntos freqlientes. O terceiro método é uma
nova abordagem para gerar conjuntos freqiientes ndo redundantes e sem dependéncias,
gerando conjuntos freqientes méximos. Esse método reduz consideravelmente o
numero final de conjuntos freqlientes, e como consequéncia, reduz o nimero de regras
de associacéo espacial.

Palavras-chave: mineracdo de dados espaciais, descoberta de conhecimento em
bancos de dados geograficos, ontologias geograficas, esquemas de bancos de dados
geograficos, conhecimento do dominio geografico, regras de associacdo espacial, pré-
processamento de dados geograficos, mineracdo de conjuntos frequentes.



1 INTRODUCTION AND MOTIVATION

Large amounts of geographic data have been used more and more in many areas in
different application domains such as urban planning, transportation,
telecommunication, marketing, etc. These data are stored under Geographic Database
Management Systems (GDBMS), and manipulated by Geographic Information Systems
(GIS). The latter is the technology which provides a set of operations and functions for
geographic data analysis. However, within the large amount of data stored in geographic
databases there is implicit, non-trivial, and previously unknown knowledge that cannot
be discovered by GIS. Specific techniques are necessary to find this kind of knowledge,
which is the objective of Knowledge Discovery in Databases (KDD).

KDD is an interactive process which according to (FAYYAD, 1996) consists of five
main  steps:  selection, preprocessing, transformation, data mining and
evaluation/interpretation. Selection, preprocessing and transformation are data
preparation steps in which data are rearranged to the format required by data mining
algorithms. It is stated that between 60 and 80 percent of the time and effort in the
whole KDD process are required for data preparation in non-spatial databases
(ADRIANNS, 1996). For knowledge discovery in geographic databases the problem of
data preprocessing increases significantly because of the complexity of geographic data
that must be considered.

Data Mining (DM) is the step of applying discovery algorithms that produce an
enumeration of patterns over the data. Most of these algorithms operate with a
restrictive single table input format. This limitation causes a gap between geographic
databases and data mining algorithms. Some of the existing data mining techniques are
association rules, clustering, classification, trend detection, etc.

Interpretation is the step where the patterns discovered by data mining algorithms
are visualized and analyzed. The discovered patterns are directly related to the type and
the quality of the dataset submitted to DM algorithms as well as the characteristics of
the data considered for data mining. This step may revert to selection, preprocessing,
transformation, or data mining to repeat the process when no interesting patterns were
discovered or when other aspects should be considered.

Different methods for general knowledge discovery have been proposed in the
literature for mining spatial/geographic databases. Some specify data mining query
languages such as GMQL (Geo-Miner Query Language) (HAN, 1997), LARECOS
(BIGOLIN, 1998), and SDMOQL (Spatial Data mining Object Query Language)
(MALERBA, 2002). Most of these languages are neither implemented in available data
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mining systems nor in database management systems. Most GDBMS follow the
Structured Query Language (SQL), which became the standard language to manipulate
databases, and do not implement data mining languages or operations to automate or
semi-automate spatial data mining.

Other approaches define new operations such as get_nGraph, get_neighborhood and
create_nPaths to compute geographic neighbors (ESTER, 2000). A few approaches
create software prototypes, such as GeoMiner (HAN, 1997), ARES (APPICE, 2005),
and INGENS (MALERBA, 2003).

In this thesis we address the spatial association rule mining technique, which has
been largely used for knowledge discovery in both transactional databases and
geographic databases. An association rule is a general form of dependence where an
element has some dependence with another element. More specifically, an association
rule consists of an implication of the form X = Y, where X and Y are sets of elements
co-occurring in a given tuple in a dataset (AGRAWAL, 1994).

In spatial association rules (SAR) at least one element in X or Y is a spatial predicate
(KOPERSKI, 1995). Spatial predicates represent materialized spatial relationships
between geographic entities, such as close, far, contains, within, touches, etc. For
example, is_a(slum) A contains(water_network) = NO — hepatitisincidence = high.
Because of spatial relationships real world entities can affect the behavior of other
features in the neighborhood. This makes spatial relationships be the main characteristic
of geographic data to be considered in spatial data mining (LU, 1993)(ESTER, 2000)
(KOPERSKI, 1995) and the main characteristic which differs geographic/spatial data
mining from transactional data mining.

The problem of mining SAR from geographic databases requires at least three main
steps: compute spatial relationships, generate frequent sets (also called frequent
patterns), and extract association rules.

Although the first step is the most effort and time consuming task in the process of
mining SAR (SHEKHAR, 2003), it has received little attention in the literature. Not
only the most effort is required from the data mining user, but the computational cost
for mining SAR also relies on this step. The second and third steps have been
considered the main problems in transactional association rule mining (HAN, 2000),
and have been addressed in the literature as two different problems: frequent pattern
mining and association rule mining.

Association rule mining algorithms in general generate a large amount of patterns
and rules, which the user has to analyze in order to find novel and useful knowledge. In
SAR mining this problem increases significantly. Besides the large amount of generated
patterns and rules, most are well known geographic domain associations (MALERBA,
2001)(MENNIS, 2005). For example, contains(island) - contains(water) or
intersects(gasStation) = intersects(street) are examples of spatial associations that
represent well known dependences, since islands must be related to at least one water
body and gas stations must intersect at least one street.

Users of some domains may not be interested in geographic domain associations. A
doctor, for example, may not be interested in rules such as is a(island) -
within(water), but in rules such as is_a(island) * humidity=high = disease=malaria. In
spatial association rule mining a large amount of rules are well known geographic
domain associations which do not hold considerable information. The mixed
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presentation of thousands of interesting and uninteresting rules can discourage users
from interpreting them in order to find patterns of either novel or unexpected
knowledge.

Patterns in the discovery process should be considered interesting when they
represent unknown strong regularities, rare exceptions, or when they help to distinguish
different groups of data. (POHLE, 2003). In geographic databases, however, there is a
large number of patterns intrinsic to the data, which represent strong regularities, but do
not add novel and useful knowledge to the discovery.

Geographic domain dependences are well known by specialists in geography or
geographic database designers. They are mandatory spatial associations normally
explicitly represented in geographic database schemas (BOGORNY, 2006b) and geo-
ontologies (BOGORNY, 2005b). However, existing approaches for mining SAR do not
make use of geographic domain knowledge to reduce the amount of non-novel patterns.
Only little attention has been devoted to the questions of reducing non-novel
associations extracted from geographic databases, and no prior knowledge has been
used for this purpose. Existing approaches such as (KOPERSKI, 1995) (APPICE, 2003,
2005)  (LISI, 2004) (CLEMENTINI, 2000) (MENNIS, 2005) use
generalization/specialization concept hierarchies of geographic and non-geographic data
to specify data at different granularity levels, but not to reduce the number of well
known geographic domain patterns.

The association rule mining technique has emerged with the objective to find novel,
useful, and interesting associations, hidden among data (AGRAWAL, 1993), but not
explicit and well known associations. Existing association rule mining algorithms
propose different thresholds and syntactic constraints for reducing the number of
patterns and rules, but only the data by themselves have been considered, while the
database schema, which is a rich knowledge repository, has not been used as prior
knowledge to eliminate well known patterns.

In transactional association rule mining the schema might not be useful, since items
and transactions can be stored in a single relation. In geographic databases, however,
every different geographic object type is normally stored in a different relation, since
most geographic databases follow the relational approach (SHEKHAR, 2003)
(RIGAUX, 2002).

From the database design point of view, the objective of data modeling is to bring
together all relevant object types of the application, their associations/relationships, and
their constraints (SHEKHAR, 2003)(ELMASRI, 2003). Many geographic object types
have mandatory associations, represented in the schema by one-one and one-many
cardinality constraints, which the database designer has the responsibility to warrant
when the schema is conceived. The representation is usually in the third normal form,
intending to reduce anomalies and warrant integrity constraints (ELMASRI, 2003).

In contrast to database schema modeling, where associations between data are
explicitly represented, association rule mining algorithms should find implicit and novel
associations. While the former represents data into the third normal form, the latter
usually denormalize data in one single table or one single file. This transformation
brings the associations explicitly represented in the database schema to the dataset to be
mined and, as a consequence, many well known associations, specified in the schema,
are extracted by association rule mining algorithms and presented to the user.
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Aiming to reduce the number of well known patterns in spatial association rule
mining this thesis presents a deep study on the whole process of mining spatial
association rules from geographic databases.

1.1 Objectives and Methodology

This research has the objective to investigate real problems in spatial association
rule mining and propose solutions. The purpose is to use prior semantic knowledge to
eliminate patterns and rules that are previously known as non-interesting.

The methodology adopted by this research includes the following main steps:

1)  Develop a data preprocessing software prototype to generate different datasets
from geographic databases to apply association rule mining algorithms.

2)  Perform experiments with real datasets in order to identify the different types
of well known patterns that may appear in SAR mining. This step includes
experiments with different spatial relationships and geographic data at
different granularity levels.

3)  Perform case studies with real geographic database schemas in order to
evaluate the amount of well known patterns explicitly represented in these
knowledge repositories.

4)  Investigate how semantic knowledge can be used to improve geographic data
preprocessing and to reduce well known patterns in SAR.

5)  Propose methods to eliminate well known patterns in SAR mining.

6)  Perform experiments with real geographic databases in order to validate the
proposed solutions.

1.2 Scope and Outline

The scope of this thesis is limited to the use of prior knowledge to reduce well
known patterns in geographic data preprocessing and spatial association rule mining. It
is important to emphasize that the focus of this thesis is on the elimination of well
known geographic domain associations, and not on reducing redundant association rules
which has been the objective of many works in transactional data mining.

The remaining of this thesis is organized as follows: Chapter 2 presents some
background concepts about geographic data, spatial relationships, spatial integrity
constraints, as well as geographic dependences. Indeed, two case studies with real
geographic database schemas are presented in order to evaluate the large amount of well
known geographic dependences that are explicitly represented in GDB schemas.

Chapter 3 introduces the concepts of frequent patterns and spatial association rules,
the problems generated by geographic dependences in both data preprocessing and
spatial association rule mining, and what has been done so far to reduce this problem.

Chapter 4 presents a framework to improve geographic data preprocessing and
spatial association rule mining using prior knowledge. Three methods are presented to
eliminate well known dependences in SAR mining.
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Chapter 5 presents extensive experiments performed with real geographic databases
to show the significant reduction of the number of frequent patterns and spatial
association rules using prior knowledge.

Chapter 6 presents an overview about the implementation of the data preprocessing
module of the proposed framework, and Chapter 7 concludes the thesis and suggests
directions of future research.
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2 GEOGRAPHIC DATABASES: BASIC CONCEPTS

Geographic databases (GDB) store real world entities/objects, also called spatial
features, located in a specific region (OPEN GIS CONSORTIUM, 1999a). Spatial
features (e.g. Canada, France) belong to a feature type (e.g. country), and have both
non-spatial attributes (e.g. name, population) and spatial attributes (geographic
coordinates x,y).

Spatial feature types in geographic databases are usually stored in different relations,
because most geographic databases follow the relational or object-relational approach
(SHEKHAR, 2003) (RIGAUX, 2002). Figure 2.1 shows an example of geographic data
stored in relational databases, where the feature types street, water resource, and gas
station are different relations (database tables) with spatial (shape) and non-spatial
attributes.

(a) Street
Gid Name Shape
1 Itaqui Multiline [(X1,Y1),(X2,Y2),--]

2 ljui Multiline [(X1,Y1),(X2,Y2),-.]
(b) WaterResource

Gid Name Shape

1 Jacui Multiline [(X1,y1),(X2,Y2),..]

2 Guaiba  Multiline [(X1,y1),(X2,Y>2),..]
3 Uruguai  Multiline [(X1,y1),(X2,¥2),..]

(c) GasStation
Gid Name DieselVol GasVol Shape
1 BR 20000 85000  Point[(x1,y1)]
2 ESSO 30000 95000  Point[(x1,y1)]
3 ELF 25000 120000 Point[(x3,y1)]

Figure 2.1: Examples of geographic data storage in relational databases

The spatial attributes of geographic object types, represented by shape in Figure 2.1,
have intrinsic spatial relationships (e.g. close, far, contains, intersects). Because of these
relationships real world entities can affect the behavior of other features in the
neighborhood. This makes spatial relationships be the main characteristic of geographic
data to be considered for data mining and knowledge discovery (ESTER, 2000) and the
main characteristic which differs spatial data mining from classical data mining.
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The process of extracting spatial relationships brings together many interesting and
uninteresting spatial associations. Figure 2.2 shows an example of implicit and non-
standard spatial relationships among gas stations, industrial residues repositories, and
water resources. There is no explicit pattern among these data. Considering, for
example, that water analyses showed high chemical pollution, the extraction of spatial
relationships among water resources, gas stations, and industrial residues repositories
will be interesting for knowledge discovery.
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Figure 2.3 shows two examples of spatial relationships that represent well known
geographic dependences. In Figure 2.3 (left), viaducts intersect streets and bridges
intersect both water resources and streets, since both bridges and viaducts have the
semantics of connecting streets. In Figure 2.3 (right), there is a well known geographic
dependence, where every gas station intersects at least one street.

@ Gas Station

patterns

The main difference between the examples shown in Figure 2.2 and Figure 2.3 is
that in the former spatial relationships may hold or not, and may conduce to more
interesting patterns. In the latter, under rare exceptions or some geographic location
inconsistency, the spatial relationships hold for practical purposes in a 100% of the
cases, and will produce well known geographic domain patterns in the discovery
process. If considered in association rule mining, well known spatial relationships will
generate rules such as is_a(Viaduct) -> intersects(Street) or is_a(GasStation) —>
intersects(Street).
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Well known geographic dependences are mandatory spatial relationships that
represent spatial integrity constraints (SERVIGNE, 2000) which must hold in order to
warrant the consistency of the data. They are normally explicitly represented in
geographic database schemas, as will be shown later with two case studies.

The following sections present an overview of different types of spatial
relationships, whose relationships represent well known dependences and how they are
represented in geographic database schemas.

2.1 Spatial Relationships and Spatial Integrity Constraints

There are basically 3 types of spatial relationships to consider: distance, direction,
and topological (GUTING, 1994). Distance relationships are based on the Euclidean
distance between two spatial features, as shown in Figure 2.4 (a). Let dist be a distance
function, operator be an arithmetic predicate from the set {<, >, >=, <=, =}, let d be a
real number and let A and B be spatial features, the distance relationship between A and
B is expressed as dist (A, B) operator d.

Direction/Order relationships deal with the order as spatial features are located in
space in relation to each other or in relation to a reference object, as shown in Figure 2.4
(b).

Topological relationships characterize the type of intersection between two spatial
features, and remain invariant under topological transformations such as rotating and
scaling. There are many approaches in the literature to formally define a set of
topological relationships among points, lines, and polygons. Most of them are based on
the intersections model (EGENHOFER 1991, 1995), being co-related sharing interior
and boundary (4-intersection model), or interior, boundary, and exterior (9-intersection
model). These intersections may be combined by the logical operators and (») and or (v).
Hadzilacos (1992) extended Egenhofer’s approach for the combinations of points, lines,
and polygons. The intersection models provide 8 binary topological relations: crosses,
contains, within, covers, coveredBy, equals, disjoint, and overlaps.

The topological relationships can also be defined according to the calculus based
method (CBM) and the dimension extended method (DEM), both proposed by
Clementini (1993). These methods define 6 topological relationships: contains, within,
equals, crosses, overlaps, and disjoint. Figure 2.4(c) shows some examples of
topological relationships.

At a high concept level topological relationships are either disjoint or connected
(intersect). When objects are connected, then they can have only one topological
relationship of type crosses, contains, within, covers, coveredBy, equals, and overlaps.
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(a) Distance (b) Direction/Order (c) Topological
0
0 . B north A
5 (a)
:‘ \“\dz\ Equals Touches  Contains/Within
fdy . — =
~ | Al ©
o) @
C southeast A — /
Crosses Overlaps

Figure 2.4: Examples of spatial relationships

Spatial relationships between two spatial features can be possible, mandatory or
prohibited. Possible relationships can either exist or not (e.g. “roads cross rivers”,
“counties contain factories”) in the database. Mandatory and prohibited spatial
relationships represent spatial integrity constraints (SERVIGNE, 2000) which must hold
if the database is consistent.

Spatial integrity constraints encompass the peculiarities of geographic data and their
spatial relationships (COCKCROFT, 1997). Their purpose is to warrant as well as
maintain both the quality and the consistency of spatial features in geographic
databases. Spatial integrity constraints between two spatial feature types A and B can be
specified by relationships with cardinality constraints (SERVIGNE, 2000)
(BOGORNY, 2001) (SHEKHAR, 2003 pp.37). For instance, a mandatory relationship
between gas station and street can be represented by the cardinality one-one or one-
many, such that every gas station must be related to at least one street. Mandatory
constraints represent well known geographic dependences which generate well known
patterns when considered in SAR mining.

2.2 Geographic Dependences

In geographic space, “everything is related to everything else, but nearby things are
more related than distant things” (TOBLES apud SHEKHAR, 2003, p. 186). However,
some things are always related to others. When this happens, then we can say that there
is a geographic dependence.

Definition 1 (geographic dependence) is a mandatory spatial relationship between
two geographic feature types A and B where every instance of A must be spatially
related to at least one instance of B.

Geographic dependences are well known because they are explicitly represented by
database designers in geographic database schemas in order to warrant the spatial
integrity of geographic data. Geographic database schemas are normally extended
relational or object-oriented schemas (SHEKHAR, 2003). There is an emerging trend
toward extending both Entity Relationship (ER) and Object-Oriented (OO) diagrams
with pictograms to provide special treatment to spatial data types (SHEKHAR, 2003,
pp.205). (PARENT, 1998) (BORGES, 2001) (ROCHA, 2001) (LISBOA, 2000) are
approaches which extend ER and OO diagrams for geographic applications. In both ER
and OO approaches, mandatory relationships among entities are represented through
associations with cardinality constraints (SHEKHAR, 2003). In geographic database
schemas, geographic dependences may be defined as a spatial relationship (e.g. touches,
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contains) or as a single association or aggregation with cardinalities one-one or
one_many.

Figure 2.5 shows an example of part of a conceptual geographic database schema,
represented in a UML class diagram (BOOCH, 1998), and part of its respective logical
schema for relational and OO databases. The schema in Figure 2.5 represents some of
the spatial feature types shown in Figure 2.2 and Figure 2.3. Notice that there are many
mandatory associations (e.g gas station and street, street and county, water resource and
county, and island and water resource) while possible relationships which do not
represent well known dependences and may be interesting for KDD are not represented
in the schema (e.g. gas stations and water resources).

In the logical level, mandatory relationships expressed by cardinalities one-many
and one-one normally result in foreign-keys in relational geographic databases, and in
pointers to classes, in object-oriented geographic databases (ELMARSI, 2003).
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Create Table Street public class GasStation {
(street_code integer, private varchar(30) name;
street_name varchar(30), private float vol_diesel;
street_length varchar(30), private float vol_gas;
geometry line, private point geometry;
Primary Key (street_code)) Street theStreet;
Create Table GasStation public GasStation() { }
(gas_station_code integer, }
gas_station_name varchar(30),
gas_slation_vol_diesel float, public class Island {
gas_station_vol_gas float, private varchar(30) name;
geometry point, private integer population;

Primary Key (gas_station_code) private varchar(10) sanitary_condition;

Foreign Key (street_code) References Streef)  private point geometry;

WaterResource theWaterResource;

Create Table Island
(island_code integer, public Island{(){ }
island_name varchar(30), }
island_population integer,
island_sanitary_condition varchar (10),
geometry point,

Primary Key (island_code)

Foreign Key (water_resource_code) References WaterResource)

Figure 2.5: Part of a conceptual and logical geographic database schema

In (BOGORNY, 2006b) we presented an algorithm to extract geographic
dependences from database schemas.

In order to evaluate the amount of well known geographic dependences explicitly
represented in real geographic database schemas, two case studies with real schemas
were performed: the Brazilian Army data model, which has been the basis to construct
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geographic maps for the whole country, and the data warehouse developed in the project
iPara for the Para state, in Brazil.

2.3 Geographic Database Schemas: a Case Study

The geographic database schema developed by the Brazilian Army contains most
geographic elements that are part of the Brazilian terrain model, which under a few
variations, is similar to any terrain model represented in geographic databases. Because
of the large number of objects and relationships to be represented, geographic data
conceptual schemas are usually designed in different packages/superschemas.

The geographic database schema developed by the Brazilian Army follows the
conceptual framework GeoFrame proposed in (LISBOA, 2000), and has 8 main
packages: edification, infra-structure, hydrography, vegetation, administrative regions,
referential, relief, and toponymy. The package infra-structure, for example, is divided in
six sub-schemes, including information about transportation, energy, economy,
communication, etc. The hydrography package, for instance, represents objects such as
streams, oceans, and lakes.

Information of different packages may be extracted for data mining, and the number
of one-one and one-many relationships varies from one package to another. For
example, the hydrography package, which is shown in Figure 2.6, has a total of 24
geographic objects types (16 from its own package and 8 from others) which share a
total of 15 one-many and one-one relationships when super classes are concrete, and
more that 20 if super classes are abstract.

The infra-structure level, for example, has 73 geographic objects in its own package
and has relationships with 88 objects from other packages. Among the 88 relationships,
70 are mandatory one-one dependences.

The transportation level, shown in Figure 2.7, has a total of 20 objects and 18
associations/aggregations, among which, 10 are one-one or one-many. In this schema
we have two classical well known associations between gas stations and roads as well as
roads and crossways.
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Figure 2.6: Hydrographic conceptual object-oriented schema of the Brazilian
Geographic Territory (MCOO of EBG - Brazilian Army — STI - DSG - 1°DL)



Sistema Rodoviarnio

Trilha L

Caminho [ 0.* | Nome - String
(from Transporie]
0. e
| By B
ot '|‘,'au 07 L
T
Profundidade : doulde
Epoca_TravesslaiSing : Aterro
[from: Clora)
[ B
T
s L : - |"=r-:-{|:'rﬂithem'
Passagem Ftiidiia 1* e
{from Obra)  |o* x| i )
; [fromTransporte] [1.2 [
_}_'_._,_.--'""f-f-: aﬁlsﬂ =
= RS MNeme 1 Siring
Ban’aggm o* Capacidade_TonlZidoubie
{from Obraj 0_* ; Trawessia_Min - Iniger
Estrutura Rodoviaria " |FunclonamentoliString
MNome ; String

Estacao Rodoviaria

Mome : Shring
Tipo - String

coiada - Books
Capacidadeintesr

Administracso - String

L‘[\.

1

an

a3

Estrutura_Rodoviaria_5
(from Tramsports)

Esiruiura_Rodoviaria C

{from Transporie)

I

Trevo

Idt 2 String !
Revestmento - Siring
Ind_Trafeg - Siring
Ind_Trafeg ; Siring

=

Esta_Rodowviaria_C
{frem Infrasstrutura)

TP Rodoviario
(from Edificacac)

Posto Combusth

(from Edificacan)

el

Trevo: C [=]
1
Treve 5 L
5]
ACESS0 -
dt - Siring

Figure 2.7: Transportation conceptual object-oriented schema of the Brazilian
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The conceptual schema of the project iPara is a geographic data warehouse
developed in cooperation with geographic database research group SIGMODA of
I/UFRGS, COHAB-PA, and SEIR-PA. It integrates general geographic data of the state
of Para (SIGIEP) and the urban geographic database (SIME). The iPara conceptual
model is designed according to the GeoFrame-T framework proposed by (ROCHA,

The complete conceptual schema of iPara has more than 20 different schemas
including Hidrography, Infra-Structure, and Transportation.

The Transportation package, for example, shown in Figure 2.8, has 27 objects with
16 one-one and one-many associations.
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Figure 2.8: Transportation schema of the iPara project

In the Water Distribution schema, shown in Figure 2.9, among 7 objects, all 5
relationships are one-many or one-one associations.
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Figure 2.9: Water distribution conceptual schema of the iPara project

In the schema shown in Figure 2.10, for example, the 15 relationships are all one-
one or one-many associations. For all theses pairs of geographic objects, if they together
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pass some basic constraints such as minimum support in SAR mining, a large number of
well known rules will be generated having these dependences.
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Figure 2.10: Energy conceptual schema of the iPara project

The case study with two real GDB schemas showed that a large number of
mandatory well known geographic dependences is explicitly represented in geographic
conceptual data modeling.

An interesting study which shows that mandatory one-one and one-many
associations produce well known patterns can be found in (SILVA, 2003), that uses the
association rule mining technique for mining geographic database schemas. The study
had the objective of finding strong spatial patterns in order to infer candidates of design
patterns for geographic conceptual data modeling. The main objective was to create a
pattern catalogue to help the database designer in GDB conceptual data modelling.
Many discovered patterns in such study refer to associations with cardinalities one-one
or one-many, which are exactly those we argue that produce well known patterns when
the objective is to find novel and useful knowledge.

Not only geographic database schemas are rich knowledge repositories that can be
used in SAR mining to reduce well known patterns. Geographic ontologies store a large
amount of semantic knowledge that can be used to improve geographic data
preprocessing (BOGORNY, 2005b) and reduce well known patterns in spatial
association rule mining (BOGORNY, 2006c), as will be briefly introduced in the
following section.
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2.4 Geo-Ontologies and Spatial Integrity Constraints

Ontology is an explicit specification of a conceptualization (GRUBER, 1993). More
specifically ontology is a logic theory corresponding to the intentional meaning of a
formal vocabulary, that is, an ontological commitment with a specific conceptualization
of the world (GUARINO, 1998). It is an agreement about the concepts meaning and
structure for a specific domain. Each concept definition must be unique, clear, complete
and non-ambiguous. The structure represents the properties of the concept, including a
description, attributes, and relationships with other concepts.

Ontologies have been used recently in many and different fields in Computer
Science, such as Artificial Intelligence, Databases, Conceptual Modelling, Semantic
Web, etc. Because of this reason, a relevant number of ontologies have already been
proposed, and a number of models, languages and tools were developed. Chaves
(2005a) besides defining a geo-ontology for administrative data for the country of
Portugal, defines a meta-model, named GKB (Geographic Knowledge Base), which is a
starting point to define an ontology for geographic data.

In geo-ontologies, spatial integrity constraints are represented by properties of
geographic data. They are specified as restriction properties, i.e., are defined as a spatial
or non-spatial relationship with the corresponding minimum and maximum
cardinalities. For instance, a concept island, which is a piece of land surrounded by
water, must have a mandatory one-one relationship with the concept water.

Figure 2.11 shows a small example of a geographic ontology with the specification
of different topological relationships in order to illustrate how mandatory semantic
constraints are represented.

In the example in Figure 2.11, bus stop and gas station have a mandatory constraint
with road because every gas station and every bus stop must topologically touch one or
more instances of road. Roads, however, do not necessarily have gas stations or bus
stops. The uni-directional association represents the mandatory relationships that cities,
bus stops and gas stations have with Road. Notice in the OWL representation that
minimum cardinality 1 is explicitly represented and can be easily retrieved.

To evaluate the amount of well known dependences in real geo-ontologies we
analysed the first geo-ontology of Portugal, named geo-net-pt01 (CHAVES, 2005b).
Although not all elements of the geographic domain have been defined in geo-net-pt01,
there are many one-one and one-many dependences.

The repository of the geo-ontology stores 3 levels of information: geo-
administrative, geo-physical, and network. The geo-administrative level stores
administrative information about territorial division, and includes geographic feature
types such as municipalities, streets, etc. The network level stores non-spatial data and
relationships about the geo-administrative layer (e.g population of a district). The geo-
physical level stores feature types including continents, oceans, lakes, bays, water
bodies, etc.

In geo-net-pt01, among 58 different spatial feature types, we found 55 one-one
relationships.
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ity :
- BusStop GasStation
hasGeometry ‘ String
- touches ‘ Instance* ‘ Road touches ‘ Instance* ‘ Road
population ‘ Integer - -
- hasName ‘ String hasGeometry ‘ String
hasName String - -
- hasGeometry String hasName String
contains | Instance® | Road
contains* fouches* touches™
4
Road

extension ‘ Integer

hasName | String

hasGeometry ‘ String

<owl:Class rdf:ID="Bus Stop">
<rdfs:subClassOf>
<owl:Restriction>
<owl:valuesFrom rdf:resource="#Road"/>
<owl:minCardinality rdf:datatype="http://www.w3.0rg/2001/XMLSchema#int" >1</owl:minCardinality>
<owl:onProperty>
<owl:ObjectProperty rdf:1D="touches"/>
</owl:onProperty>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="http://www.w3.0rg/2002/07/owl#Thing"/>
</owl:Class>
<owl:Class rdf:ID="GasStation">
<rdfs:subClassOf>
<owl:Restriction>
<owl:minCardinality rdf:datatype="http://www.w3.0rg/2001/XMLSchema#int" >1</owl:minCardinality>
<owl:onProperty>
<owl:ObjectProperty rdf:about="#touches"/>
</owl:onProperty>
<owl:valuesFrom rdf:resource="#Road"/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="http://www.w3.0rg/2002/07/owl#Thing"/>
</owl:Class>

Figure 2.11: Geo-Ontology representation and OWL code

In this chapter we introduced geographic databases, spatial relationships, and well
known geographic dependences which are represented by cardinality constraints one-
one and one-many in geographic database schemas and geo-ontologies. In the following
chapter we introduce the concept of non-spatial and spatial association rules as well as
studies that show different problems identified in the process of mining spatial
association rules.
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3 THE PROLEM OF MINING ASSOCIATION RULES
IN GEOGRAPHIC DATABASES

Association rules have been largely used to extract patterns from spatial and non-
spatial databases. The main difference between non-spatial and spatial association rules
are the spatial aspects (spatial relationships) of geographic data that must be considered
in spatial association rule mining. Among the spatial relationships there are many well
known associations which generate a large number of well known patterns and
association rules. In this chapter we introduce spatial and non-spatial association rules
and explain the main problems that well known geographic associations generate in the
association rule mining technique and what has been done so far to overcome these
problems.

3.1 Association Rules

Association rules consist of an implication of the form X - Y, where X and Y are
sets of items co-occurring in a given tuple (AGRAWAL, 1993). The formal problem
statement for defining association rules can be specified as follows: let F = {f, f,,... f,
..., T} be a set of items, and ¥ (dataset) be a set of rows (transactions) W, where each W
is a set of items (tuple) such that W < F. Each W is represented as a binary vector, with
an element w[k] = 1, if W contains the attribute f,, and w[k] = 0, otherwise. There is
exactly one row in the dataset to be mined for each transaction. Considering X as a
subset of F, W contains X if, for all fi in X, w[k] = 1. Similarly, being Y a subset of F, W
contains Y if, for all f in Y, w[k] = 1.

An association rule consists of an implication of the form X — Y, where Xc F, Y ¢
Fand X n'Y =. The support s of an itemset X is the percentage of rows in which the
itemset X occurs as a subset. The support of the rule X — Y is given as s(XUY).

The rule X — Y is satisfied in ¥ with confidence factor 0 < c <1, if at least c% of
the instances in ¥ that satisfy X also satisfy Y. The notation X — Y (c) specifies that the
rule X — Y has confidence factor of c. More precisely, the confidence factor is given as
S(XUY)/s(X).

The problem of mining association rules can be decomposed in two steps
(AGRAWAL, 1993):

= Find all large/frequent itemsets: an itemset is frequent if its support is at least
equal to a certain threshold, called minsup.
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= Generate high confidence rules: a rule is strong if its support is at least equal to
minimum support and the confidence is higher or equal to a certain threshold,
called minconf.

Assertion 1. (AGRAWAL, 1993) If a predicate set Z is large, then every subset of Z
will also be large. If the set Z is not large, then every set that contains Z is not large too.
All rules derived from Z satisfy the support constraint if Z satisfies the support
constraints.

Association rule mining algorithms under rare exceptions (HAN, 2000, 2004)
generate candidate sets and then compute their frequency, in order to generate frequent
sets, as in Apriori (AGRAWAL, 1994). The candidate generation is performed with
multiple passes over the dataset. In the first pass, the support of the individual elements
is computed to determine large-itemsets, called frequent k-itemsets. In the subsequent
passes, given k as the number of the current pass, the large sets Li.; in the previous pass
(k -1) are grouped into sets Cx with k elements, which are called candidate sets. The
support of each candidate set is computed, and if it is equal or higher than the minimum
support, then this set is considered frequent. This process continues until the large set in
the pass results in an empty set. Association rules are extracted from the resultant
frequent sets, i.e., candidate sets that reached minimum support.

Figure 3.1 (a) shows an example of a dataset with six transactions and five items
(A,C,D,T,W). In Figure 3.1 (b) are the k frequent sets with minimum support 50%, i.e.,
which appear in at least 50% of the transactions.

a) dataset b) frequent itemsets with minimum support 50%
Tid | itemset Serk

L |AcDTwW et Frequent sets

> | cow k=1 {A}. {C} {D}, {T}. {W}

— k=2 {A.C}. {AD}, {A T} {AW}, {CD} {CT} {C,w},
3 |[ADTW {D,T}, {D,W}, {T,W}
_ {A.C D}, {A.C W}, {ADT} {ADW} {ATW},

4 |ACDW k=3 | {cD.T}, {C.DO.W}, {D.TW}

> [ACGDTW k=4 | {ACDW}, {AD,TW}

6 | C,D,T

Figure 3.1: Dataset with 6 tuples and frequent sets with minimum support 50%

A huge number of algorithms for non-spatial data has been proposed to reduce the
computational time, the number of candidates or frequent sets (also called patterns), and
the number of association rules. Algorithms that aim to reduce both the number of
frequent sets and association rules, in general, can be classified in two types: Apriori-
like approaches, which generate frequent sets and define different measures to reduce
the number of rules; and approaches that generate closed frequent sets, which reduce the
number of frequent sets and redundant rules.

Although there are still many works that propose different methods to either
generate or prune association rules, the rule generation is considered a trivial step
(BURDICK, 2001). Research has focused on the frequent set generation, which is the
most time consuming step (UNO, 2004) (BURDICK, 2001) (HAN, 2000) in the
association rule mining process. In 2003 and 2004, for example, the FIMI (Frequent
Itemset Mining Implementations) Workshop held in conjunction with the IEEE ICDM
(International Conference on Data Mining) focused on different methods for mining and
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implementating frequent itemsets. Some of the presented works include (UNO, 2003,
2004)(ORLANDO,2003) (GOETHALS, 2003).

Apriori-like approaches discuss objective and subjective interestingness of the rules.
However, according to (BAYARDO, 1999a) it is difficult to come up with a single
metric that quantifies the “interestingness” or “goodness” of an association rule. As a
result, several metrics have been proposed and used, such as the already mentioned
support and confidence, entropy gain (MORIMOTO,1998), gini (FUKUDA, 1996),
improvement (BAYARDO, 1999b), conviction (BRIN, 1997), etc. In most approaches,
non-interesting rules are normally eliminated during the rule generation, i.e., a
posteriori, when frequent sets have already being generated.

In (BAYARDO, 1999a, 1999b) (TAN, 2002) (SRIKANT, 1997) (FREITAS, 1998)
(MELANDA, 2004) different thresholds and item constraints are applied and only rules
that satisfy the constraints are generated and presented to the user. (PADMANABHAN,
1998) and (SILBERCHATZ, 1996) propose methods that consider a set of expectations
or beliefs about a domain, and patterns are considered interesting when they are
unexpected and contradict believes. These approaches require the definition of complex
belief information, such as conditional probabilities, which according to (LIU, 2000) are
difficult to obtain in practice. Srikant (1995), for example, used concept hierarchies to
eliminate candidate sets that contain parent (e.g. cloth) and child (e.g. jacket, dress) of a
hierarchy in the same set. In practice it is not common to mine the same data at different
granularity levels in one single mining process. This method reduces rules that should
be avoided in data preprocessing such as jacket=yes > clothes=yes. Such data should
not be considered together in the same mining process.

Approaches that generate closed frequent sets and its variations such as (PEI, 2000)
(PASQUIER, 1999a) (BASTIDE, 2000) (ZAKI 2000,2002) (BONCHI,
2003a,2003b,2004) (HAN, 2000), compute frequent sets followed by the elimination of
those which are not closed. To understand the concept of closed frequent sets, let us
consider the dataset in Figure 3.2 (a), the frequent itemsets and the transactions where
they occur (Figure 3.2 ¢) and their closed frequent sets shown in Figure 3.2 (b). The set
{AD,W}, for example, is a frequent itemset because it reaches minimum support
(50%). It is also a closed frequent itemset because in the set of transactions (1345)
where it occurs in the dataset, no set larger than {A,D,W} (with more than 3 elements)
in the same transactions reaches minimum support. The frequent set {A,D,T}, for
example, appears in the transactions 135, but in the same transactions, a larger set
{A,D,TW} can be generated. In this case the tidset(A,D,T) = 135 and the
tidset(A,D,T,W) = 135 and {A,D, T}c{A,D,T,W}, so the frequent itemset {A,D,T} is
not closed.

Definition 2 (Closed Frequent Set) (PASQUIER, 1999a): a frequent itemset L is a
closed frequent itemset if Q(L)=L.

The closure operator Q associates with a frequent itemset L the maximal set of items
common to all transactions (tidset) containing L. The closure operator allows the
definition of all frequent closed itemsets which constitute the minimal non-redundant
frequent sets. Non-closed frequent itemsets have same support as its respective closed
frequent itemset, so the maximal frequent itemsets are maximal closed frequent sets.
This property warrants that no information is lost and that rules generated from non-
closed frequent itemsets are redundant to rules generated from their respective closed
frequent sets.
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a) dataset b) closed frequent itemset
Tid | itemset Setk | Closed frequent sets
1 |ACDTW
k=1 {D}
2 | C,D,W
k=2 {C.D}, {D,T}, {D,W}
3 |ADTW
k=3 {ADW}, {CD,T}, {C,D,W}
4 |ACDW
k =4 {AC,.D,W}, {AD,TW}
5 |[ACDTW
6 |C,DT

c) frequent itemsets in the same tidset

TidSet | Frequent itemsets L

123456 | {D}

12456 | {C} {C,D}

12345 | {w} {D,W}

1245 {c,w} {C,D,W}

1345 {A} {AD}, {AW}, {AD,W}

1356 {1}, {D,T}

145 {AC}, {AC W}, {ACD} {ACDW}

135 {T.W3}, {A T}, {AD,T}, {ATW}, {D,TW} {AD,TW}
156 {C,T}.{C,D, T}

Figure 3.2: Dataset with 6 tuples and closed frequent sets with minimum support 50%

In Figure 3.2 (c), the maximal frequent itemset for the transactions 12345 is {D,W}.
For the transactions 1245, the set {C,W}<{C,D,W}, so {C,D,W} is the maximal. For
the transactions 145, notice that {A,C}={A,C.D,W}, {ACW}c{AC,DW},
{A,C,D}c{A,C,D,W}, so {A,C,D,W} is maximal. For the transactions 135, the most
general frequent itemset is {A,D,T,W}, and all other sets in these transactions will
generate redundant rules. According to (PASQUIER, 1999a), all frequent sets L that
occur in the same transactions generate rules with same support and same confidence.
As the maximal L for each set of transactions contains the maximal number of elements,
all other sets generate redundant rules.

Definition 3 (Minimal non-redundant rule) (BASTIDE, 2000): an association rule
r: I = l,is a minimal non-redundant association rule if there is no rule r’: I’y =2 I’, with
support (r)=support(r’), confidence (r)=confidence(r’), I'yc |y and I’, < 15,

Considering definition 3, a rule generated from a frequent itemset {A, W}, such as
A->W, is redundant in relation to a rule A>DW, generated from the closed frequent
itemset {A,D,W}. The closed frequent set generation does not warrant the elimination
of all redundant rules, although they eliminate redundant frequent sets. There are many
papers that propose to reduce redundant rules extracted from closed frequent sets
(ZAKI, 2000) (LIU, 1999) (BASTIDE, 1999a). In (ZAKI, 2000) (LIU, 1999)
(PASQUIER, 1999b) different methods are presented to remove either redundant or
insignificant rules generated from closed frequent sets. However, redundant rules are
defined based on different concepts. In the literature there are more than 5 definitions



34

for non-redundant rules, and according to these definitions, different pruning methods
are proposed.

For example, in (ZAKI, 2000), from a closed frequent itemset {A,B,C,D} the most
general non-redundant rule is the shortest rule, i.e., with the lowest number of elements.
According to (ZAKI, 2000), considering that association rules that can be generated
from a closed frequent set have same support and same confidence, only the shortest
rule is non-redundant. So a rule such as A->B could be the most general non-redundant
rule extracted from a frequent set {A,B,C,D}. According to (PASQUIER, 1999b),
which introduced the closed frequent pattern mining method, minimal non-redundant
rules are all those that have same support, same confidence, and smaller antecedent and
larger consequent. For example A>BCD.

In the following section we introduce SAR, the different types of non-interesting
SAR generated because of geographic dependences, and what has been done so far to
reduce these problems.

3.2 Spatial Association Rules

Spatial association rules consist of an implication of the form X - Y, where X and Y
are sets of predicates, and at least one element in X or Y is a spatial predicate
(KOPERSKI, 1995).

While in transactional association rule mining every row in the dataset is usually a
transaction and columns are items, in spatial association rule mining every row is an
instance (e.g. Porto Alegre) of a reference object type (e.g. city), called target feature
type, and columns are predicates. Every predicate is related to a non-spatial attribute
(e.g. population) of the target feature type or a spatial predicate. Spatial predicate is a
relevant feature type that is spatially related to specific instances of the target feature
type (e.g. contains_factory). In SAR mining the set F = {f;, f, ....f, ..., fn} is a set of
non-spatial attributes and spatial predicates, and ¥ (dataset) is a set of instances of a
reference feature type, where each instance is a row W such that W — F. There is exactly
one tuple in the dataset #for each instance of the reference feature type.

While the problem of mining non-spatial association rules is performed in two steps,
the problem of mining spatial association rules is decomposed in at least three main
steps, where the first one is usually performed as a data preprocessing method because
of the high computational cost:

a) Extract spatial predicates: spatial predicate is a spatial relationship (e.g.
distance, order, topological) between the reference feature type and a set of
relevant feature types;

b) Find all frequent patterns/predicates/sets: a set of predicates is a frequent
pattern if its support is at least equal to a certain threshold, called minsup;

c) Generate strong rules: a rule is strong if it reaches minimum support and the
confidence is at least equal to a certain threshold, called minconf.

It is well known that spatial joins to extract spatial predicates are the processing
bottleneck in spatial data mining, but only little attention has been devoted to this
problem. In (LU, 1993; KOPERSKI, 1995) a top-down progressive refinement method
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is proposed and spatial approximations are calculated in a first step, and in a second
step, more precise spatial relationships are computed to the outcome of the first step.
The method has been implemented in the module Geo-Associator of the GeoMiner
system (HAN, 1997), which is no longer available. Ester (2000) proposed new
operations such as graphs and paths to compute spatial neighborhoods. However, these
operations are not implemented by most GIS, and to compute all relationships between
all objects in the database in order to obtain the graphs and paths is computationally
expensive for real databases. Appice (2003) proposed an upgrade of Geo-Associator to
first-order logic, and all spatial relationships are extracted. This process is
computationally expensive and many spatial relationships might be unnecessarily
computed (KLOSGEN, 2002). In (BOGORNY, 2005b, 2007) we proposed to use geo-
ontologies as prior knowledge to compute only topological relationships semantically
consistent, and only among a target feature type and relevant feature types specified by
the user. While the above approaches consider different spatial relationships and any
geometric object type, a few approaches such as (SHEKHAR, 2001; HUANG, 2004;
YOO, 2005) compute only distance relationships for point object types.

Spatial relationships are computed with spatial joins between all instances t (e.g.
Porto Alegre) of a target feature type T (e.g. city) and all instances o (e.g. rio de la Plata)
of every relevant feature type O (e.g. river) in a set of relevant feature types S (e.g. river,
port, street, factory) that have any spatial relationship (e.g. touches, contains, close, far)
with T. Being T a set of instances T={ty, t,,....t.}, S = { O1 O;j,..., On}, and O; = { 01,
02,..., Oq}, the extraction of spatial predicates implies the comparison of every instance
of T with every instance of O, forall O in S.

Existing spatial association rule mining algorithms are in general Apriori-like
approaches, i.e., generate candidates and frequent sets, and then extract association or
co-location rules. In SAR mining the candidate generation is not a problem as it is in
transactional databases. According to (SHEKHAR, 2003 pp.205) the number of
predicates is much smaller than the number of items in transactional databases.
Therefore, the computational cost relies on the spatial predicate extraction (step a), and
depends on the number of instances of the target feature type and the relevant feature
types, as well as their respective geometric representation.

The number of spatial association rule mining algorithms is much smaller than
transactional rule mining algorithms, and can be classified in two main types. The first
is based on quantitative reasoning, which mainly computes distance relationships
during the frequent set generation. These approaches (SHEKHAR, 2001) (HUANG
2004) (YOO, 2005) deal with geographic data (coordinates x,y) directly. Although they
have the advantage of not requiring the definition of a reference object, they have some
general drawbacks: usually deal only with points, consider only quantitative
relationships, and do not consider non-spatial attributes of geographic data, which may
be of fundamental importance for knowledge discovery. For spatial objects/features
represented by lines or polygons, their centroid® is extracted. Indeed, geographic
coordinates are transformed into integer values, which reduce precision still further.
This process loses significant information, and generates non-real patterns (e.g. the

! the center of mass of an object of uniform density
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Mississippi River intersects many states considering its real geometry, but is far from
the same states if only the centroid is extracted). Figure 3.3 shows an example of how
the distance relationship can vary between two spatial features A and B when
considering their original geometry (Figure 3.3a) and their centroid (Figure 3.3b).

e
centkoid

.distance
¢ distance ..

(a) Distance between polygon and line (b) Distance between the centroid of
polygon and the centroid of line

Figure 3.3: Distance relationship for real geometry (left) and for the centroid (right)

The second category (KOPERKI, 1995) (CLEMENTINI, 2000) (APPICE,
2003,2005) (MALERBA, 2001) (LISI, 2004) (MENNIS, 2005) (BOGORNY, 20064,
2006bh, 2006c, 2006e, 2007) is based on qualitative reasoning, which usually considers
distance and topological relationships between a reference geographic object type and a
set of relevant feature types represented by any geometric primitive (e.g. points, lines,
and polygons). Relationships are normally extracted in a first step, in data preprocessing
tasks, while frequent sets are generated in another step.

In both qualitative and quantitative reasoning approaches prior knowledge has rarely
been used to eliminate irrelevant geographic domain patterns and to produce more
interesting rules. (KOPERSKI, 1995) presented an approach which exploits taxonomies
of both spatial feature types and spatial relationships only for mining spatial association
rules at different granularity levels. Only minimum support is used to prune frequent
sets and spatial association rules. A similar method has still been used by Mennis
(2005). Clementini (2000) extended this method for mining multi-level spatial
association rules from geographic objects with broad boundaries.

In (MALERBA, 2001) (APPICE, 2003) (LISI, 2004) both frequent sets and rules are
pruned a posteriori. The user can define a pattern constraint and specify how many
times a predicate should appear in the frequent sets or in association rules. For example,
a pattern constraint such as pattern_constraint [[intersects(x,road),5]] removes from
the frequent sets the specified predicate when it appears in less than 5 sets. This step is
performed after all frequent sets have already been generated. A rule constraint such as
body_constraint [[intersects(x,road),contains(x,hospital)],10] only shows rules with the
specified predicates if they appear in at least 10 association rules, otherwise they are
removed. In (APPICE, 2005) this method has been extended with the possibility to
specify one more cardinality for a constraint. This method can be used to remove well
known rules. For example, a constraint such as pattern_constraint[[intersects(gas
station),(intersects(road)],0,0)) would remove from the set of frequent sets all
combinations having this pair of predicates. The minimum and maximum cardinality 0
defines that the pair of predicates should not appear in the resultant set of rules.
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The pruning method proposed in (MALERBA, 2001) (APPICE, 2003, 2005) (LISI,
2004) has some general disadvantages that make the method hard to be used with real
databases. First, in data preprocessing all spatial relationships must be computed from
geographic databases and transformed to first-order logic. In large geographic databases
the extraction of all relationships is non-trivial, and many relationships can be
unnecessarily computed (KLOSGEN, 2002). Second, the pruning step is very hard for
the data mining user, since for every different relationship or geographic element, a
different pattern constraint must be specified to remove non-interesting rules. Moreover,
as concluded by the authors about their proposed method a lot of knowledge is required
from the data mining user. Third, it is hard for the data mining user to a priori know all
possible frequent sets and rules that might have a non-interesting pattern or rule. At
lower granularity levels, which will be explained latter in this chapter (Section 3.3.3),
for example, such difficulty increases since a different constraint must be specified for
every different relationship and feature at a different concept level. For example, to
eliminate a dependence between gas station and road, some of the constraints that the
user has to specify include:
pattern_constraint([contains(X,GasStation),crossed_by(X,Road)],0,0),
pattern_constraint([contains(X,GasStation),contains(X,Road)],0,0),
pattern_constraint([contains(X,GasStation),touches(X,Road)],0,0)),
pattern_constraint([contains(X,Large_GasStation),crossed_by(X,StateHighwWay)],0,0),

pattern_constraint([contains(X,Large_GasStation),contains(X,NationalHighwWay)],0,0),
pattern_constraint([contains(X,Large_GasStation),contains(X,NationalHighwayBR-116)],0,0)

In this method, patterns and rules that could be pruned earlier are cut off in post-
processing steps. In the remaining of this chapter we explain the problems of mining
spatial association rules with geographic dependences.

3.3 The General Problem of Mining Spatial Association Rules with
Geographic Dependences

As have already been mentioned, at least three steps are required to extract patterns
from GDB: the computation of spatial neighborhood relationships, the generation of
frequent sets, and the generation of association rules. In the first step, the target feature
type is compared with all relevant feature types to extract spatial predicates. In the
second step, predicates are compared with each other to generate frequent predicate sets,
from which rules are generated in a third step. Well known geographic dependences
appear in all steps, and in different ways, producing different amounts of well known
patterns. In the following sections we show how geographic dependences appear in
these steps.

3.3.1 Geographic Dependences between the Target Feature Type and Relevant
Feature Types

In data preprocessing, time and effort are required from the data mining user to
extract spatial relationships and transform geographic data into a single table or a single
file, which is the input format required by most SAR mining algorithms. Even in multi-
relational data mining (KLOSGEN, 2002) (APPICE, 2003, 2005) (MALERBA, 2001)
(LISI, 2004), where geographic data are converted to first order logic, the process of
extracting spatial relationships is required.
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Geographic dependences cause two main problems in data preprocessing: generate a
large amount of non-interesting association rules and require unnecessary spatial joins.
In Sections 3.3.1.1 and 3.3.1.2 these problems are explained in more detail.

3.3.1.1 Geographic Dependences and Non-Interesting Rules

Table 3.1 shows an example of a spatial dataset at a general granularity level, which
will be used all over the following sections. Every row is a city and predicates refer to
different geographic object types (port, water body, hospital, street, and factory)
spatially related to city. Let us consider two geographic dependences: city and street,
and port and water body, where the former is between the target feature type and a
relevant feature type and the latter is among two relevant feature types.

Table 3.1: Example of a preprocessed dataset for mining frequent sets and SAR

Tuple | Spatial Predicates

(city)
1 contains(Port), contains(Hospital), contains(Street), contains(Factory), crosses(Water Body)
2 contains(Hospital), contains(Street), crosses(Water Body)
3 contains(Port), contains(Street), contains(Factory), crosses(Water Body)
4 contains(Port), contains(Hospital), contains(Street), crosses(Water Body)
5 contains(Port), contains(Hospital), contains(Street), contains(Factory), crosses(Water Body)
6 contains(Hospital), contains(Street), contains(Factory)

In the dataset shown in Table 3.1, the dependence between the target feature type
city and the relevant feature type street is expressed by the predicate contains(Street)
which has a 100% support. Predicates with 100% support appear in half of the total
number of frequent sets, as shown in Table 3.2 where minsup 50% was considered.

Table 3.2: Frequent sets with support 50%

Size k

Frequent sets with support 50%

{contains(Port)},
{contains(Hospital)},
{contains(Street)},
{contains(Factory)},
{crosses(WaterBody)}

{contains(Port),contains(Hospital)},
{contains(Port),contains(Street)},
{contains(Port),contains(Factory)},
{contains(Port),crosses(WaterBody)},
{contains(Hospital), contains(Street)},
{contains(Hospital),contains(Factory)},
{contains(Hospital),crosses(WaterBody)},
{contains(Street),contains(Factory)},
{contains(Street),crosses(WaterBody)},
{contains(Factory),crosses(WaterBody)},

{contains(Port),contains(Hospital), contains(Street)},
{contains(Port),contains(Hospital),crosses(WaterBody)},
{contains(Port), contains(Street),crosses(WaterBody)},
{contains(Port),contains(Factory),crosses(WaterBody)},
{contains(Port), contains(Street),contains(Factory)},
{contains(Hospital), contains(Street),contains(Factory)}
{contains(Hospital), contains(Street),crosses(WaterBody)},
{contains(Street),contains(Factory),crosses(WaterBody) }

{contains(Port),contains(Hospital), contains(Street),crosses(WaterBody)}
{contains(Port), contains(Street),contains(Factory),crosses(WaterBody) }
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In this example, for minsup 50%, among the 25 frequent sets shown in Table 3.2, 13
have the dependence. From these frequent sets, a large number of non-interesting rules
is generated. For example, a rule such as contains(Factory) - contains(Street)
expresses that cities that contain factories do also contain streets. Although such a rule
seems to be interesting, it can be considered obvious due the simple fact that all cities
contain streets, having they factories, or not. The same type of rule will be generated for
all other predicates which together with the predicate contains(Street) reach minimum
support and pass the constraint minconf.

In order to evaluate the number of both frequent sets and association rules generated
with a geographic dependence between the target feature type and one single relevant
feature type, Table 3.3 summarizes the frequent set and rule generation from the dataset
in Table 3.1 considering different minsup and minconf 70%. Considering low minimum
support (20%), 31 frequent sets and 180 rules were generated, among which 16 frequent
sets and 130 rules had the dependence contains(Street). Notice that increasing minimum
support to 50% does not warrant the elimination of the geographic dependence.
Although the number of frequent sets is reduced to 25 and rules to 96, 13 frequent sets
and 72 rules still had the dependence.

Table 3.3: Frequent sets and rules with dependences

MinSup % | Total Rules with Dependence / FrequentSets with dependence /
FrequentSets/ | Rules without Dependence | FrequentSets without dependence
Rules

20 31/180 130/ 50 16/15

50 25/96 72124 13/12

Appendix A shows part of the association rules generated from a real dataset where
the target feature type is vegetation (e.g. cropland, grassland, rice field) and the relevant
feature types include river, bridge, tunnel, road, build up areas, trees, etc. Almost the
whole region considered is surrounded by trees, which is a separate feature type, and is
a predicate that has 100% support in the dataset. By consequence, as can be observed in
the highlighted predicates in Appendix A, almost all generated rules contain this
predicate.

Now let us consider the closed frequent sets extracted from Table 3.2. The number
of sets is significantly reduced, as can be observed in Table 3.4. However, notice that
the dependence is not eliminated by simply reducing the number of frequent sets. The
geographic dependence with a 100% support appears in all closed frequent sets.

Table 3.4: Closed frequent sets

Size k |Closed frequent sets with support 50%

1 {contains(Street)}
{contains(Hospital), contains(Street)},
2 {contains(Street),contains(Factory)},
{contains(Street),crosses(WaterBody)},
{contains(Port), contains(Street),crosses(WaterBody)},
3 {contains(Hospital), contains(Street),contains(Factory)}
{contains(Hospital), contains(Street),crosses(WaterBody)},
{contains(Port),contains(Hospital), contains(Street),crosses(WaterBody)}
{contains(Port), contains(Street),contains(Factory),crosses(WaterBody)}
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Considering the experiments shown in Table 3.3 and the closed frequent sets in
Table 3.4 we can say that neither minimum support nor the generation of closed
frequent sets warrant the elimination of well known geographic dependences between
the target feature type and the relevant feature types.

3.3.1.2 Geographic Dependences and Spatial Joins

Geographic dependences between the target feature type and the relevant feature
types besides generating a large number of well known patterns and association rules,
require unnecessary spatial joins. Considering the semantics of the target feature type
and the relevant feature types during the spatial predicate computation, the number of
spatial joins can be reduced, as shown with a few examples in Table 3.5 considering the
topological relationships standardized by the OGC (OPEN GIS CONSORTIUM, 2001).

Table 3.5: Possible and mandatory topological relationships considering semantics of
spatial feature types

Topological Disjoint | Overlaps | Touches | Contains | Within | Crosses | Equals
Relation
Semantic
Combinations
Gas Station and Road v
Bridge and Water Body v
City Hall and City v
Water Body and Road v v v
Treated Water Net and City v v v

Without considering semantics, all topological relationships between a target feature
type and a relevant feature type will necessarily be tested in order to verify which one
holds. By considering semantics, only a few relationships would be tested, as shown in
Table 3.5. For example, between the feature types gas station and road, only the
relationship touches is semantically possible. A city hall, for example, must be within a
city, while a water body can have a relationship disjoint, touches, or crosses with road.

Although the topological relationships shown in Table 3.5 are semantically possible,
not all of them are interesting for knowledge discovery. So, if besides considering the
semantics of spatial features we also consider spatial integrity constraints, i.e., if they
have a mandatory relationship, it is possible to reduce still further the number of
topological relationships. Moreover, it is possible to define which topological
relationships should be computed for knowledge discovery.

Remembering that mandatory relationships produce well known patterns and that
only possible relationships are interesting for knowledge discovery, Table 3.6 shows the
possible topological relationships to be computed for knowledge discovery for the same
pairs shown in Table 3.5. The pairs gas station and road, bridge and water body, city
hall and city, as well as treated water net and city have mandatory one-one or one-many
constraints and no relationship is necessary for KDD. Only topological relationships
between water body and road would be computed for these examples.

In this section we showed the high number of patterns and rules that can be
generated by well known geographic dependences between the target feature type and a
relevant feature type. Such dependences can be eliminated by pruning the input space,
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as we propose in (BOGORNY, 2006a, 2007). Considering semantics, in (BOGORNY,
2007) we presented a geographic data preprocessing algorithm that uses geo-ontologies
as prior knowledge to extract spatial predicates for mining spatial association rules
(details will be presented in Chapter 4).

Table 3.6: Possible topological relationships for knowledge discovery

Topological Disjoint | Overlaps | Touches | Contains | Within | Crosses | Equals
Relation
Semantic
Combinations

Gas Station and Road

Bridge and Water Body

City Hall and City

Water Body and Road v v v

Treated Water Net and City

Geographic dependences, however, may also exist among relevant features. In the
dataset shown in Table 3.1, there is another dependence, but among two relevant feature
types (port and water body), where all cities which have ports do also have water
bodies, because every port must be related to at least one water body. In this case,
however, we cannot prune the input space because either water body or port may have
an interesting association with any other relevant feature type (hospital, factory). In the
following section we describe the problem of geographic dependences among relevant
feature types.

3.3.2 Geographic Dependences among Relevant Feature Types

A dependence between the target feature type and any relevant feature type appears
in the dataset as one single predicate. A dependence among relevant feature types
appears when pairs of predicates generate a frequent set, as shown in Table 3.7 in bold
style ({contains(Port),crosses(WaterBody)}), considering the same dataset presented in
Table 3.1.

As can be observed in Table 3.7, geographic dependences between two relevant
feature types appear the first time in frequent sets with 2 elements, where k=2. Notice
that since the dependence has minimum support, i.e., is a frequent predicate set, this
dependence is replicated to many frequent sets of size k>2. It appears with all other
predicates which together with the pair that has a dependence reach minimum support.
Considering this example and 50% minimum support, one single geographic
dependence between two relevant feature types participates in 6 frequent sets (30% of
the total number of frequent sets with size k>2). Notice that the number of rules having
a geographic dependence will be much larger than the number of frequent sets, mainly
when the largest frequent set (with 4 elements) contains the dependence.

Pruning the frequent sets by generating closed frequent sets does not eliminate
geographic dependences between two relevant feature types, since the pair
({contains(Port),crosses(WaterBody)}) participates in three closed frequent sets. The
sets 18, 24, and 25 in Table 3.7 are closed frequent sets that contain the geographic
dependence.
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Table 3.7: Frequent sets with minimum support 50%

Set k |Frequent sets with support 50% set
1  {contains(Port)}, 1
{contains(Hospital)}, 2
{contains(Street)}, 3
{contains(Factory)}, 4
{crosses(WaterBody)}, 5
2 {contains(Port),contains(Hospital)}, 6
{contains(Port),contains(Street)}, 7
{contains(Port),contains(Factory)}, 8
{contains(Port),crosses(WaterBody)}, 9
{contains(Hospital),contains(Street)}, 10
{contains(Hospital),contains(Factory)}, 11
{contains(Hospital),crosses(WaterBody)}, 12
{contains(Street),contains(Factory)}, 13
{contains(Street),crosses(WaterBody)}, 14
{contains(Factory),crosses(WaterBody)}, 15
3 |{contains(Port),contains(Hospital),contains(Street)}, 16
{contains(Port),contains(Hospital),crosses(WaterBody)}, 17
{contains(Port),contains(Street),crosses(WaterBody)}, 18
{contains(Port),contains(Factory),crosses(WaterBody)}, 19
{contains(Port),contains(Street),contains(Factory)}, 20
{contains(Hospital),contains(Street),contains(Factory)} 21
{contains(Hospital),contains(Street),crosses(WaterBody)}, 22
{contains(Street),contains(Factory),crosses(WaterBody)} 23
4 {contains(Port),contains(Hospital),contains(Street),crosses(WaterBody)} 24
{contains(Port),contains(Street),contains(Factory),crosses(\WaterBody)} 25

The same dependence replication process that occurs in the frequent set generation
happens during the rule generation, as can be observed in Table 3.8. A few examples of
association rules generated with Apriori over frequent predicate sets of size 2, 3, and 4
(the frequent sets 9, 17, and 24 of Table 3.7) are shown in Table 3.8. Rules 1 and 2 are
generated from the set with 2 elements, and represent a single geographic dependence
and its inverse. Rules 3, 4, 5, and 6 reproduce rules 1 and 2 with an additional element
in the antecedent or the consequent. The same happens with frequent sets that contain 4
elements. Rules 7, 8, and 9 are the same rules 1 and 2 with two additional elements that
combined with the dependence passed the minconf constraint (70%).

Table 3.8: Examples of association rules with frequent sets of size 2, 3, and 4 with a
geographic dependence

Set Rule | Possible Rules

k=2 1 contains(Port) = crosses(Water Body)

k=2 2 crosses(Water Body) = contains(Port)

k=3 3 contains(Hospital) ~ contains(Port) = crosses(Water Body)

k=3 4 contains(Hospital)  crosses(Water Body) 2 contains(Port)

k=3 5 contains(Hospital) = contains(Port) ” crosses(Water Body)

k=3 6 contains(Port) ” crosses(Water Body) = contains(Hospital)

k=4 7 contains (Street) ~ contains(Port) 2 crosses(Water Body) ” contains (Hospital)
k=4 8 contains (Street) > contains(Port) ” crosses(Water Body) ” intersects (Hospital)
k=4 9 contains (Street) ” intersects (Hospital) = contains(Port) " crosses (Water Body )
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Appendix B shows some of the resultant rules of an experiment with a real dataset
having one pair with a dependence between bridge and river. In this experiment, notice
that independently of the topological relationship, all rules that contain the relevant
feature type bridge, also contain river. As can be observed, a large number of rules
containing the dependence is generated. In this same experiment we observe rules
having at least two predicates with the same feature type and different topological
relationships. These problems will be discussed latter in the remaining of this chapter.

In this section we discussed the problem of geographic dependences considering
data at a general granularity level. However, association rules can be extracted from
data at different granularity levels. In the next section we explain the process of mining
association rules at different concept levels and the dissemination of geographic
dependences at different levels.

3.3.3 Geographic Dependences among Relevant Feature Types at Different
Granularity Levels

According to the objective of the discovery associations rules can be extracted from
data at a more specialized granularity level or at a higher concept level (HAN, 1995a).
For example, having some regions in a metropolitan area high air pollution incidence, it
might be interesting to consider spatial predicates of factories in a more generalized
level such as intersects(Factory). In some specific cases, it might be interesting to
consider spatial predicates of the different types of factories such as
intersects(ChemicalFactory), intersects(MetalurgicalFactory). In very specific cases, it
might be interesting to consider the instances of factories, such as
intersects(ChemicalFactoryX), intersects(MetallurgicalFactoryY).

An association rule in a general concept level could be, for example,
intersects(Road) - intersects(Factory). Lower level rules could be, for example,
intersects(Road) > intersects(ChemicalFactory) or intersects(Highway) -
intersects(ChemicalFactoryX).

The method of mining data at different granularity levels has been presented by (LU,
1993), which uses concept hierarchies for generalization of spatial and non-spatial data
to the discovery of general knowledge. Han (1995b) presented an algorithm for
extracting association rules at multiple granularity levels from classical databases, and
Koperski (1995) extended the method for mining multiple-level SAR from geographic
databases. Concept hierarchies for mining spatial association rules at different
granularity levels have been largely used in many approaches such as (CLEMENTINI,
2000), (MALERBA, 2001), (APPICE, 2005) (MENNIS, 2005).

Concept hierarchies are used to facilitate the extraction of knowledge at different
granularity levels (HAN, 1995a, 1995b). An example of a concept hierarchy of water
resource is defined in Figure 3.4.

Concept hierarchies should be used to represent data at different granularity levels in
refinement mining processes, i.e., to extract more general or more specific knowledge
from data in different mining processes, as proposed by (LU, 1993) (KOPERSKI, 1995)
(CLEMENTINI, 2000) and (MENNIS, 2005). The inclusion of the same data at
different granularity levels (e.g. water, river, jacui_river, lake) in the same mining
process as in (SRIKANT, 1995)(HAN, 1995b) will generate redundant and non-novel
rules that simply associate one level of the hierarchy (e.g. water) with another (e.g.
river) and with many attributes if they together reach minimum support. Rules such as
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contains(lake) = contains(water) will be generated, and different methods (SRIKANT,
1995) (HAN, 1995b) were proposed to eliminate rules that are only generated because
of the mixture of the same data at different granularities. In our point of view, different
granularities of the same data should be used in refinement mining steps, while different
data (e.g. water body, road) can be mined at different granularities in the same mining
process.

Water Body g=1
/Ri\/er 7&{@ Sea Stream Canal g=2
Jacui Dos Patos ... .. ... Vermelho g=3

Figure 3.4: A concept hierarchy of water body

Concept hierarchies can be provided by knowledge engineers, domain experts or
data mining users, or automatically generated from databases. In some cases concept
hierarchies can be encoded in a database schema (CLEMENTINI, 2000) and can be
dynamically generated for knowledge discovery (HAN, 1994).

Geographic dependences exist among geographic data independently of granularity
level. Considering an is_a hierarchy and a geographic dependence at any level, this
dependence is inherited by all sublevels, as in object oriented databases, for instance.
For a concept hierarchy of road, for example, a dependence between gas station and
road is inherited by all specializations of road. For example, an association rule at level
2, such as intersects(GasStation) - intersects (National Highway) encodes the
dependence between gas station and road defined at a granularity level 1. The same
happens in a more specific level, in rules such as intersects(GasStation) -
intersects(National_Highway BR-101).

Let us consider another example, where islands must exist within a water body,
which can be of type river, lake, stream, or sea. Considering the hierarchy shown in
Figure 3.4, a dependence between island and water body should be specified at the
highest granularity level, since an island must be related to a water body that can be of
any type. Although the dependence belongs to a higher granularity level, it is applicable
(inherited) to all lower levels. Mining data at a higher level, the dependence will
generate rules such as is_a(lsland) - within(WaterBody). At a second level, rules such
as is_a(lsland) = within(River) and/or is_a(Island) = within(Lake) will be generated
because of the dependence between island and water body.

At more specialized granularity levels the support of predicate sets is lower, and the
value of minimum support must be lower as well, in order to avoid the elimination of
interesting associations. Let us consider the dependence between port and water body,
being water body at a second granularity level (e.g. river, stream, canal), as shown in
Figure 3.5 (a). Considering minimum support 30%, 34 frequent sets will be generated
(29 with size k > 2), as shown in Figure 3.5 (b). Among the 29 sets of size k >2 from
which it is possible to generate association rules, 10 contain the geographic dependence.
This corresponds to 35% of the frequent sets of size k >2.
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(a) dataset

Tuple | Spatial Predicates
)| (city)

1 contains(Port), contains(Hospital), contains(Street), contains(Factory), crosses(River)
2 contains(Hospital), contains(Street), crosses(Stream)
3 contains(Port), contains(Street), contains(Factory), crosses(Canal)
4 contains(Port), contains(Hospital), contains(Street), crossess(Canal)
5 contains(Port), contains(Hospital), contains(Street), contains(Factory), crosses(River)
6 contains(Hospital), contains(Street), contains(Factory)

(b) frequent predicate sets

k |Frequent sets with support 30%

1 [contains(Port)}, {contains(Hospital)},{contains(Street)},{contains(Factory)},

{crosses(River)}, {crosses(Canal)}

2 |{contains(Port),contains(Hospital)},

{contains(Port),contains(Street)},
{contains(Port),contains(Factory)},
{contains(Port),crosses(River)},
{contains(Port),crosses(Canal)},
{contains(Hospital),contains(Street)},
{contains(Hospital),contains(Factory)},
{contains(Hospital),crosses(River)},
{contains(Street),contains(Factory)},
{contains(Street),crosses(River)},
{contains(Street),crosses(Canal)},
{contains(Factory),crosses(River)},

3 contains(Port),contains(Hospital),contains(Street)},

{contains(Port),contains(Hospital),contains(Factory)},
{contains(Port),contains(Hospital),crosses(River)},

{ contains(Port),contains(Street),contains(Factory)},
{contains(Port),contains(Street),crosses(River)},
{contains(Port),contains(Factory),crosses(River)},
{contains(Port),contains(Street),crosses(Canal)},
{contains(Hospital),contains(Street),contains(Factory)}
{contains(Hospital),contains(Street),crosses(River)},
{contains(Street),contains(Factory),crosses(River)}

4 ({contains(Port),contains(Hospital),contains(Street),contains(Factory)},

{contains(Port),contains(Hospital),contains(Street),crosses(River)}
{contains(Port),contains(Hospital),contains(Factory),crosses(River)},
{contains(Port),contains(Street),contains(Factory),crosses(River)}
{contains(Hospital),contains(Street),contains(Factory),crosses(River)}

5 Kcontains(Port),contains(Hospital),contains(Street),contains(Factory),crosses(River)}

Figure 3.5: (a) Dataset having water body at granularity level 2 and (b) frequent

predicate sets with support 30%

In Figure 3.6 (a) water is at a third granularity level. Notice that at this level the
support of predicates decreases still further. Even with high minimum support (30%)
there are still dependences among the frequent sets, as shown in Figure 3.6 (b) in bold
style. For minimum support 30%, 25 frequent sets of size k > 2 are generated, and 8 still
have the dependence.

Although the dependence replication process varies according to the granularity
level and minimum support, the examples show that minimum support does not warrant
the elimination of well known geographic dependences in spatial association rule

mining.
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Appendix C shows some examples of association rules generated from a real dataset
where the relevant feature type bus stop has a dependence with road, but the latter is
represented at a second granularity level as street (rua) and avenue (avenida) in the
dataset. As can be observed, all association rules having the predicate bus stop (parada
de Onibus) do always have a predicate with either street (pink highlighted) or
avenue(yellow highlighted), and sometimes with both. This occurs because bus stops
must be related to one road, which may be of type street or avenue. The especialization
of road in many feature types (street and avenue) increases the number of attributes in
the dataset, and by consequence, the number of pairs having dependences (e.g.
{contains(BusStop), contains(Street)}, {contains(BusStop), contains(Avenue)}).

(a) dataset

Tuple Spatial Predicates

(city)
1 contains(Port), contains(Hospital), contains(Street), contains(Factory), crosses(RiverX)
2 contains(Hospital), contains(Street), crosses(StreamX)
3 contains(Port), contains(Street), contains(Factory), crosses(CanalX)
4 contains(Port), contains(Hospital), contains(Street), crosses(CanalY)
5 contains(Port), contains(Hospital), contains(Street), contains(Factory), crosses(RiverX)
6 contains(Hospital), contains(Street), contains(Factory)

(b) frequent predicate sets

k |Frequent sets with support 30%

1 [{contains(Port)}, {contains(Hospital)}, {contains(Street)}, {contains(Factory)},
{crosses(RiverX)}

2 {contains(Port),contains(Hospital)},

{contains(Port),contains(Street)},

{contains(Port),contains(Factory)},

{contains(Port),crosses(RiverX)},
{contains(Hospital),contains(Street)},
{contains(Hospital),contains(Factory)},
{contains(Hospital),crosses(RiverX)},
{contains(Street),contains(Factory)},
{contains(Street),crosses(RiverX)},
{contains(Factory),crosses(RiverX)},

3 [{contains(Port),contains(Hospital),contains(Street)},
{contains(Port),contains(Hospital),contains(Factory)},
{contains(Port),contains(Hospital),crosses(RiverX)},
{contains(Port),contains(Street),contains(Factory)},
{contains(Port),contains(Street),crosses(RiverX)},
{contains(Port),contains(Factory),crosses(RiverX)},
{contains(Hospital),contains(Street),contains(Factory)}
{contains(Hospital),contains(Street),crosses(RiverX)},
{contains(Street),contains(Factory),crosses(RiverX)}

4 |{contains(Port),contains(Hospital),contains(Street),contains(Factory)},
{contains(Port),contains(Hospital),contains(Street),crosses(RiverX)}
{contains(Port),contains(Hospital),contains(Factory),crosses(RiverX)},
{contains(Port),contains(Street),contains(Factory),crosses(RiverX)}
{contains(Hospital),contains(Street),contains(Factory),crosses(RiverX)}
5 |{contains(Port),contains(Hospital),contains(Street),contains(Factory),crosses(RiverX)}

Figure 3.6: Dataset with water body at granularity level 3 and frequent predicate sets
with support 30%

So far we have analyzed the large number of non-novel frequent patterns and spatial
association rules generated because of geographic dependences among relevant feature
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types. In frequent geographic pattern mining not only geographic dependences generate
non-interesting patterns and rules. When mining data at higher granularity levels some
spatial relationships may generate non-interesting patterns as well. At lower granularity
levels, however, some spatial relationships may not be captured by the rule mining
algorithm. These problems will be addressed in the following sections.

3.3.3.1 Non-Interesting Patterns Generated at Higher Granularity Levels

A large number of non-interesting frequent sets and spatial association rules is
generated when mining data at higher granularity levels, i.e., when only the feature
types are considered without their respective instances.

The first problem is the generation of sets of spatial predicates that have the same
feature type with different topological relationships (e.g. touches(WaterBody),
contains(WaterBody)). This normally occurs when considering distance or topological
relationships, since the target feature type may have different spatial relationships with
different instances of a relevant feature type. Examples of such rules are shown in
Appendix B, highlighted in pink color, where road appears in both antecedent and
consequent of the rules having a different topological relationship. When considering
topological relationships a large amount of frequent sets is generated containing pairs of
predicates with different topological relationships and the same feature type.

Going further into details of this problem let us consider a real example, observing
the geographic map shown in Figure 3.7. Small polygons are slums, large polygons are
districts, and black lines are water bodies of the city of Porto Alegre. Let us suppose that
district is the target feature type and slums and water bodies are the relevant feature

types.

In Figure 3.7 we can observe the different topological relationships that districts may
have with both slums and water bodies. The district Nonoai, for example, “contains™
slums (e.g. 159, 163, 187) “touches™ slums (e.g. 180), and “overlaps™ slums (e.g. 174).
The district Teresopolis, for example, “contains” water bodies (e.g. 93, 338) and has a
crosses relationship with water bodies (e.g. 339). Different topological relationships
may generate redundant and non-interesting rules for the same geographic feature at a
general granularity level, i.e., when the specific instance is not considered. For example,
contains(Slum) = touches(Slum), contains(Slum) =  overlaps(Slum), or
touches(Slum) 2overlaps(Slum). A rule such as contains(Slum) - touches(Slum)
expresses that districts that contain slums do also touch slums or vice-versa. This kind
of rule does not contribute to the discovery of novel and useful knowledge. In fact, this
kind of rule does not represent a cause and an effect. An interesting association rule
with these two predicates could be, for example, a rule such as criminalityRate=high >
contains(Slum) or criminalityRate=high - touches(Slum), with an additional predicate.
Pairs of predicates with the same feature type and different spatial relationships produce
a large number of non-interesting rules.

Another problem that occurs in frequent geographic pattern mining is the generation
of sets of spatial predicates that contain different feature types (e.g. Street, Avenue) that
have the same parent (e.g. Road) in a concept hierarchy. This occurs when mining data
at more specialized granularity levels. The predicates having “brothers” of a concept
hierarchy may have either same spatial relationship (e.g contains(Street),
contains(Avenue)) or not (e.g contains(Street), touches(Avenue)). A large amount of
frequent sets with different combinations of “brothers” in a concept hierarchy are
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generated when mining data at lower granularity levels. Some examples of association
rules having this problem are shown in Appendix C, and can also be observed in Figure
3.7.

Let us suppose that the relevant feature type water body, shown in Figure 3.7, can be
specialized at a lower granularity level and that the water bodies 93 and 338 are streams
and that 339 and 94 are rivers. Without considering the respective instances of streams
and rivers in the mining process, the combination of “brothers” in the concept hierarchy
(Stream and River) will generate rules such as contains(Stream) = contains(River) or
contains(Stream) = crosses(River). We argue that frequent sets and association rules
that contain “brothers”, i.e., different feature types that have the same parent in a
concept hierarchy do not contribute to the discovery of novel and useful knowledge. In
contradiction to a pattern expressed by the rule contains(Stream) - contains(River),
districts do not contain rivers because they contain streams or vice-versa. They do have
water bodies that are of type stream and river. Such rule has no cause 2effect and is
meaningless. Interesting association rules with these predicates could be, for example,
pollution=high = contains(Stream) or pollution=high ->contains(River), but having
another meaningful predicate.

Teresgpolis

L 3
] ks = stums
13
“N [ Districts
2A, = L2
o s;v/ g 58 — WaterBody

Figure 3.7: Part of a geographic map of the Porto Alegre city representing districts,
slums, and water bodies

Figure 3.8 (a) shows an example of a dataset where different topological
relationships are considered for the feature types slum and water body. The latter is
represented at lower granularity level (river and stream). Considering minimum support
50%, 21 frequent sets are generated from this dataset, as shown in Figure 3.8 (b).
Among the 21 frequent sets, 7 sets contain pairs of predicates with more than one
relationship for the same feature type (slum). Indeed, among the 21 frequent sets, 4
contain the pairs of geographic feature types (stream and river) with the same parent in
a concept hierarchy.

The generation of frequent sets with the same spatial feature type varies according to
minimum support. However, the combination of pairs of the same feature type (slum)
with different relationships (contains, touches, and overlaps) appears the first time
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during the generation of frequent sets with 2 elements. The same is valid for an object
(water body) represented at different granularities (river and stream), having different
spatial relationships (crosses and contains), or not. The replication process is similar to
the dependence replication explained in the previous sections.

(a) dataset

Tuple Spatial Predicates

(district)

Nonoai contains(Slum), touches( slum), overlaps (slum), crosses(river), contains(stream)
Teresopolis | contains(Slum), , overlaps (slum), crosses (river), contains (stream)
Vila Nova contains(Slum), touches( slum), overlaps (slum), crosses (river), contains (stream)
Cristal contains(Slum), touches( slum), overlaps (slum), touches (river), crosses (stream)
Camaqua contains(Slum),

Bela Vista , Crosses (stream)

(b) Frequent predicate sets

k |Frequent sets with support 50%

1 Kcontains(Slum)}, {touches(Slum)}, {overlaps(Slum)}, {crosses(River)},
{contains(stream)}

2 H{contains(Slum),touches(Slum)},
{contains(Slum),overlaps(Slum)},
{contains(Slum),crosses(River)},
{contains(Slum),contains(Stream)},
{touches(Slum),overlaps(Slum)},
{touches(Slum),crosses(River)},
{touches(Slum),contains(Stream)},
{overlaps(Slum),crosses(River)},
{overlaps(Slum),contains(Stream)},
{crosses(River),contains(Stream)},

3 {contains(Slum),touches(Slum),overlaps(Slum)},
{contains(Slum),overlaps(Slum), crosses(River)},
{contains(Slum),overlaps(Slum), contains(Stream)},
{contains(Slum),crosses(River), contains(Stream)},
{overlaps(Slum),crosses(River), contains(Stream)},

4 |{contains(Slum),overlaps(Slum),crosses(River), contains(Stream)}

Figure 3.8: Dataset and frequent predicate sets with 50% minimum support

Association rules having spatial feature types with the same parent in a concept
hierarchy are generated in any pattern mining process where the instances of the
relevant feature types are not considered. As data can be represented at different
granularity levels, being 1 the more general level (e.g. water body) and n the more
specialized (e.g. river_Jacui), we can say that this problem may occur at all granularity
levels g <n. Some more examples of these problems can be observed in the result of two
different experiments, with two different databases, shown in Appendix B (pink
highlighted) and Appendix C (blue highlighted).

In this section we addressed problems generated when mining data at granularities g
<n, where many non-interesting patterns are generated. In the following section, we
address a problem when mining data at granularity n.
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3.3.3.2 Missing Patterns at Lower Granularity Levels

While in the previous section the problem was the generation of non-interesting
rules extracted from data at higher granularity levels, in this section we address a
problem that occurs when mining data at the lowest granularity level, i.e., when the
instances of the feature types are taken in account.

This problem will be analyzed considering the same dataset shown in Figure 3.8(a),
but at the lowest granularity level (n), which we also call the feature instance
granularity level. At this level, besides the feature type, all instances participate in the
mining process. Depending on minimum support, frequent pattern mining algorithms
may not catch some patterns when different spatial relationships are considered for the
same feature instance.

Table 3.9 represents the dataset shown in Figure 3.8(a) considering the instances of
relevant feature types slum and water body. Notice that the instances of relevant feature
types are not duplicated in the same row, i.e., every district (row) has only one
topological relationship with every instance of the relevant feature types slum and water
body. Observe in Table 3.9 that considering all different topological relationships (e.g.
contains, within, crosses, overlaps) in some cases the pattern mining algorithm will not
match predicates that should be grouped in a pair to generate a frequent set. Let us
observe slum 180 in the map shown in Figure 3.7. It touches the district Nonoai because
both slum and district only intersect boundaries. The slum 180, however is also within
or covered by the district Cristal. In this case, the predicates touches(Slum_180) and
contains(Slum_180) in Table 3.9 will be considered as different predicates. In these
cases it might be interesting to consider only the general topological relationship
(intersects and non-intersects) such that relationships with the same instance can be
considered as one single predicate, as for example intersects(Slum_180). Otherwise, at
the feature instance granularity level, predicates such as touches(Slum_180) and
contains(Slum_180) may be eliminated by minimum support.

Table 3.9: Dataset at the lowest granularity level — feature instance

Tuple Spatial Predicates
(district)
Nonoai contains(Slum_169), contains(Slum_183), contains(Slum_176), contains(Slum_172),

contains(Slum_188), contains(Slum_187), contains(Slum_159) contains(Slum_163)
contains(Slum_32), contains(Slum_129) contains(Slum_135) contains(Slum_138)
contains(Slum_140), touches( slum_180), overlaps (slum_174), crosses(river_95),
contains(stream_91), contains(stream_86) , contains(stream_87) , contains(stream_82) ,
contains(stream_83) , crosses(stream_90) , crosses(stream_89) , crosses(stream_95)
Teresopolis overlaps(Slum_204), contains(Slum_195), contains(Slum_10), contains(Slum_213),
crosses(river_339), contains(Stream_338), contains(Stream_93) contains(Stream_94)
contains(Stream_98), crosses(stream_90)

Vila Nova ..., Crosses (stream_446), ...

Cristal contains(Slum_180), overlaps (slum_174), touches(river_Guaiba),
crosses(stream_277), crosses(stream_95), crosses(stream_446)

Camaqua contains(Slum_124), .....

Bela Vista

For example, suppose that the dataset in Figure 3.9 has a non-spatial attribute
criminality rate, which is high for districts Nonoai and Cristal. If this rate is high
because both districts intersect slum 180, such pattern will only be extracted if a general
topological relationship is considered. Otherwise, no pattern will be generated.
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In this chapter we presented in detail many different problems in frequent
geographic pattern mining. These problems have not been addressed in previous works
as far as we know. Among the different problems, the main question is the large amount
of frequent sets and association rules generated by geographic dependences that are
previously known as non-interesting. To overcome these problems, in the following
chapter we propose a general framework to enhance the process of mining SAR in
geographic databases. Therefore, the main contribution is the use of prior knowledge.
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4 A GENERAL FRAMEWORK FOR MINING SPATIAL
ASSOCIATION RULES WITHOUT WELL KNOWN
DEPENDENCES

In this chapter we present a unified framework for mining spatial association rules
from geographic databases. We address the problems introduced in the previous chapter
presenting a first contribution for geographic data preprocessing, which in this context
refers to all data preparation steps covering selection, spatial join processing, and
transformation of geographic databases for SAR mining.

For SAR mining we present two algorithms, Apriori-KC and Max-FGP, specifically
developed for mining SAR from geographic databases. These algorithms were
developed with the objective of eliminating well known dependences and redundant
frequent sets.

Figure 4.1 shows the proposed framework, named GeoARM (Geographic
Association Rule Miner) that supports the complete discovery process for mining SAR
from geographic databases. To better understand the process, the framework can be
analyzed in three general levels: data repository, data preprocessing, and frequent
pattern mining.

At the bottom are the geographic databases, stored in GDBMS constructed under
OGC specifications (OPEN GIS CONSORTIUM, 1999b). There is also a knowledge
base, which stores all information that may be used as prior knowledge to improve
geographic data preprocessing and SAR mining. This repository stores the set of pairs
of geographic objects with dependences, geographic database schemas, geo-ontologies,
and concept hierarchies.

In the center of Figure 4.1 is our first contribution (BOGORNY, 2005a, 2005b,
2006a). It is the spatial data preprocessing level which covers the gap between data
mining tools and geographic databases. At this level data repositories are accessed
through JDBC/ODBC connections and data are retrieved, preprocessed, and
transformed into the single table format. Dependences between the target feature type
and relevant feature types are also removed in this step. This step prunes the input space
and reduces the number of spatial joins, as explained in Section 5.1. According to
(BONCHI, 2003) pruning the input space is still the most efficient way to reduce
frequent sets.

On the top are the algorithms for mining spatial association rules. At this level, we
present contributions for the frequent set generation step in the process of mining SAR.
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We show two methods to eliminate all well known geographic dependences among
relevant features types, i.e., the dependences which cannot be removed from the input
dataset. The first method is an Apriori-like approach (BOGORNY, 2006b, 2006c) that
eliminates the exact geographic dependences specified in a set of dependences. This
step is explained in more detail in section 4.2.

The second method generates maximal frequent sets (BOGORNY, 2006e). This
method applies the idea of closed frequent sets, but adapted to consider the elimination
of geographic dependences. This step is detailed in Section 4.3.

Although we present different methods to generate frequent sets for mining spatial
association rules, the way as dependences are eliminated can be applied to any frequent
pattern or spatial association rule mining algorithm. The main strength of our
framework is its simplicity, and very little background knowledge is required from the
data mining user.

Association Rule Generation
with Knowledge Constraints

Maximal Frequent
Set Generation
with knowledge

constraints

Other Associtation

- Frequent Set
Rule Mining

Generation
with knowledge
constraints

Data
Mining

Algorithms

Frequent Set
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Elimination
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Database
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Dependence, .... based GDBMS Repository

Figure 4.1: GeoARM: a Unified Framework for mining SAR from geographic databases

4.1 Data PreProcessing

The data preprocessing steps using prior knowledge can be performed in different
ways, according to the knowledge represented in the knowledge base on the bottom of
the framework presented in Figure 4.1. In this thesis we consider that in the knowledge
repository there is a set of pairs of geographic feature types with dependences, that we
call hereafter knowledge constraints. The set ¢ of knowledge constraints can be
generated in different ways. When the knowledge base contains database schemas then
the set ¢ can be generated with processes of reverse engineering (CHIFOSKY, 1990).
Different approaches to extract dependences from relational databases with reverse
engineering are available in the literature. For knowledge discovery in non-geographic
databases reverse engineering has been used to understand the data model
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(MCKEARNEY, 1996) in legacy systems, or to automatically extract SQL queries
(SHOVAL, 1993), but not as prior knowledge to reduce well known patterns.

In (BOGORNY, 2006b) we present an algorithm to extract geographic dependences
from database schemas, which is shown in Figure 4.2. If the database is relational, then
the algorithm searches for all foreign keys. For each foreign key, the name of the table
which it references is retrieved, as well as the name of the table where the foreign key is
specified. The name of both relations is stored in a set of knowledge constraints ¢. If the
database is object-oriented, then the same steps are performed, but searching for classes
with attributes which refer to other classes.

Given: a relational database schema
Find all foreign_keys
For each foreign_key
Insert into ¢ the name of the table
which the foreign_key references and the name of
the table to which the foreign_key belongs;
return o¢;

Given: an 00 database schema
Find all classes
For each class in the database schema
If there are references to other classes
Insert the class name and the
referenced class into ¢
return ¢;

Figure 4.2: Pseudo-code of the algorithm to extract geographic dependences from
geographic database schemas

When the knowledge base contains an ontology, then the set of pairs with
dependences ¢ can be generated by an algorithm that simply extracts the properties of
the spatial feature types in the ontology. Otherwise, data preprocessing can be
performed considering the whole ontology, as in the example shown in Appendix AV
(BOGORNY, 2007).

The set of knowledge constraints ¢ can also be provided by the user. In this case a
larger set of dependences can be specified; not only associations explicitly represented
in either database schemas or ontologies, but other application domain dependences
which generate well known patterns. In (BOGORNY, 2006d) we developed a graphical
GUI to automate geographic data preprocessing where the user can specify pairs with
dependences. Details will be presented in Chapter 6.

In Sections 4.1.1 and 4.1.2 we describe the data preprocessing tasks considering that
¢ is the set the geographic feature types with well known dependences. The focus is on
using this set to improve geographic data preprocessing.

4.1.1 Data Preprocessing Tasks: The Input Space Pruning Method

There are four main steps to perform the tasks of extracting spatial predicates for
mining SAR: database metadata retrieval, dependence elimination (input space
pruning), spatial join, and transformation, as shown in Figure 4.1.

The database metadata retrieval step connects to the specified database and
retrieves relevant information through the Open GIS database schema metadata,
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including all database relations (feature types). The user chooses among the database
relations the target feature type T, the target feature non-spatial attributes A and the set
of relevant feature types S that may have some influence on T, the spatial relationships
R, and the granularity level g for every different relevant feature type O in S, when a
concept hierarchy Ho is given for O.

Figure 4.3 presents an overview of the data preprocessing algorithm, where D is the
geographic database, ¢ is the set of pairs of geographic feature types with dependences,
T is the target feature type, A is the set of non-spatial attributes of T, S is the set of
relevant feature types O, and R is the spatial relationship (e.g. topology, distance). The
objective is to find the dataset W, without dependences between T and S, in the
appropriate input format for mining frequent sets and spatial association rules.

Given: D, //geographic database
¢, //set of dependences
, //target feature type
, //target feature type non-spatial attributes
//set of relevant feature types
//spatial relationships
//set of granularity levels
//set of concept hierarchies

Find: a dataset ¥ without geographic dependences between T and S;

ITOITW0n>X>-

Method:
¥ = select A from T;
Dependence_Elimination
begin
For (i=1; i=#0 In S, i++) do
begin
IT (T has a dependence with O; in ¢)
Remove O; from S; //input pruning
Else
Y = ¥ u spatial_join (R,(1),(0;5));
end;
end;
Transformation (¥,G,H);

Figure 4.3: Pseudo-code of data preprocessing function to compute spatial predicates
named spatial_predicate_extraction

The Dependence Elimination step verifies all associations between the target feature
type and all relevant feature types. It searches the set of knowledge constraints ¢ and if
T has a dependence with any O < S, then O is eliminated from S. For each relevant
feature type removed from S, no spatial join is required to extract spatial relationships.
By consequence, neither frequent sets nor spatial association rules will be generated
with this relevant feature type.

The Spatial Join computes and materializes the relationships R between T and O, for
all relevant feature types O < S. It extracts from a given geographic database D the
spatial relationships R between the instances of the reference object type T and all
instances of the relevant feature types O < S in the granularity level go < G, according
to a concept hierarchy h, < H and for every O in S. Different relevant feature types may
be represented at different granularity levels.
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If no concept hierarchies are provided, two different granularity levels can be
automatically generated: feature instance and feature type. The feature type granularity
level considers the database relations exactly as they are defined in the geographic
database. For example, if there is a relation named “WaterBody”, then predicates can be
represented at this level, such as contains(WaterBody), touches(WaterBody). If there is a
database relation for different types of water bodies, such as “River”, “Lake”, “Stream”,
than predicates are represented at lower levels (e.g. contains(River), contains(Lake)), as
the relations are represented in the database.

At the feature instance granularity level the same criterion is applicable, but with the
difference that all instances of every relevant feature type are taken in account. For
example, contains(WaterBody_Jacui), touches(WaterBody Guaiba), or
contains(River_Jacui), touches(Lake _Guaiba).

A granularity g is an integer number with size 1..n where 1 is the most general level
and n is the more specialized. If no concept hierarchy is provided for O, g=1 is the
feature type granularity level and g=2 is the feature instance granularity level that can be
automatically generated for any database.

Four types of spatial relationships can be materialized by the spatial join step:

a) Topological: computes the detailed topological relationships (e.g. touches,
contains);

b) Intersection: extracts more general topological relationships, intersects and non-
intersects;

c) Order: extracts orientation spatial relationships;

d) Distance: computes neighborhood relationships given some distance parameters.
Because close objects are more co-related than far objects, close is considered
dominant over far at granularity levels g<n where n is the lowest level. For
example, if an instance of T is close to some instances of O and far from others, then
close is materialized.

Spatial joins to extract spatial predicates are performed on-the-fly with operations
provided by the GDBMS, and only over the relevant feature types defined by the user.
Data preprocessing in the proposed framework follows the Open GIS Consortium
specifications (OGC, 1999b), what makes GeoARM interoperable with all GDBMS
constructed under OGC specifications (e.g. Oracle, PostGIS, MySQL, etc).

The Transformation step transposes as well as discretisizes the dataset ¥ into the
single table representation understandable by association rule mining algorithms.

4.1.2 Understanding the Input Space Pruning Method

To better understand the input space pruning method and the effect that the
elimination of one single geographic dependence between the target feature type and a
relevant feature type has in the frequent set generation, let us consider the example
shown in Figure 4.4.

Figure 4.4(a) shows the dataset with six tuples and five predicates shown in Table
3.1. For simplicity we use literals for the predicates. Every row in the dataset is a city
and the predicate sets are relevant feature types (port, hospital, street, factory, water
body) with spatial relationships with the target feature type city. The predicates are
described in Figure 4.4 (c). In Figure 4.4(b) are the k frequent sets with minimum
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support 50%, i.e., which appear in at least 50% of the tuples in the dataset in Figure
4.4(a).

a) dataset b) frequent predicate sets with minsup 50%
Tid (city) | Predicate Set Set k Frequent sets
1 A C DT W k=1 {A}, {C}, {D} {7}, {W}
2 C,D,W =2 {AC}, {AD}, {A T} {A W}, {C,D},
3 A, D, T,W {C 1}, {C,w}, {D,T} {D,w}, {T.W}
4 A C,D, W k=3 | tACD} {ACW} {AD,T}, {ADW},
5 ACDTW {ATW}, {CD T} {CD,W} {DTW}
6 C,D, T k=4 {A,C,D,W}, {AD,T,W}

c) predicates

A = contains(Port), C = contains(Hospital), W = crosses(WaterBody),
T = contains(Factory), D = contains(Street),

Figure 4.4: Dataset with 6 tuples and frequent predicate sets with minimum support
50%

Notice in Figure 4.4(a) that the predicate D has a 100% support and represents a
dependence between city and the relevant feature type street. Applying our method
proposed in this section, the predicate D is removed from the dataset. By consequence,
no frequent set containing D will be generated.

Figure 4.5 (left) shows the meet-semilattice of the frequent itemsets that would be
generated by any association rule mining algorithm which does not eliminate
geographic dependences. This algorithms would generate 4-level frequent sets
(e.g.{A,C,D,W}). Using our input space pruning method, i.e., removing D from the
dataset, avoids the generation of 13 frequent sets, scratched out in Figure 4.5 (left).
Instead of 25 frequent sets, only 12 would be generated using our method, as shown in
Figure 4.5 (right). Indeed, the input space pruning method eliminates the largest
frequent sets which are generated because of the high support of the dependence.

Figure 4.5: (left) Meet-semilattice of frequent predicate sets with dependence {D} and
(right) meet-semilattice of frequent predicate sets without dependence {D}
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Our method reduces one level in the frequent sets for each dependence that is
eliminated. This avoids the generation of the largest sets, which normally generate the
largest number of rules.

4.2 Frequent Set Generation with Knowledge Constraints

The most efficient way to eliminate well known geographic dependences in SAR
mining that cannot be eliminated in data preprocessing is to eliminate candidate sets in
which the dependences appear the first time. For this purpose we propose the Apriori-
KC algorithm to generate frequent geographic patterns with knowledge constraints
(BOGORNY, 2006b, 2006¢). Knowledge constraints are the pairs of relevant feature
types with semantic dependences that are a priori known as non-interesting. Considering
this constraints as prior knowledge, we propose Apriori-KC to generate frequent
patterns for geographic data, while Apriori is more appropriate for generating frequent
patterns for non-spatial data.

4.2.1 Apriori-KC

Given a knowledge base that contains a set of pairs of geographic objects with
dependences ¢ called knowledge constraints, and a set of concept hierarchies H, a
dataset ¥ generated by the function spatial_predicate_extraction presented in the
previous section, and a minsup threshold, multiple passes are performed over the dataset
¥ to generate frequent predicate sets, as shown in Figure 4.6.

Given: ¢, // set of knowledge constraints
Y, // dataset generated with spatial predicate extraction
minsup, // minimum support
H; //concept hierarchy
L, = {large 1l-predicate sets};
For ( k = 2; Ly '= J; k++ ) do begin
Ckx = apriori_gen(Ly.1); // Generates new candidates
It (k=2)
// remove pairs with dependences
(step 1) Delete from C, all pairs with a dependence in ¢ ;
// remove pairs with hierarchical dependences
(step 2) Delete from C, all pairs with a hierarchical dependence H in ¢ ;
// remove pairs with same feature types and different
// topological relationships
(step 3) Delete from C, all pairs with the same feature type ;
// remove pairs with different feature types that have
// the same parent in H
(step 4) Delete from C, all pairs with the same parent in H

Forall rows w € ¥ do begin
Cy = subset(Cy, w); // Candidates contained in w

Forall candidates c € C, do
c.count++;
End;

Ly = {c € Cc | c.count > minsup};
End;

Answer = Uyl

Figure 4.6: Apriori-KC to generate frequent geographic patterns without well known
dependences
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In the first pass, the support of the individual elements is computed to determine
large-predicate sets. In the subsequent passes, given k as the number of the current pass,
the large sets Ly.; in the previous pass (k -1) are grouped into sets Cy with k elements,
which are called candidate sets. This is performed by the apriori_gen function,
described in (AGRAWAL, 1994).

The support of each candidate set is computed, and if it is equal or higher than the
minimum support, then this set is considered frequent. This process continues until the
large set in the pass results in an empty set.

To eliminate well known geographic dependences we added two more steps (steps 1
and 2 in Figure 4.6) to Apriori, which are performed only once, when k=2, such that all
pairs of elements defined in the set of knowledge constraints ¢ are removed from C,.
All dependences are removed from candidate sets with two elements, when they appear
the first time, before computing their frequency. According to Assertionl, this step
warrants that pairs of geographic objects with a dependence in ¢ will neither appear
together in the frequent sets nor in the spatial association rules. This makes our
approach effective and independent of any threshold such as minimum support,
minimum confidence, lift, etc.

It is important to emphasize that no information is lost with our method to eliminate
pairs of predicates. Only well known patterns and pairs that generate non-interesting
association rules will be eliminated. For instance, suppose that {A,B} is a frequent set
having a dependence. This pair is eliminated with the purpose to avoid the generation of
larger frequent sets that contain the dependence, such as {A,B,C}, for example. If the
set {A,B,C} has minimum support, then the pairs {A,B}, {A,C}, and {B,C} reached
minimum support too. As we eliminate only pairs with dependences, {A,C} and {B,C}
which combine the predicate C with both A and B separately, are still generated, and no
information is lost. The pruning method only eliminates patterns that are well known,
and does not sacrifice the result quality.

Going into more detail of the proposed algorithm for mining frequent geographic
patterns, the step 1 in the algorithm eliminates the candidates that contain geographic
objects with a dependence in ¢. For example {contains(Island), contains(Water)}. This
will avoid the generation of rules such as contains(lsland) >contains(Water). Rules
such as pollution=high - contains(Island) and pollution=high ->contains(Water) are
NOT eliminated by the proposed method.

The second step 2 removes hierarchical dependences, i.e, dependences that are
inherited when data are represented in the dataset at a granularity lower than that in
which the dependence is specified. For example, suppose that a dependence between
island and water is defined in ¢, but water is represented in the dataset % in a more
specialized level such as river, lake, and stream. In this case, all pairs in C, that combine
island with any type of water are eliminated. This steps avoids the generation of rules
such as contains(Island) >contains(Lake) or contains(Island) 2>contains(River).

One can argue that rules extracted from data at lower granularity levels having a
geographic dependence might be interesting, as for example, contains(lsland) -
contains(River) and pollution=high, and should not be eliminated. Although this rule
seems to be interesting, high pollution is simply an attribute which does not aggregate
any information to the geographic dependence. Moreover, if high pollution is in fact
related to either island or river, this information will still be represented by the pairs
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{contains(Island), pollution=high} and {contains(River), pollution=high}, which are
not eliminated by our method.

Besides removing well known geographic dependences, Apriori-KC also eliminates
combinations of pairs of predicates that generate non-interesting rules having the same
geographic feature type with either same or different spatial relationship. These pairs
are eliminated by step 3 in the algorithm shown in Figure 4.6.

In step 3 pairs with the same feature type and different topological relationships (e.g.
contains(Water), touches(Water)) are eliminated. This elimination occurs even if no
concept hierarchy is specified, and avoids the generation of rules such as
contains(Water) - touches(Water).

Step 4 removes pairs of spatial predicates that contain different feature types that
have the same parent in concept hierarchy (e.g. lake, river, stream). This step eliminates
pairs of predicates that contain “brothers” in a concept hierarchy, and they may have
either same spatial relationship (e.g. touches(River), touches(Lake)) or not (e.g.
touches(River), contains(Lake)). This step avoids the generation of a large number of
non-interesting rules such as contains(River) - contains(Lake). As we have explained
in Chapter 3 a rule such as contains(River) = contains(Lake) is not a rule cause =effect.
Suppose that the target feature type is city that has a contains relationship with both
river and lake. It makes no sense to say that cities contain lake because they contain
river.

Our solution proposed in this section warrants the elimination of all well known
geographic dependences among relevant features and pairs that generate non-interesting
rules. This solution can be implemented in any Apriori-like algorithm that prunes
patterns and rules with different types of constraints.

4.2.2 Understanding the Apriori-KC Pruning Method

To evaluate the dependence elimination process let us consider the dataset shown in
Figure 4.4(a) and the frequent sets with support 50% in Figure 4.4 (b). Now let us
consider the dependence between A and W, where all rows in the dataset where A
occurs, W occurs as well. By eliminating the pair with the dependence {A,W} in the
second pass, when it occurs the first time, the sets {AW}, {A,CW}, {A,D,W},
{A,T,W}, {ACDW}, and {AD, T,W} will not be generated, as shows the meet-
semilattice in Figure 4.7 (left). The elimination of the set with 2 predicates avoids the
generation of larger sets containing the pairs with dependences.

In this example, instead of 25 frequent sets with dependences, only 19 frequent sets
and without well known dependences will be generated (Figure 4.7 right), and no
information is lost. Only frequent sets that contain both A and W together are not
generated, while sets that contain either A or W are still created. For example, the set
{A,C,D,W} is not generated, but all other sets containing either A or W remain among
the resultant frequent sets ({A,C}, {AD}, {AT} {Cw}, {DW}{T W},
{A,C,D},{AD,T}, {C,D,W}, and {D,T,W}).
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{AcD} {ADT} {cDT} {cDw} {DTW}

Figure 4.7: (left) Meet-semilattice of frequent itemsets with the dependence {A,W} and
(right) meet-semilattice without dependence {A,W}

The elimination process explained in this example with the pair {A,W} is applicable
to any of the 4 elimination steps presented in the algorithm. The elimination of
dependences between relevant feature types is not as effective as the elimination of
dependences between the target feature type and one relevant feature type as shown in
the previous section. However, applying both pruning methods (input space and
frequent sets with size 2), as proposed in (BOGORNY, 2006c¢) one dependence between
the target feature type and a relevant feature type {D} and among two relevant feature
types {A,W} can reduce the frequent sets much further, as shows the meet-semilattice
in Figure 4.8.

While the number of frequent sets generated by Apriori in this example would be 25,
and containing geographic dependences (Figure 4.8 left), our method would generate
only 9, and without dependences, as shown in Figure 4.8 (right).

A2y ey

{ACy {AT} {c1} {cwy {TW}

o ¢
Figure 4.8: (left) Meet-semilattice of frequent sets with dependences {D} and {A,W},
and (right) meet-semilattice without dependences {D} and {A,W}
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4.3 Maximal Non-Redundant Frequent Sets with Knowledge
Constraints

Although closed frequent sets as far as we know have not been used in SAR mining,
it is a very useful technique to reduce the number of both frequent sets and association
rules.

Considering that the closed frequent set approach generates much less frequent sets
because it eliminates frequent sets which generate redundant association rules, one can
argue that geographic dependences should be eliminated from closed frequent sets, and
not from frequent sets. In this section we evaluate the dependence elimination
considering the closed frequent set approach and propose a new algorithm named Max-
FGP (Maximal Frequent Geographic Patterns) (BOGORNY, 2006e) that will be
explained along with this section.

4.3.1 Geographic Dependences and Closed Frequent Sets

To evaluate geographic dependences in closed frequent sets, let us consider the
closed frequent itemsets shown in Figure 4.9, represented in bold style and organized
according to the respective set of transactions in which they generate a closed frequent
set. To follow the terminology commonly used in the frequent pattern mining literature,
from this point we may also refer to a row or a tuple in the dataset as a “transaction”
(tid) and a set of rows as a “set of transactions” (tidset). Notice in Figure 4.9(b) that the
closed frequent itemset is the maximal non-redundant frequent itemset for every
different tidset ({D}, {C,D}, {D,WwW}, {C.DW}, {ADW} {D,T} {ACDW},
{AD, T,W}, {C,D,T}).

(a) dataset (b) Frequent predicate set and tidset with minimum support 50%
Tid | itemset TidSet | Frequent sets L
1 |ACDTW 123456 | {D}
2 | C,D;W 12456 | {C}{C,D}
3 |ADTW 12345 | {w} {D,W}
4 [ACDW 1245 {C,w} {C,DW}
5 |AC,D,T,W 1345 | {A} {AD}, {A W}, {ADW}
6 | C.D,T 1356 | {T},{D,T}

145 {AC}, {A.C,W}, {AC,D}, {A,C,DW}
135 {A T} {T.W}, {AD,T} {AT W}, {D.TW} {AD,T,W}
156 {C,T}{C,D,T}

c) predicates

A = contains(Port), C = contains(Hospital), W = crosses(WaterBody),
T = contains(Factory), D = contains(Street),

Figure 4.9: Frequent sets and closed frequent sets

Considering the pair {A,W} with a dependence, observe in Figure 4.9 (b) that the
closed frequent set approach does not warrant the elimination of well known geographic
dependences, since among the 9 closed frequent sets, 3 have the dependence {A,W}
({A,D,W}, {A,C,D,W},{A,D,T,W}).
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If we eliminate geographic dependences from the closed frequent sets
({A.D,W}13ss), {A,C,D,W}4s), and {A,D,T,W}ss), the information in the non-closed
frequent sets occurring in the same transactions of the closed frequent sets is lost. The
elimination of {A,D,W} eliminates information of the sets {A,D} and {AW} in
transactions 1345. The elimination of {A,C,D,W} loses the information of {A,C},
{A,C,W}, and {A,C,D} in the tidset 145, and the elimination of {A,D,T,W} loses the
information of the sets {A, T}, {T.W}{AD, T}, {A T,W}, and {D,T,W} in the tidset
135.

Figure 4.10 (left) shows the meet-semilattice of closed frequent sets containing the
dependence {A,W}. By eliminating from the closed frequent sets all sets with the
geographic dependence {A,D,W}.{A,C,.D,W}, {A,D,T,W}, as shown in Figure 4.10
(right), the information lost cannot be retrieved anymore.

{CD,T} {CDW}

(1245)

' (123456)

o
Figure 4.10: (left) Closed frequent sets with geographic dependences and (right) closed
frequent sets without well known geographic dependences

If we eliminate geographic dependences from the frequent sets and than apply the
closet frequent set approach, the resultant frequent sets are not closed in relation to the
dataset, although they are in relation to the frequent sets. For example, in Figure 4.9 (b)
there are 6 frequent sets obtained from the tidset 135 ({A, T}, {T.W}, {AD,T},
{A,T,W}, {D,T,W} {AD, T,W}). Two frequent sets {A, T,W} and {A,D,T,W} contain
the dependence {A W}, and {A,D,T,W} is the closed frequent set. By removing the sets
with dependences {A, T,W} and {A,D,T,W} from the frequent sets, the remaining sets
{A T} {T,W}, {AD,T}, {D,T,W} are not closed in relation to the dataset because a
larger set {A,D,T,W} can be generated from the dataset. Indeed, {A,T} and {T,W} are
redundant in relation to {A,D, T} and {D, T,W} respectively.

To overcome this problem by removing redundant frequent sets without well known
dependences we propose to generate maximal non-redundant frequent sets with the
algorithms Max-FGP, presented in the following section.

4.3.2 Max-FGP

Max-FGP eliminates well known geographic dependences as in Apriori-KC, and
eliminates all redundant frequent sets that occur in the same transactions, similar to the
closed frequent set approach. Considering our example shown in Figure 4.9(b) we
propose to first eliminate the dependences, and then for all frequent sets occurring in the
same transactions, only the maximal non-redundant frequent sets remain, the others are
eliminated.
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To illustrate this process, Figure 4.11 (left) shows the meet-semilattice of the
frequent sets without well known geographic dependences {A,W} generated by Apriori-
KC. The elimination of the redundant frequent sets from these sets results in the meet-
semilattice shown in Figure 4.11 (right). This method reduces the 19 frequent sets
without dependences to 11 maximal non-redundant frequent sets without dependences
and without losing information.

{A' ’D%ms) {A'D'T%las) {C’ '1—(}1'56) {cow {DTW} {A' 'D?l45) {A' 'T}BS) {CHThSG) {C”W}IZ“S{)DHW}

o (1245) ¢ (139) / (135)

(12456) ¥ 4 (12345)

¢

Figure 4.11: (left) Frequent sets without geographic dependences and (right) maximal
non-redundant frequent sets without well known dependences

Definition 4 (maximal frequent geographic patterns without well known
dependences): a frequent geographic pattern L is maximal when it has no well known
geographic dependence in & such that L-@=L and M(L)=L.

The Maximal operator M associates with a frequent predicate set L the maximal set
of predicates common to all transactions containing L without well known geographic
dependences, i.e., L is maximal if there is no frequent predicate set L" in the same
transactions of L such that LcL’.

Considering the frequent sets generated from the tidset 135 without well known
dependences ({A, T}, {T,W}, {A,D, T}, and {D,T,W}) shown in the meet-semilattice in
Figure 4.11 (left), notice that {T,W}<={D,T,W} and {A, T}={A,D,T}, so neither {T,W}
nor {A, T} are maximal. However, {A,D,T}z{D,T,W}, so both {A,D,T} and {D,T,W}
are maximal. Considering the tidset 135, while only one frequent set is closed
({A,D,T,W3}), but having a geographic dependence, two frequent sets ({A,D,T} and
{D,T,W}) in these set of transactions (135) are maximal, but without well known
geographic dependences. In this example we can observe that it is possible to have more
maximal frequent sets than closed frequent sets, since the dependence elimination
avoids the generation of the largest frequent sets, which in general, are closed.

Figure 4.12 shows an overview of the Max-FGP algorithm that extracts maximal
frequent geographic patterns without well known dependences. Given a set L of
frequent sets generated with Apriori-KC presented in Section 4.2 and a geographic
dataset ¥ generated with our preprocessing method presented in Section 4.1, Max-FGP
starts the generalization similarly to the closed frequent set approach. All frequent sets
M, with size k are compared to the sets with size k+1. When a set My < My and the set
of transactions (tidset) in which My appears is the same as the transactions where My,
appears, than we can say that My is redundant, while My.+1 is more general. When this
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occurs, M is removed from M. This process continues until all frequent sets in M have
been tested.

Given: Ly; // frequent sets generated with Apriori-KC
¥; // dataset generated with spatial_predicate_extraction

Find: Maximal M

// Tind maximal generalized predicate sets
M = L;
For ( k = 2; M¢ 1= J; k++ ) do begin
For ( J = k+1; M;!=0; j++ ) do begin
IT (tidSet (M) = tidSet (M;))
It (Mc < Mp) // M; is more general than M
Delete M, from M;
End;
End;
Answer = M.

Figure 4.12 : Pseudo-code of the algorithm Max-FGP

In this chapter we presented three main methods to improve the process of mining
spatial association rules from geographic databases: intelligent geographic data
preprocessing; pruning geographic dependences and predicates with the same feature
types or relationships in the frequent set generation; and the computation of maximal
non-redundant frequent sets without well known dependences.

In the next chapter we evaluate the proposed methods with experiments performed
over real geographic databases.
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5 EXPERIMENTS AND EVALUATION

In this chapter we present experiments with different real geographic databases in
order to evaluate and validate the three pruning methods for frequent geographic pattern
mining proposed in this thesis: data preprocessing (or input space pruning), frequent set
pruning, and maximal frequent set generation. The first database was provided by
Procempa, which stores many different spatial feature types of the city of Porto Alegre.
This database contains information about infra-structure, transportation, hydrography,
etc. The second database is from a region in Northern Brazil, and contains information
about vegetation, transportation, and hydrography.

Both geographic databases were preprocessed with different spatial feature types,
different spatial relationships, and different granularity levels, in order to generate the
following datasets, which were mined to extract frequent geographic patterns using the
new methods proposed in this thesis:

a) dataset 1: extracted from database 1, this is a dataset with 18 spatial predicates
including the relevant feature types trees, treated water network, slums, cellular
antennas, water resources, water collection points, illumination points, hydrants,
hydrographic sub-basin, gas stations, streets, schools, hospitals, health centers,
industrial residues repositories, water treatment stations, and artesian wells. This
dataset has two dependences between the target feature type (district — 109
multi-polygons) and the relevant feature types (illumination points and treated
water network), and three dependences among the relevant feature types (water
resource and hydrographic sub-basin, water resource and water collection
points, gas stations and streets). This dataset was preprocessed considering the
spatial relationship intersects.

b) dataset 2: extracted from database 1, this is a dataset with 17 spatial predicates
including the relevant feature types trees, treated water network, slums, cellular
antennas, streams, water collection points, illumination points, hydrants, bus
stops, streets, hydrographic basin, sewer network, etc. This dataset has one
dependence between the target feature type (district — 109 multi-polygons) and
the relevant feature types (illumination points) and two dependences among the
relevant feature types (stream and hydrographic sub-basin, bus stop and street).
This dataset was preprocessed considering the spatial relationship intersects.

c) dataset 3: extracted from database 1, this dataset has 15 spatial predicates
including feature types streams, slums, hospitals, gas stations, streets, etc. This
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dataset has one dependence between the target feature type (census sectors —
2.159 multi-polygons) and the relevant feature type illumination points and one
dependence among the relevant feature types (gas station and streets). This
dataset was also preprocessed considering the spatial relationship intersects.

dataset 4: extracted from database 1, this is exactly the same dataset 2, but the
feature type street is considered at granularity level 2 (street, avenue, and
square). In this dataset there is one dependence between stream and
hydrographic sub-basin and 3 hierarchical dependences: bus stop and street, bus
stop and avenue and bus stop and square. This dataset was also preprocessed
considering the spatial relationship intersects.

dataset 5: extracted from database 1, this dataset was preprocessed considering
topological relationships between the target feature type (districts — 109 multi-
polygons) and 14 relevant feature types, generating a total of 70 predicates. This
dataset has a large amount of dependences among relevant feature types. The
dependence between streams and hydrographic sub-basins with different
topological relationships generated 4 pairs of dependences {contains(Stream),
overlaps(SubBasin)}, {contains(Stream), within(SubBasin)}, {crosses(Stream),
overlaps(SubBasin)}, {crosses(Stream), within(SubBasin)}. Besides the 4 pairs
with dependences, 9 pairs of predicates with the same feature type and different
topological relationships were also in this dataset, resulting in a total of 13 pairs
to be eliminated (e.g. {overlaps(subBasin), within(subBasin)}, {crosses(Stream),
contains(Stream)}, {contains(Slum), overlaps(Slum)}).

dataset 6: extracted from database 2, this dataset has 3 non-spatial attributes and
topological relationships were computed between the target feature type
vegetation (300 multi-polygons) and 7 relevant feature types, resulting in a total
set of 38 predicates. Two dependences among relevant feature types were in this
dataset: bridge and river, and tunnel and road. For different topological
relationships these two dependences were replicated in six pairs:
{touches(Tunnel),  crosses(Road)},  {touches(Tunnel), contains(Road)},
{contains(Tunnel), crosses(Road)}, {contains(Tunnel), contains(Road)},
{contains(Bridge), crosses(River)}, {contains(Bridge), contains(River)}.
Besides the pairs with dependences, 7 pairs have same feature types
{contains(DisturbedSoil), overlaps(DisturbedSoil)}, {contains(River),
crosses(River)}, {overlaps(GroundSurface), touches(GroundSurface)},
{contains(Tunnel),  touches(Tunnel)},  {contains(Road), crosses(Road)},
{contains(GrassField), touches(GrassField)}, and {contains(RiceField),
touches(RiceField)}.

dataset 7: extracted from database 1, with 20 spatial predicates, this dataset is
similar to dataset 1, but considering only dependences between the target feature
type (district — 109 multi-polygons) and the relevant feature types illumination
points, hydrants, and blocks. This dataset was preprocessed considering
topological relationships, while in dataset 1 only intersects was considered.

dataset 8: extracted from database 1, this dataset has 12 predicates and 105 rows,
where the relationship distance was considered between the target feature type
(health center) and 6 relevant feature types. One dependence between the
relevant feature types gas stations and streets was in this dataset. Considering
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close (>600 meters and <1000 meters,) and very close (<599 meters)
relationships, this dependence is transformed in 4 pairs to be eliminated
{close(GasStation), close(Street)}, {close(GasStation), veryClose(Street)},
{very close(GasStation),  close(Street)}, and  {very_close(GasStation),
very_close(Street)}.

i) dataset 9: this dataset is similar to dataset 8. Distance relationships were
considered and exactly the same dependences were considered. The difference is
that 18 predicates were generated with 9 relevant feature types. This dataset will
be used to show that although the number of predicates increases, the
dependence replication remains constant in the frequent set generation.

J) dataset 10: extracted from database 1, this dataset has 411 predicates represented
at the feature instance granularity level. Three predicates are non-spatial
attributes — criminality rate, danger, and treated water network. The remaining
predicates are the instances of 13 different relevant feature types including sewer
network, police offices, police covering areas, hospitals, schools, health centers,
artesian wells, streams, illumination points, hydrants, etc. This dataset has 513
rows, each of which is a slum, represented in the geographic database by 513
multi-polygons.

k) dataset 11: extracted from database 2, this dataset has 50 predicates and 300
rows generated at the feature type granularity level, considering topological
relationships. Relevant feature types include different types of vegetation such as
disturbed soil, grassfield, ricefield, cropland, land subject to inundation, and
build up area. These predicates have the same parent in a concept hierarchy “soil
type”, and generated predicates with different topological relationships.

I) dataset 12: extracted from database 2, this dataset is similar to dataset 11.
Generated at the feature type granularity level, the relationship intersects was
considered, and 10 predicates were generated from relationships between the
target feature type and 10 relevant feature types.

In the experiments described in this chapter, data preprocessing was performed with
Weka_GDPM (BOGORNY, 2006d) which is described in Chapter 6. The data mining
steps were performed with a prototype implemented in Matlab. Experiments were
performed in a Pentium M, 1.5 GHz, with 752MB or ram memory, and Windows-XP
operational System.

An overview of the experiments performed with the different datasets is shown in
Figure 5.1. The boxes are different datasets and the rectangles summarize the
experiments, which will be described in the following sections.

In Section 5.1 we evaluate the data preprocessing method to extract spatial
predicates (spatial join), as well as the frequent set and spatial association rule reduction
using Apriori and the closed frequent set approach when removing geographic
dependences between the target feature type and the relevant feature types. In this
section we present different experiments, using datasets 2, 3, and 7. We evaluate the
data preprocessing method using Apriori and the closed frequent set approach, because
the input space pruning method is independent of rule mining algorithm. Section 5.1
describes the experiment “A” shown in Figure 5.1.
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In Section 5.2 both algorithms Apriori-KC and Max-FGP are evaluated with both
input space and frequent set pruning, using datasets 1, 2, 3, 8, 9, and 10. This section
describes the experiment “B” illustrated in Figure 5.1.

In Section 5.3 we evaluate both algorithms Apriori-KC and Max-FGP for the
hierarchical dependence elimination when mining geographic data at different
granularity levels. In this evaluation datasets 2 and 4 are used, as can be observed in
Figure 5.1 “C”.

In Section 5.4 the dependence elimination is evaluated for frequent sets generated
with same feature types having different topological relationships (e.g.
{contains(River), crosses(River)}). In this experiment we also evaluate the dependence
elimination when one pair of dependences is replicated to many pairs because of
different topological relationships (e.g. {contains(Bridge), contains(River)},
{contains(Bridge), touches(River)}). In this experiment datasets 5 and 6 were used (see
experiment “D” in Figure 5.1).

In Section 5.5 we evaluate step 4 of Apriori-KC, i.e., the elimination of pairs of
predicates that contain geographic objects with the same parent in a concept hierarchy.
This experiment uses the datasets 11 and 12, as shown in Figure 5.1 “E”.

“ C"
Frequent set Pruning
For data at
Different granularity

Levels (step 2)
Apriori-KC
Max-FGP
| “ AP
Input Space
Pruning
l | Apriori and
“B” Closed Frequent sets
Input Space DataSet 2 DataSet 3
and 17 predicates 15 predicates
> Frequent Set —1
Pruning (step 1) %
Apriori-KC DataSet 1 DataSet 4
Max-FGP 18 predicates o 20 (e S
“«
D
Frequent Set
DataSet 10 Pruning
411 predicates DataSet 5 For redundant feature
70 predicates Types (step 3)
Apriori-KC
DataSet 9 Max-FGP
18 predicates
DataSet 7
DataSet 8 20 predicates
12 predicates
=
Frequent Set —————— Topolo Topol
Pruning pology opology DataSet 6
for Pairs with same DataSet 11 S8 [prEIEELES
Parent (step 4) 50 predicates
Apriori-KC
Max-FGP
Intersects
DataSet 12
10 predicates

Figure 5.1: Experimental Scheme

In the remaining of this chapter we may refer to steps of dependence elimination
between the target feature type and relevant feature types as “input space pruning”. We
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may also refer to dependence elimination among relevant feature types (steps 1 and 2 of
Apriori-KC) and steps 3 and 4 in Apriori-KC as “frequent set pruning”.

5.1 Data Preprocessing - Pruning Input Space

The input space pruning method proposed to eliminate geographic dependences
between the target feature type and any relevant feature type is applicable to any
association rule mining algorithm, since the dependence elimination occurs in data
preprocessing, before the frequent set computation. We first evaluate the spatial join
computational time, with dataset 7, as shown in Figure 5.2.

Spatial Join Computational Time
- B Without dependence elimination
16,000 14,467 p
14,000 - 12,705 B Removing feature type with
12,000 11,412 31,743 multi-polygons
B Removing feature type with
% 10,000 7 32,048 multi-lines
g 8,000 - O Removing feature type with
= 225,289 multi-lines
6,000 -
4,000 - 2476
2,000 - H
0 - ‘
18 17 16 15
Number of relevant feature types
(a)
Spatial Join Computational Time
| Without Dependence Elimination
0O Removing 1 dependence (32,048 multi-lines)
@ Removing 2 dependences (32,048 multi-lines and 57,580points)
3,689
3,500 -
3,000 -
—~ 2,500 A
0
‘aE'I 2,000 -
= 1,500 L3t
1,000 -
500 | 36
0
7 6
Number of Relevant Feature Types
(b)

Figure 5.2: Spatial join computational time

The spatial join computational time is totally data dependent. As can be observed in
Figure 5.2 (a), where we preprocessed a geographic database considering 18 relevant
feature types, if one relevant feature type with 31,743 multi-polygons is eliminated,
spatial join computational time reduces in 13%. If one more relevant feature type with
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32,048 multi-lines is eliminated, spatial join computational time reduces around 23%.
When one more relevant feature type with 225,289 multi-lines is eliminated,
computational time reduces 83%. This experiment shows that according to the geometry
type and the number of instances of the relevant feature type that is eliminated, the
spatial join computational time can be dramatically reduced.

Figure 5.2(b) shows another experiment, where a dataset with only 8 relevant feature
types was generated. The elimination of different relevant feature types that have
geographic dependences with the target feature type can reduce the computational time
very significantly. In this experiment, time reduces in 99% when the eliminated feature
types have the highest number of instances.

To evaluate the frequent set reduction by pruning the input space, Figure 5.3 (left)
shows an experiment performed over dataset 7 using the Apriori algorithm. This dataset
was mined considering different values of minsup (10%, 15%, and 20%). For each
different minsup, the dataset was mined three times: (a) without removing dependences,
(b) removing one dependence (column), and (c) removing two dependences (columns).
As can be observed in Figure 5.3(left) the input space pruning reduces frequent patterns
for all different values of minimum support. The elimination of one dependence pruned
the frequent sets around 50%, and the elimination of two dependences reduced the total
number in around 75% for any value of minimum support.

Association Rules Generated with Apriori Removing
One and Two Dependences Between the Target Feature
and Two Relevant Features (Input space Pruning)

Frequent Geographic Patterns Removing One and Two
Dependences between the Target Feature and Two
Relevant Features (Input space Pruning)
25,0007 22,251

1,731 m Apriori m Apriori
m Apriori (Revoming 1 column) 20,0004 B Apriori (Removing 1 column)
@ Apriori (Removing 2 columns) @ Apriori (Removing 2 columns)

1,800
1,600
1,400
1,200
1,000
800+
600+
4001
200+

15,000+

10,000+

Association Rules

Frequent Sets

5,000+

0,
10% 15% 20% 10% 15% 20%

Minimum Support Minimum Support

Figure 5.3: (left) Frequent sets and (right) association rules generated with Apriori after
pruning input space using dataset 7

The frequent set reduction warrants the association rule reduction, since associations
are generated from frequent sets. Using Apriori to generate frequent sets and association
rules and considering minconf 70%, Figure 5.3(right) shows that the rule reduction is
still more significant. By removing one single dependence in data preprocessing the rule
reduction reaches around 70%. The elimination of two dependences reduced the number
of rules in 90% for any value of minsup.

A second experiment was performed, now over dataset 2, and considering lower
minimum support (5%, 10%, and 15%). On this experiment we evaluated the number of
frequent sets generated by Apriori, the number of closed frequent sets, as well as the
computational time. Figure 5.4 (left) shows that the frequent sets generated by Apriori
are reduced in more than 50% for any value of minimum support when one single
dependence (column) is eliminated in data preprocessing. For the closed frequent sets
the reduction is not as significant as it is for Apriori. Only one closed frequent set is
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eliminated for any value of minsup. However, the computational time to generate the
closed frequent sets after input space pruning is reduced in more than 60%, as shown in
Figure 5.4 (right). For Apriori the computational time is reduced in 50% for any value
of minsup, by removing one single dependence.

Frequent Geographic Patterns Removing One Computational Time
Dependence between the Target Feature and One
Relevant Feature (Input Space Pruning) —e— Apriori
—=— Apriori (1 column)
| Apriori —m— Closed frequent sets
1400 1,321 | Apriori (1 column) 1,200 4 Closed frequent sets (1 column)
' B Closed frequent sets 1.000 -
1,200 '

E O Closed frequent sets (1 column)
£ 1,000 800 -
%) w
= 800 T
§ 600 _°§’ 000

i

g 400 A
L 400

200 200 - ‘\’\

0 0 E——_.
5% 10% 15%
° o ’ 5% 10% 15%
Minimum Support Minimum Support

Figure 5.4: (left) Number of frequent sets and closed frequent sets and (right)
computational time to generate frequent sets and closed frequent sets with input space
pruning using dataset 2

A third experiment was performed, now using dataset 3. The result is shown in
Figure 5.5. In dataset 3 although the number of rows is much higher (target feature type
has 2,159 multi-polygons) than in dataset 2 (target feature type has 109 polygons),
spatial predicates have lower support. By consequence, the number of frequent sets
generated by Apriori is very low. Considering minsup 5%, 10%, and 15% the number of
frequent sets generated by Apriori is reduced in more than 50% for any value of
minimum support applying the input space pruning method. The closed frequent sets are
reduced in one set, which is the largest closed frequent set. Similarly to the experiment
performed over dataset 2, the computational time for both algorithms is reduced in
around 50% with the elimination of one dependence in data preprocessing.

Frequent Geographic Patterns Removing One Computational Time
Dependence between the Target Feature and One
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Figure 5.5: (left) Number of frequent sets and closed frequent sets and (right)
computational time to generate frequent sets and closed frequent sets with input space
pruning using dataset 3

We can conclude with the different experiments, using different datasets, and
different values of minsup, that the percentage reduction in both time and frequent sets
is very significant when our input space pruning method is used to eliminate geographic
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dependences between the target feature type and relevant feature types. In all
experiments the elimination of one dependence reduces frequent sets in around 50%.

Without considering our input space pruning method we can say that Apriori and the
closed frequent set approach deal with a number of frequent sets Q, where n is the
number of predicates in the dataset, such that

Q=>c

Using our input space pruning method the number of frequent sets is reduced to Q’,
where d is the number of dependences eliminated in data preprocessing between the
target feature type and the relevant feature types, such that

n-d
Q'= ZCLd
i=2

5.2 Evaluating Apriori-KC and Max-FGP for single Dependence
Elimination

In this section we evaluate Apriori-KC and Max-FGP for many different datasets.
Indeed, only the single dependence elimination (step 1 of Apriori-KC) is evaluated.

5.2.1 Experiment with Dataset 3

Figure 5.6 shows the result of an experiment performed over dataset 3 where only
the dependence among relevant feature types (1 pair) was eliminated during the frequent
set generation, without input space pruning. As can be observed in Figure 5.6(left), the
elimination of one single dependence with Apriori-KC reduces the number of frequent
sets for all different values of minimum support. This reduction reaches between 28%
and 30% of the total number of frequent sets generated for any value of minsup. Max-
FGP reduces this number much further, in more than 70% for any value of minsup.
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Figure 5.6: (left) Pruning frequent sets and (left) computational time

The closed frequent sets generate the lowest number of frequent sets. However,
among the 22, 16, and 12 closed frequent sets generated for minsup 5%, 10%, and 15%
respectively, 17, 11, and 7 contain the pair with the dependence. These numbers
represent 77%, 68%, and 58% of the total number of closed frequent sets for the
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respective minsup 5%, 10%, and 15%. At lower minsup most closed frequent sets
contain the well known geographic dependence. Geographic dependences can be
reduced in frequent sets by increasing minsup, but are far from be totally eliminated by
the minsup threshold.

The computational time to extract frequent patterns and maximal patterns with
Apriori-KC and Max-FGP is also reduced, as shown in Figure 5.6(right). The
computational cost to generate closed frequent sets and maximal frequent sets, of course
is higher than to simply generate frequent sets as in Apriori or Apriori-KC. The
additional verification to generate maximal or closed frequent sets requires extra scans
over the dataset, as well as the comparison of all sets of size k with sets of size k+1.
This experiment shows that the closed frequent set approach, apart from not eliminating
well known geographic dependences, requires more computational time than our two
methods (Apriori-KC and Max-FGP), which both eliminate geographic dependences.

Figure 5.7(left) shows a similar experiment, but in this case well known
dependences were eliminated in both input space (between the target feature and
relevant features) and during the frequent set generation (among relevant features). The
total number of frequent sets generated by Apriori-KC is reduced in around 70% by
removing one column in data preprocessing and one pair with dependences during the
frequent set generation, independently of minimum support. Max-FGP reduces this
number in 75% for any value of minsup.

Frequent Geographic Patterns Removing One Dependence
between the Target Feature and a Relevant Feature and One
Dependence among Relevant Features
(Input Space and Frequent Set Pruning)

Computational Time

200 - —— Apriori
120 117 @ Apriori 180 —e— Apriori-KC (1 column and 1 pair)
1 W Apriori-KC (1 column and 1 pair) 160 —+— Max-FGP (1 columnand 1 pair)
1004 @ Max-FGP (1 column and 1 pair) —m— Closed frequent sets
B Closed Frequent sets 140
% @ 120
0 Q
1
g
3 80 4
o
o
L 60 4 >
40
20 +
0 T T
5% 10% 15% 50 10% 15%
Minimum Support Minimum Support

Figure 5.7: (left) Pruning both input space and frequent sets (right) computational time

Figure 5.7 (right) shows that besides generating less frequent sets and maximal
frequent sets, time reduces significantly when removing any kind of dependences.
However, pruning both input space and frequent sets makes our methods still more
efficient.

These experiments showed that in the geographic domain most frequent sets contain
well known geographic dependences. Our input space pruning method and Apriori-KC
completely eliminate such dependences, while Max-FGP eliminates all redundant
frequent sets without well known dependences.

5.2.2 Experiments with Dataset 2

Figure 5.8 shows the experiment performed over dataset 2, that has two dependences
among relevant feature types. Figure 5.8 (left) shows Apriori and closed frequent sets
without removing any geographic dependences, in order to evaluate the amount of
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frequent sets that contain dependence. Considering minsup 5%, from a total of 1.321
frequent sets generated by Apriori, 454 contain dependences. The closed frequent set
technique reduced this number in 90%, to 123 closed frequent sets. However, among
these 123 closed frequent sets, 66 contain geographic dependences. Considering the
different values of minimum support we observe that the number of both frequent sets
and closed frequent sets reduces significantly, but geographic dependences are not
eliminated. While among the frequent sets generated by Apriori around 30% contain
dependences, among the closed frequent sets around 50% contain geographic
dependences, for different values of minimum support. This experiment shows again
that the closed frequent set approach reduces the frequent sets but does not eliminate
well known geographic dependences.

As geographic dependences cannot be removed from closed frequent sets without
losing information, Figure 5.8 (right) shows the respective frequent sets generated by
Apriori-KC and Max-FGP over the same dataset. Apriori-KC reduced around 30% the
number of frequent sets generated by Apriori, removing all dependences. Max-FGP
pruned the number of frequent sets without geographic dependences much further. This
reduction reaches around 80% for any value of minimum support.

Frequent Geographic Patterns (Apriori) and Closed Frequent Geographic Patterns and Maximal Frequent
Frequent Geographic Patterns WITH Well Known Geographic Patterns WITHOUT Well knonwn Dependences
Dependences
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Figure 5.8: (left) Frequent sets (Apriori) and closed frequent sets WITH geographic
dependences and (right) frequent sets (Apriori-KC) and maximal frequent sets (Max-
FGP) WITHOUT dependences

Besides the significant reduction in the number of frequent sets, Apriori-KC and
Max-FGP are more efficient. The elimination of geographic dependences reduces the
frequent sets with size k, which by consequence reduces the number of frequent sets
with size k+1. Figure 5.9 shows the computational time for the extraction of frequent
sets with Apriori and the closed frequent set approach (which both do not eliminate
geographic dependences), and Apriori-KC and Max-FGP (which do eliminate
geographic dependences).

In general words, while Apriori generates frequent sets Q with n predicates, such
that

Apriori-KC generates frequent sets

n—:

Q'(n,1)=Zl(C; -cn)
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when one pair with a dependence is eliminated, and

Q"(n.2)=Y (C,-2¢;3)

n-2
i=2

when 2 dependences are eliminated, and so on.

Computational Time

240 - —&— Closed sets

—»— Max-FGP (2 pairs with
dependences)
Apriori

—a— Aprioir-KC (2 pairs with
dependences)

5% 10% 15%
Minimum Support

Figure 5.9: Computational time to generate frequent sets (Apriori) and closed frequent
sets without removing dependences, and frequent sets (Apriori-KC) and maximal
frequent sets (Max-FGP) removing 2 pairs of objects with dependences

By reducing the number of frequent sets, the number of association rules is
automatically reduced, since rules are extracted from frequent sets. The general
percentage reduction of rules for different numbers of attributes, produced when zero
(as reference), one, and two pairs of dependences are eliminated is shown in Figure
5.10. This graphic considers all possible rules (minconf=0). The elimination of one pair
generates only 55% of the total number of rules, i.e., eliminates well known rules in
45%. When two pairs are eliminated, only 30% of the rules are created, and the
reduction increases to 70%. Notice that even if the number of elements increases, these
values represent saturation points for these curves. So we can conclude that the higher
the number of well known dependences, the more significant is the rule reduction.
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Figure 5.10: Percentage reduction of association rules considering zero (reference), one,
and two pairs of dependences with an increasing number of elements (predicates)



5.2.3 Experiment with Dataset 1

Besides generating frequent sets without well known geographic dependences, our
methods tend to reduce computational time when the number of dependences increases,
since less frequent sets will be generated. This can be clearly visualized in the
experiment shown in Figure 5.11, performed over dataset 1, with minimum support
10%, 20%, and 30% , where one, two, and three pairs of dependences were eliminated
from the dataset. Figure 5.11 (left) shows three graphics removing 1 pair, two pairs, and
three pairs of dependences respectively. Figure 5.11(right) shows the computational

time.
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Figure 5.11: (left) Frequent geographic patterns when one, two, and three pairs of
dependences are eliminated and (right) computational time

In Figure 5.11(left) we observe that the higher the number of dependences to be
eliminated the lower is the number of frequent sets generated by Apriori-KC in relation
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to Apriori. For minimum support 5%, for instance, Apriori-KC reduces the number of
frequent sets generated by Apriori in around 20% when one dependence is removed.
This reduction increases to around 30% when two pairs are eliminated and 45% when 3
pairs are removed. Max-FGP, however, reduces the final number of frequent sets much
further. In relation to Apriori-KC, Max-FGP reduces the number of frequent sets in
around 80%, and in relation to Apriori the reduction reaches between 80% and 95% for
different values of minimum support.

In this experiment the elimination of two pairs with dependences generated the same
number of closed frequent sets and maximal frequent sets. However, while in the
maximal frequent sets there are no dependences, more than 30% of the closed frequent
sets contain dependences. In this experiment, among the 75, 30, and 12 closed frequent
sets generated for different values of minsup, 40, 15, and 4 contain respectively at least
one of the three pairs of dependences, that are not in the maximal frequent sets. So
although the number of closed frequent sets is the same as the number of maximal
frequent sets, more than 30% of the closed sets contain dependences.

Figure 5.11(right) shows that both Apriori-KC and Max-FGP are more efficient
than Apriori and closed sets respectively, for any value of minimum support. Moreover,
the gain is higher for lower minsup, i.e., when the number of frequent sets is larger. This
can be clearly observed for minsup 10%. Indeed, our methods get more efficient when
the number of dependences increases.

Figure 5.12 shows an analysis of the frequent sets generated by the different
algorithms, for the experiment shown in Figure 5.11, for minimum support 10%. In
Figure 5.12 (left) notice that the higher the number of pairs to be eliminated, the lower
is the number of predicates in the frequent sets. By removing 1 pair, Apriori-KC does
not generate frequent sets with 9 predicates. When 3 pairs are eliminated, the largest
frequent set contains 7 predicates.
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Figure 5.12: (left) Number of elements in frequent sets and (right) number of elements
in maximal and closed frequent sets

A similar elimination occurs with Max-FGP, shown in Figure 5.12 (right). The
closed frequent set approach generates sets with more elements (9 in the example),
while Max-FGP generates frequent sets with less elements (8 when 1 and 2 pairs are
eliminated and 7 when 3 pairs are eliminated).

The generation of frequent sets containing less elements has the advantage of
generating less association rules, since the smaller the number of elements in a frequent
set, the smaller is the number of rules.
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5.2.4 Experiment with Datasets 8 and 9

In this section we present the result of two experiments performed over datasets 8
and 9, considering minsup 5%, 10%, and 15%. In both datasets the distance relationship
was considered between the target feature type and the relevant feature types. The
difference between the two datasets is the number of spatial predicates. Both datasets
contain one geographic dependence among relevant feature types, which is replicated in
four pairs because of the different possible relationships, as described at the beginning
of this chapter.

The first experiment, performed over dataset 8, considering 12 predicates, is shown
in Figure 5.13. As can be observed in Figure 5.13(left), the number of frequent sets
generated by Apriori-KC is reduced in around 30% in relation to Apriori for any value
of minsup. This reduction is more significant for Max-FGP, which eliminates redundant
frequent sets and reduces the frequent sets in relation to Apriori in an average of 40%.
In this experiment, apart from not eliminating geographic dependences, the closed
frequent set approach generates more sets than Max-FGP. Figure 5.13(right) shows that
both Apriori-KC and Max-FGP are more efficient than Apriori and closed frequent set
approach, respectively, as in all previous experiments.
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Figure 5.13: (left) Number of frequent sets and (right) computational time for mining
frequent geographic patterns from dataset 8

Now let us compare the result of the experiment performed over dataset 9, that has
more predicates than dataset 8, having the same geographic dependence and considering
the same values of minsup. As can be observed in Figure 5.14(left), the number of
frequent sets, closed frequent sets, and maximal frequent sets increased for different
values of minsup in relation to the experiment in Figure 5.13(left). However, the
percentage reduction of number of frequent sets after dependence elimination remains
similar in both experiments (Figure 13 and Figure 14). For example, in Figure
5.13(left), for minsup 5%, the elimination of 4 pairs with dependences with Apriori-KC
reduced the number of frequent sets generated by Apriori from 75 to 53, corresponding
to a reduction of 29%. In Figure 5.14(left), for minsup 5%, Apriori-KC reduced the
frequent sets generated by Apriori in 27%. For minsup 10%, the frequent sets in both
experiments shown in Figure 5.13(left) and 5.14(left) is reduced in the same proportion.
For minsup 15%, in both experiments the dependence elimination reduced around 28%
of the total number of frequent sets. This experiments show that geographic
dependences generate a certain percentage of frequent sets, independently of the number
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of predicates in the dataset. This analysis is similar to that shown in Figure 5.10 for
association rules.

While the frequent set reduction of Apriori-KC in relation to Apriori remains similar
in the experiments performed over both datasets 8 and 9, Max-FGP is further more
effective than both Apriori and Apriori-KC in dataset 9, as shown in Figure 5.14(left).
While in Figure 5.13(left) Max-FGP reduced the number of frequent sets in relation to
Apriori in around 45%, in Figure 5.14(left) this reduction reaches 80%. So we can
conclude from this experiment that dataset 9 (which contains the same dependences as
dataset 8 but with more attributes) generates significantly more redundant frequent sets
than dataset 8. Therefore, Max-FGP if very effective.

Figure 5.14(right) shows that even increasing the number of attributes and removing
the same dependences as in the previous experiment, Apriori-KC and Max-FGP are
more efficient than Apriori and the closed frequent set approach, respectively.
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Figure 5.14: (left) Number of frequent sets and (right) computational time for mining
frequent geographic patterns from dataset 9

5.2.5 Experiment with Dataset 10

This experiment was performed over dataset 10, which has 411 attributes at the
feature instance granularity level. As we have already mentioned in chapter 3,
predicates at the feature instance granularity have very low support, so this experiment
was performed with minsup 3%, 4%, and 5%.

At the feature instance granularity level, geographic dependences also have lower
support, because they represent the exact instances of two feature types that have a well
known dependence. The support of pairs of predicates with feature instances such as
{intersects(Stream_ArroioPassoDasPedras), intersects(Basin_VarzeaDoGravatai)} is
much lower than the support of the pair of predicates with feature types
{intersects(Stream), intersects(Basin)}, which is a generalization of all instances.

Even having lower support, geographic dependences appear in the frequent sets, as
shown in Figure 5.15 (left). For minsup 3%, around 20% of the frequent sets contain
dependences. Max-FGP reduced the number of frequent sets in 40%. For minsup 4%
Apriori-KC reduced in 20% the number of frequent sets and Max-FPG around 35% in
relation to Apriori. For minsup 5%, however, the reduction is not as significant, because
less predicates with dependences reach minimum support.
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Among the 411 predicates, 149 are streams that intersect at least one of the 513
slums. These 149 streams have a dependence with one of the 28 hydrographic basins. In
this case there are at least 149 pairs of dependences, combining every stream with its
respective basin. In this experiment, among the 149 possible pairs of dependences, only
2 reached minsup 5%, 10 reached minsup 4%, and 15 reached minsup 3%. Because of
this low support the frequent set reduction is less significant than in previous
experiments when mining data at higher granularity levels.
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Figure 5.15: (left) Number of frequent sets and (right) computational time for mining
frequent geographic patterns from dataset 10

In this experiment for all values of minimum support, Max-FGP generated less
maximal frequent sets than the closed frequent set approach. Among the 90, 41, and 26
closed frequent sets, 23, 10, and 4 contain dependences, respectively, corresponding to
an overall average of 20%.

In Figure 5.15(right) we observe that because of the large number of predicates
(411) and the elimination of a low number of dependences, the computational time
increases significantly in relation to the previous experiments with less predicates.
However, both Apriori-KC and Max-FGP are respectively still more efficient than
either Apriori or the closed frequent set approach. Indeed, in this experiment Max-FGP
was more efficient than Apriori, what has not occurred in previous experiments when
mining data at the feature type granularity level.

5.3 Evaluating Apriori-KC and Max-FGP for Hierarchical
Dependence Elimination

In this section we evaluate Apriori-KC and Max-FGP to compare the number of
frequent sets generated for datasets 2 and 4, both at the feature type granularity level,
but the former is at a high granularity level and later has one attribute at a lower
granularity level. Dataset 2 has the feature type street at granularity level 1, and dataset
4 has this feature type at granularity level 2 (street, avenue, and square). In this
experiment we evaluate the dependence elimination steps 1 and 2 of Apriori-KC,
presented in chapter 4.

The result of the experiment performed with Apriori and the closed frequent sets
over both datasets is shown in Figure 5.16 (left), where the number of frequent sets
generated by Apriori for dataset 2 (at granularity 1) is 1,321. This number was increased
to 2,719 (granularity 2) with dataset 4. Apriori generated around 50% more frequent
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sets considering one single feature type at granularity 2, for any value of minimum
support. The closed frequent sets have not increased as much at granularity 2.

Figure 5.16 (right) shows the frequent sets and maximal frequent sets generated by
Apriori-KC and Max-FGP for datasets 2 and 4 at different granularities. At granularity
level 1, where only 2 pairs of dependences were eliminated, Apriori-KC reduced the
number of frequent sets generated by Apriori in around 30% for any value of minimum
support. However, when mining frequent sets from dataset 4 with one attribute at
granularity 2, the reduction reaches more than 40%. This occurs because instead of 2
pairs with dependences, 4 pairs were eliminated (1 single dependence and 3 hierarchical
dependences).
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Figure 5.16: Frequent sets generated from datasets 2 and 4 at different granularity
levels: (left) frequent sets without removing dependences and (right) frequent sets
without dependences

In Figure 5.16 (right) we can observe the significant reduction of frequent sets when
redundant sets are eliminated by Max-FGP. For minimum support 5% and granularity 2,
for instance, Max-FGP reduced the number of frequent sets in relation to Apriori-KC in
90%, and in 95% in relation to Apriori (in Figure 5.16 left). At lower granularity levels
(gran 2) the number of frequent sets having dependences increases, as well as the
number of redundant frequent sets. Therefore we can see that Max-FGP is still more
effective when mining data at lower granularity levels.

In Figure 5.17 (left) we can better observe the different number of frequent sets
generated by Apriori and Apriori-KC for data at different granularities. In Figure 5.17
(right) we can observe that Aprioi-KC is more efficient then Apriori for data at any
granularity. However, at granularity 2 the gain of time is more significant in relation to
Apriori (reduces from around 115s to 55s). This occurs because at granularity 2 there
are more predicates, and by consequence more dependences are eliminated.
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Frequent Geographic Patterns Removing Four Pairs of Computational Time
Dependences among Relevant Features at Different
Granularity Levels
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Figure 5.17: (left) Frequent sets removing single geographic dependences and
hierarchical dependences from data at different granularity levels and (right)

computational time

As can be observed in Figure 5.17 (left), for minsup 5% and granularity 2, Apriori-
KC eliminates 1,234 frequent sets (45%), while at granularity 1 for same minsup only
454 frequent sets are eliminated (35%). At lower granularity levels Apriori-KC is more
effective and efficient for dependence elimination.

Figure 5.18 shows the computational time to generate frequent sets with Apriori and
Apriori-KC, closed frequent sets, and maximal frequent sets for data at different
granularities. Observe that Apriori-KC and Max-FGP are more efficient than Apriori
and the closed frequent set approach, respectively. The closed frequent sets approach
apart from not removing dependences, takes 60% more time to compute closed frequent
sets than Max-FGP takes to generate maximal frequent sets. Indeed, for lower minsup
the time gained by our methods is more significant.
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Figure 5.18: Computational time to generate frequent geographic patterns from data at

different granularity levels
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5.4 Evaluating Apriori-KC and Max-FGP for Predicates with Same
Feature Types and Different Relationships

In this section two experiments will be presented. The first was performed over
dataset 5 and the second over dataset 6. In both experiments we evaluate the step 3
implemented in Apriori-KC. We will also evaluate the number of frequent sets
generated by Max-FGP when predicates with same feature types and different spatial
relationships are eliminated by Apriori-KC.

5.4.1 Experiment with Dataset 5

Topological relationships generate many frequent sets with the same feature type
and different relationships (e.g. contains(River), touches(River)). As a consequence,
when such a feature type has a dependence with any other spatial feature type, the
number of well known dependences increases. For instance, a dependence between gas
station and streets can generate frequent sets such as {contains(GasStation),
touches(Street)}, {contains(GasStation), crosses(Street)}, {contains(GasStation),
contains(Street)} when different topological relationships are considered.

Figure 5.19 shows the result of an experiment performed over dataset 5, where one
pair of dependences produced 4 combinations with different topological relationships.
Besides the 4 pairs with a dependence, 9 pairs had same feature types with different
relationships. So a total of 13 pairs with either dependences or same feature types was
eliminated.

As can be observed in Figure 5.19 (left), the elimination of 13 combinations by
Apriori-KC reduced the number of frequent sets generated by Apriori in around 60% for
different values of minimum support. Max-FGP reduced this numbers much further, and
more than the closed frequent sets. Among the closed frequent sets, more than 60%
have at least one dependence, independently of minimum support. For minimum
support 5%, for example, among the 159 closed frequent sets, 103 contain either the
dependences or predicates with same feature type. For minimum support 10% and 15%,
the respective 118 and 101 closed frequent sets contain 72 and 61 dependences.

The computational time to eliminate dependences and frequent sets with same
feature types is still reduced with our methods, as shown in Figure 5.19 (right).
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@ Max-FGP (4 pairs with dependences and 9 % 80 9 pairs with same feature types)
600+ pairs with same feature types) E/
[
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1004
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Figure 5.19: (left) Frequent sets and (right) computational time to eliminate pairs with
dependences and pairs with same feature types and different topological relationships

Figure 5.20 shows this experiment where the four pairs with a dependence and all 13
pairs with both dependences and same feature type were eliminated separately. As can
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be observed, not only dependences generate a large number of frequent sets. For
minimum support 5% and 10% there are more frequent sets with same feature type than
with dependences.

In order to evaluate the replication of geographic dependences and combinations of
same feature types when mining frequent geographic patterns considering topological
relationships, a second experiment was performed, with dataset 6, extracted from
database 2. This experiment is presented in the following section.

Frequent Geographic Patterns with Dependences and
Same Feature Types

@ Apriori

862
900 @ Apriori-KC (4 pairs with dependences)

800+ W Apriori-KC (4 pairs with dependences and 9 pairs
i with same feature types)
700 620 O Max-FGP (4 pairs with dependences)

600
@ Max-FGP (4 pairs with dependences and 9 pairs with
500+ same feature types)

4004 320 340
300
200
100

Frequent sets

269

5% 10% 15%
Minimun Support

Figure 5.20: Frequent sets with dependences and pairs with same feature types and
different topological relationships mined from dataset 5

5.4.2 Experiment with Dataset 6

This experiment was performed over dataset 6 and its result is shown in Figure 5.21.
For any value of minimum support, Apriori-KC generated less frequent sets than the
closed frequent set approach. In this experiment, the closed frequent sets contain less
dependences than in the previous experiment performed over dataset 5, since the total
number of frequent sets is much smaller. The respective number of closed frequent sets
34, 17, and 9 generated for minsup 5%, 10%, and 15%, contain respectively 13, 8, and 2
dependences. These values still represent 38 % for lower minimum support 5%, 47%
for minimum support 10% and 22% for minimum support 15%.

It is important to consider that for any geographic database preprocessed considering
topological relationships, the frequent set reduction with Apriori-KC and Max-FGP is
data dependent. For example, a pair of predicates with the same feature type such as
{contains(Street),crosses(Street)} in a city will have much higher support than a pair of
predicates such as {contains(River), crosses(River)}, since normally cities have much
more streets than rivers. The same holds for dependences. A dependence between
bridge and river has much lower support than a dependence between gas stations and
streets, in most real databases.
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Figure 5.21: (left) Frequent sets and (right) computational time to eliminate pairs with
dependences and pairs with same feature types and different topological relationships
from dataset 6

5.5 Evaluating Apriori-KC and Max-FGP for Spatial Feature Types
with same Parent

In the previous sections we evaluated steps 1 to 3 implemented in Apriori-KC. In
this section we describe two experiments performed over dataset 11 and 12, extracted
from database 2. In this experiment we evaluate step 4, implemented in Aprori-KC,
which eliminates pairs of predicates that contain feature types that are “brothers” in a
concept hierarchy (e.g. contains(River), contains(Lake)). In these experiments we
considered minimum support 3% and 5%, otherwise the number of generated frequent
sets would be very low.

Figure 5.22 (left) shows the number of frequent sets and Figure 5.22 (right) shows
the computational time. Apriori-KC reduces the number of frequent sets in around 35%
in relation to Apriori. In this experiment Max-FGP generates less maximal frequent sets
than closed frequent sets. This reduction reaches around 30% for different values of
minimum support.

Frequent Geographic Patterns Removing Pairs with Computational Time
same Parent in a Concept Hierarchy
Apriori
. - 140 -
00 601 B Apriori —e— Apriori-KC
6001 B Apriori-KC 120 -m— Closed sets
2 500 ® Closed sets 100 1 + MaxFGP
3 398 B Max-FGP -
€ 4001 v 80
2 =
g 3001 60 1
[T
200 40
1004 20 1
0- 0
3% 5% 3% 5%
Minimum Support Minimum Support

Figure 5.22: (left) Frequent sets and (right) computational time to eliminate pairs of
predicates with feature types that have same parent in concept hierarchies mining
dataset 11
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In Figure 22 (right) we observe that similarly to the previous experiments, both
Apriori-KC and Max-FGP remain more efficient then Apriori and Closed frequent set
approach, respectively.

Figure 23 shows the experiment performed over dataset 12, and the percentage
reduction of both frequent sets and computational. In this experiment, both Max-FGP
generated 40% less frequent sets than the closed frequent set approach. Similarly to
previous experiments both Apriori-KC and Max-FGP are more efficient than Apriori
and the closed frequent set approach, respectively.

Frequent Geographic Patterns Removing Pairs with Computational Time
same Parent in a Concept Hierarchy Apriori
—e— Apriori-KC
347 o %07 C|p d set
@ Apriori —a- Closed sets
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o 250 B Max-FGP @ 30 -
= Q
S 200 £ 20 -
3 4
g 150 =
Iy

100 10 4

o\.
50
o 0 T
3% 5% 3% 5%
Minimum Support Minimum Support

Figure 5.23: (left) Frequent sets and (right) computational time to eliminate pairs of
predicates with feature types that have same parent in concept hierarchies mining
dataset 12

The experimental results with real geographic databases presented in this chapter
confirm that the different methods proposed in this thesis for mining frequent
geographic patterns are more efficient and effective than Apriori and algorithms that
generate closed frequent sets. We evaluated these methods considering many different
datasets, with different numbers of predicates, different values of minimum support, and
removing different types of dependences.

All different experiments showed the significance of the proposed methods for
removing well known dependences and redundant frequent sets. Considering all these
experiments we recommend to use Max-FGP for mining frequent geographic patterns
from geographic databases.

In the next chapter we present an overview of the data preprocessing method which
has been implemented in Weka in order to automate geographic data preprocessing and
the elimination of geographic dependences between the target feature type and relevant
feature types.
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6 WEKA-GDPM: GEOGRAPHIC DATA
PREPROCESSING PROTOTYPE

In this chapter we present Weka-GDPM (BOGORNY, 2006d) a geographic data
preprocessing module (GDPM), which integrates the classical data mining toolkit Weka
(WITTEN 2005) to GDMS developed under OGC specifications (OPEN GIS
CONSORTIUM, 1999b). Weka is a free and open source classical data mining toolkit
which provides friendly graphical user interfaces to perform the whole KDD process.
Weka implements a variety of data mining algorithms, and has been largely used for
mining non-spatial databases. The main objective of Weka-GDPM is to automate
geographic data preprocessing in order to reduce time and effort from the data mining
user.

The prototype presented in this chapter covers the preprocessing method proposed in
this thesis. The implementation of Apriori-KC and Max-FGP into Weka is ongoing
work being developed by an undergraduate student.

Weka is developed in Java and has a data preprocessing module named
weka.Explorer to preprocess non-spatial databases. At this interface, which is shown in
Figure 6.1, the user can choose to open a web site, an arff file, which is the input text
file format required by Weka, or a database. The button OpenDB calls the window
shown in Figure 6.2 (left) in order to provide the information necessary to connect to a
database.

To support GDPM the button GeographicData was added to the database
connection interface, as can be observed in Figure 6.2 (left). With the information
provided to this interface Weka connects to any OGC database through JDBC, and calls
the GDPM interface already connected to the database provided by the url. Figure 6.2
(right) shows an overview of GDPM interface.

In order to understand how GDPM works, let us first understand how geographic
data are manipulated. The GDBMS or GIS implement specific operations and functions
to manipulate and visualize spatial data. The OGC is an organization dedicated to
develop standards for spatial operations and spatial data integration, aiming to provide
interoperability for GIS. Among many specifications established by the OGC, there are
two of fundamental importance and which are used in Weka-GDPM: operations to
compute spatial relationships and the database schema metadata.
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Figure 6.2: (left) Interface to access geographic databases and (right) Geographic data
preprocessing interface - GDPM
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The OGC defines a standard set of operations to compute spatial relationships for
SQL which are implemented by most GDBMS. The database schema metadata are
stored in a database relation named geometry columns, which is generated during the
creation of the database and is automatically instantiated when geographic data are
loaded the first time. This relation stores all database characteristics, as shown in an
example in Figure 6.3(d). From this relation it is possible to obtain the database schema
name, all geographic relation names, the name of the geometry column, and its type
(e.g. point, line). This relation consists of a row for each spatial feature type in the
geographic database, i.e., each relation that has geometric attributes. The metadata
stored in geometry_columns are used by GDPM to automatically preprocess GDB.

Street

Gid Name Shape
1 Lajeado Multiline [(X1,Y1),(X2,Y2),..]
2 Itaqui Multiline [(X1,y1),(X2,¥>),..]

(b) WaterResource
Gid Name Shape
1 Jacui Multiline [(X1,y1),(X2,¥2),..]

2 Guaiba  Multiline [(X1,y1),(X2,¥2),..]
3 Uruguai  Multiline [(X1,y1),(X2,¥2),-.]

(c) GasStation

Gid Name VolDiesel VolGas Shape 257!
1 BR 20000 85000  Point[(xy,y1)] Mz~
2 IPF 30000 95000  Point[(x;,y:)] NokAet |
3 Elf 25000 120000  Point[(x1,y1)] # s

(d) GEOMETRY_COLUMNS

F table schema F_table name F_geometry column Type SRID
Public Street Shape Multiline -1
Public WaterResource Shape Multiline -1
Public GasStation Shape Point -1

Figure 6.3: Geographic data storage structure in OGC based GIS

As Weka cannot handle geometric attributes, geographic data need to be selected
from the database and their spatial relationships computed with operations provided by
the GDMS, and transformed into the single table input format. Figure 6.4. shows an
example of a spatial dataset preprocessed and transformed into an arff file to be mined
with Weka.
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@relation "geographic_data*

@attribute T _code_des
{null,Cropland,Grassland,Land_Subject_to_lInundation,Rice_Field,Scrub_Brush}
@attribute overlaps_Road {yes}
@attribute crosses_River {yes}
@attribute contains_River {yes}
@attribute crosses_Tunel {yes}
@attribute overlaps_River {yes}
@attribute crosses_Road {yes}
@attribute within_Bridge {yes}
@attribute within_River {yes}
@attribute touches River {yes}
@attribute contains_Bridge {yes}
@attribute touches_Tunel {yes}
@attribute contains_Road {yes}
@attribute contains_Tunel {yes}
@attribute overlaps Bridge {yes}
@attribute touches_Road {yes}
@attribute overlaps_Tunel {yes}
@attribute crosses_Bridge {yes}
@attribute within_Tunel {yes}
@attribute within_Road {yes}
@attribute touches_Bridge {yes}

@data
Land_Subject_to_Inundation,yes,?,yes,?,yes,?,?,?,?,?,?,yes,yes,?,?,yes,?,?,?2,?
Land_Subject_to_Ilnundation,yes,?,yes,?,yes,?,?,?,?,yes,?,yes,yes,?,?,yes,?,?,?2,?
Land_Subject_to_Inundation,yes,?,yes,?,yes,?,?,?,?,yes,?,yes,yes,?,?,yes,?,?,?2,?
Land_Subject_to_Inundation,yes,?,yes,?,yes,?,?,?,?,yes,?,yes,yes,?,?,yes,?,?,?2,?
Land_Subject_to_Inundation,yes,?,yes,?,yes,?,?,?,?,yes,?,yes,yes,?,?,yes,?,?,?2,?
Land_Subject_to_Ilnundation,yes,?,yes,?,yes,?,?,?,?,?,?,?,yes,?,?,yes,?,?,?,?
Cropland,?,?,?,?,?2,?2,2,?2,2,2,?2,2,2,?2,?2,yes,?2,?2,?2,?
Cropland,yes,?,?,?,yes,?,?,?,?,yes,?,?,?,?,?,yes,?,?,?,?
Cropland,?,?,?,?,?2,2,?2,?2,2,2,?2,2,2,2,2,2,2,?2,2,?
Cropland,yes,?,?,?,yes,?,?,?,?2,?2,?2,?2,?2,?,?,yes,?,?2,?2,?
Rice_Field,yes,?,yes,?,yes,?,?,?,?,yes,?,?,?2,?,?,yes,?,?,yes,?

Figure 6.4: Weka input format (arff file)

To generate a dataset as shown in Figure 6.4 (arff file), the user provides the
geographic database schema into the GDPM interface shown in Figure 6.2 (right). The
load button brings to the Target Feature and Relevant Features interface all geographic
database relations (from the relation geometry columns) that belong to the informed
schema. This allows the user to choose only the spatial feature types of interest, and not
the whole geographic database.

GDPM automatically generates data at two granularity levels for distance,
topological, and high level topological relationships (intersects), without any concept
hierarchy, as have been explained in Chapter 4.

The user can choose the type of spatial relationships and the granularity level in
which data should be generated. For distance relationships one or two distance
parameters must be provided.

Weka-GDPM supports the definition of geographic dependences, as can be observed
in Figure 6.2 (right). The check box Use Dependences enables the button to specify the
pairs of geographic feature types with dependences. When this button is clicked the
interface shown in Figure 6.5 is called. In this interface appear two combos that contain
all database spatial feature types with an instance in the relation geometry columns. At
these combos the user can choose the pairs that contain dependences, such as tunnel and
road, as shown in the example in Figure 6.5. After selecting the pairs and pressing the
Add button, a new dependence is created with the respective selected pair. The pair will
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than appear in the list of dependences in the same window. To remove any dependence
the user must select the pair and click on the button Remove.

After dependences have been defined, the button OK must be pressed in order to
store the dependences into a text file and a database relation named
knowledgeConstrains. The database relation is used for the dependence elimination in
data preprocessing and the text file will be used for dependence elimination during the
frequent set generation, which is performed in another step.

2o Dependencies
tunel | road w Ao

[ bridge, road ]

[ QK H Cancel ]

Figure 6.5: Geographic dependence definition interface

Since dependences have been specified and all parameters have been provided to
GDPM (in Figure 6.2 right) interface, the first step performed by GDPM is the
dependence elimination. Before performing the spatial join step between the target
feature type and each relevant feature type, GDPM searches for a dependence in the
relation knowledgeConstraints. When a dependence is found, the relevant feature type is
removed from the set and the next relevant feature type is tested. After all dependences
have been removed the spatial join and transformation modules start.

6.1 The Spatial Join Process

In this section we describe the steps to compute the spatial joins in Weka-GDPM.
Up to now it supports topological, distance, and general topological relationships
(intersects and non-intersects).

6.1.1 Topological Relationships

Topological relationships are mutually exclusive such that only one topological
relationship holds between two spatial feature instances (e.g. Porto Alegre city and
Canoas city). At the feature instance granularity level every instance of the target
feature type may have only one topological relationship with an instance of a relevant
feature type. Table 6.1 (left) illustrates an example of the spatial join computation where
city 1 has the relationship contains with River_1, crosses with River_2, and contains
with Slum_1. At the feature instance granularity level, when transforming the spatial
join output (Table 6.1 left) into the Weka input format (Table 6.1 right), the relevant
feature type name with the respective instance is transformed in an attribute name. The
value of this attribute will be the respective topological relationship. For the relevant
feature instances that have no relationship with an instance of the target feature (e.g.
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River_3 and city_1, River_1 and city_3), the attribute value is filled with “?”, which is
the symbol used by Weka to represent the absence of an attribute.

Table 6.1: Feature Instance Granularity Level for topological relationships

TargetF_id | RelevantF | Relationship

(city) Instance TargetF_id[River 1 [River 2 [River 3 [River 4 [Slum_1 |...
1 River_1 | Contains (city)
1 River 2 Crosses 1 Contains | Crosses ? ? Contains
2 River_3 | Contains 2 ? ? Contains | Crosses |Contains
2 River 4 Crosses 3 ? Crosses ? ? ?
3 River 2 Crosses
1 Slum_1 | Contains
2 Slum 2 | Contains

At the feature type granularity level, as shown in Table 6.2 (left), the relevant feature
instance is not stored in the spatial join output. For example, city 1 has two topological
relationships with the relevant feature type River, contains and crosses (with different
rivers). At this granularity level, to preserve the type (semantics) of the topological
relationship, we need to create a different attribute name (e.g. contains_river,
crosses_river) for every relevant feature type with a different topological relationship
with the target feature. This is necessary because Weka cannot handle duplicated
attribute names (river) with two different values (contains and crosses). Indeed, it is
difficult to specify dominance between topological relationships. As this problem has
not been addressed in the literature so far, we propose to preserve the relationship type
by concatenating it to the feature type name, while the attribute value receives the string
“yes” when the relationship holds and “ ?” if there is no topological relationship, as
shown in Table 6.2(right).

Table 6.2: Feature Type Granularity Level for topological relationships

TargetF_id |RelevantF |Relationship TargetF_id |Contains_River |Crosses_River |Contains_Slum |...
Type : (city)
1 River Contains 1 Yes Yes Yes
1 River Crosses
2 River Contains Yes Yes es
2 River Crosses ? Yes ?
3 River Crosses
1 Slum Contains
2 Slum Contains

Considering that at lower granularity levels predicates with topological relationships
have very low support, as explained in Chapter 3, this prototype implements high level
topological relationships: intersects and non-intersects.

Table 6.3 (left) shows two datasets at with the feature instance (top) and feature type
granularity level (bottom) for the intersects relationship, and Table 6.3 (right) shows the
respective transformation for the Weka input format.



94

Table 6.3: (left) Feature instance and feature type granularity for high level topological
relationships (intersects and non-intersects) and (right) Weka input format

&?{g)et':—ld ﬁ]esltz\r/]igﬂ: Relationship -([;:ai:)%])etF_ld River_1 River_2 River_3 River_4 Slum_1
1 River 1 | Intersects 1 intersects | intersects ? ? intersects
; 2:&;:; :Eig:zgztz 2 2 ? intersects | intersects | INtersects
2 River 4 | Intersects 3 ? intersects ? ? ?
3 River 2 | Intersects
1 Slum_1 | Intersects
2 Slum_2 | Intersects
TargetF_id | RelevantF | Relationship _ _
(city) Type ;I'Ca;gg/)etF_ld Intersects_River | Intersects_Slum
1 River Intersects 1 Yes Yes
2 River Intersects 2 Yes Yes
3 River Intersects 3 ves 2
1 Slum Intersects
2 Slum Intersects

6.1.2 Distance Relationships

Distance relationships are computed according to the distance parameters provided
by the user. If only one distance parameter is provided, neighborhoods are considered
very close if their distance from the target feature is less or equal to distl. When two
distance measures are informed, than neighborhoods are considered very close if their
distance from the target feature is less or equal to distl, and close if their distance is
between distl and dist2, as shown in the example in Table 6.4 (left) for the feature
instance and feature type granularity level.

Table 6.4: (left) Feature instance and feature type granularity for high level for distance
relationships and (right) Weka input format

TargetF_id | RelevantF | Relationship
(city) Instance TargetF_id | River_1 River_2 River_3 | River_4
1 River_1 VeryClose
1 River 2 c>|lose 1 VeryClose Close ? ?
2 River 3 Close 2 ? ? Close | Close
2 River_4 Close 3 ? VeryClose ? ?
3 River_2 VeryClose
1 Slum_1 Close
2 Slum_2 VeryClose
Ta}rgetF_ld RelevantF | Relationship TargetF_id | VeryClose_River | Close_River | Close_Slum
(city) Type
1 River VeryClose 1 Yes Yes Yoo
1 River Close > 5 Yos >
2 River Close 3 Y.es > >
3 River VeryClose : :
1 Slum Close
2 Slum VeryClose

The relationship far is not considered because experiments showed the generation of
an enormous amount of non-interesting patterns. For example, the city 1 is very close to
river 1 and close to river 2, but far from all other rivers. For distance relationships we
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can say that close is dominant over far, because all spatial objects that are not close, will
be far. Just in case someone would like to consider things that are far, the value of the
distance metric dist2 can be increased in order to cover the relationship far.

The transformation process to convert the spatial join output (Table 6.4 left) to the
Weka input format (Table 6.4 right) is the same as for topological relationships.

In the previous sections we described the details to be considered for preprocessing
geographic databases. In the following sections we describe implementation details.

6.2 Spatial Join Implementation

The spatial join step is performed among the target feature type and all selected
relevant feature types that have no dependence with the target feature. The selected
spatial relationships are computed in the geographic database, with the spatial
operations implemented by the GDBMS, which follows the OGC specifications.

The spatial join output is stored in a database temporary relation called
<target_feature_type name>_temp. This relation contains the attributes
<gid_target_feature_type>, <relevantF_name>, and <relationship>, as described in
the previous sections.

If there are no spatial relationships between the given target feature type and
relevant feature types, the message shown in Figure 6.6 is presented to the user.
Otherwise, spatial relationships are computed and the transformation method is called,
as described in the following section.

<

Schems: | public

Target Feature: :hospitais v | :

antenas_predio |
antenas_torre
Relevant Features: arbarizacan

Message

rf-‘:\-\
\1‘) No relationships found

() Topology () Intersects () Distance

Dizstance Yalue

Lo ] (omn ]

Figure 6.6: Information message when no relationships are found

6.3 Transformation Implementation

The transformation module is performed in memory and generates an arff file named
geographic_data.arff. Since the arff file may contain a large number of attributes,
mainly when mining data at the feature instance granularity level, the transformation
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result cannot be stored in a database relation. Most GDMS allow relations a limited
number of columns.

Performing the transformation step in memory makes the process much faster.
Going into detail about the implementation, the transformation step implies in obtaining
the non-spatial attributes of the target feature type (obtained from the database relation
target feature type), and the spatial predicates, which are all different predicates
generated by the spatial join step.

The transformation step reads the database relation
<target_feature_type name>_temp in order to get the spatial attributes (spatial
predicates) that will be part of the header of the arff file (see @attribute in Figure 6.4).
At the feature instance granularity level, every different value of the column RelationF
in table <target_feature_type name>_temp will result in a new attribute in the arff file.

The possible values of these attributes are stored in the column relationships in the
relation <target feature type name> temp. For topological relationships, possible
values of the relevantF column are: "CONTAINS", "TOUCHES", "WITHIN",
"OVERLAPS", "CROSSES", and “EQUALS”. For the high level topological
relationships the possible value is "INTERSECTS". For distance relationships the
possible attribute values are "VERY_CLOSE" and "CLOSE".

At the feature type granularity level, where relevant feature types may have different
topological relationships with the target feature type, the attribute names in the arff file
will be the different values of the column relevantF concatenated with the value of the
column relationship stored in the temporary table <target feature_type_name>_temp.
For the feature type granularity level, the values of the attributes in the matrix will be
“YES” when the relationship holds in the respective value of column relationship in the
table <target feature_type_name>_temp, and “?” otherwise.

After discovering the attribute names that will be the header of the arff file, a matrix
is created. There will be exactly one row in the matrix for every different instance of the
target feature type, i.e., for every different gid (geographic identifier). The columns of
the matrix will be the attribute names discovered in the previous step. The matrix is
initialized with "?" strings, to fill the attribute values if there is no relationship between
an instance of the target feature type and a relevant feature (instance or type).

To fill the matrix with the respective relationships, the temporary relation is scanned
again. Then the matrix is updated with all records that have a relationship (different
from "?"). Having the matrix matched the temporary table, finally the arff file will be
created.

To create the arff file GDPM starts searching for the non-spatial attributes of the
target feature type in the database, saving their names into a vector, named columns.
The header of the file is then created writing each column in columns as an attribute
name. The type to be created in the arff file depends on the respective attribute type in
the database. For the type string we need to select all distinct values that the attribute
may have in order to create the header of a string attribute with all its possible values.
For this purpose a SQL query is performed over the string attributes of the target feature
type. After that, GDPM enumerates these values in the arff file, additionally including
the value null to catch the null values in the database.

Since non-spatial attributes have already been created, GDPM writes the spatial
predicates (which are columns in the matrix generated above) as attribute names in the
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arff file. In the sequence, the different values that each attribute may have are written in
an enumeration of values.

To fill the body of the file (see @data in Figure 6.4), GDPM starts executing a SQL
query that returns all instances of the target feature type with its respective non-spatial
attribute values. For every instance, the respective non-spatial attribute values returned
by the query as well as the spatial predicates (in the matrix) are added to the file.

In order to avoid errors in the arff file all characters that are not among the sets [A-
Z,a-z,0-9] in the database, are replaced in both attributes and values to the character ' .
Since the arff file has been created, a message is presented to the user, as shown in
Figure 6.7.

& Geographic Data =%

Scherna: pu_bllc [ Load ]

Target Feature: ibairru:us

antenss_predio
antenas_torre
Felevant Features: arborizacan

%]

@ File 'geographic_data,arff' generated in 'data’ directory

(&) Topology () Intersects () Distance

~Distance Walue

ey Close == | OO

[ Ok H Cancel ]

Figure 6.7: Finishing message when the arff file is successfully created
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7/ CONCLUSIONS AND FUTURE WORKS

In this thesis we addressed the problem of mining non-obvious spatial association
rules from geographic databases. We showed that a large amount of patterns extracted
from geographic databases are well known a priori, and do only hind the discovery
process.

We showed that geographic database schemas and geo-ontologies are rich
knowledge repositories that have not been used in spatial association rule mining so far.
The case studies with different real geographic database schemas showed that a very
large number of associations in geographic databases is one-one and one-many, and
produce a large number of well known patterns if considered in frequent geographic
pattern mining. Existing data mining algorithms do only consider the data by
themselves while the schema has not been considered. By consequence, the same
mandatory associations represented in database schemas are extracted as novel patterns
by rule mining algorithms.

While dozens of algorithms for either transactional or geographic databases propose
syntactic constrains to prune the number of frequent sets and association rules, we
proposed to use semantic constraints. Semantic constraints are explicitly represented in
geographic database schemas and geo-ontologies by relationships with cardinalities
one-one and one-many.

At least three main steps are required for mining SAR from geographic databases:
a) extract spatial predicates;

b) generate frequent sets or frequent geographic patterns, and;

C) extract spatial association rules.

In general words, this thesis presented a novel contribution to improve the three
main steps for mining SAR. We presented two main contributions to the first step (a).
First, we automated the geographic data preprocessing tasks developing for the Weka
data mining toolkit a geographic data preprocessing module (GDPM). We reduced a
problem that according to (ADRIAANS, 1994) for transactional databases consumes
between 60 and 80% of the effort expended in the whole KDD process. For geographic
databases, this time increases because of the complexity of geographic data.

The second contribution is the elimination of all well known geographic
dependences that generate well known association rules. Our solution of pruning the
input space by removing well known geographic dependences between the target
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feature type and the relevant feature types has some general advantages: no spatial
relationships will be computed for the relevant feature types eliminated in data
preprocessing; the number of frequent sets and association rules generated by any rule
mining algorithm will be significantly reduced; the computational time to generate
frequent sets and rules decreases; and no well known patterns between the target feature
type and the eliminated relevant feature types will be generated.

For the second step (the frequent set generation) we also presented two main
contributions. We proposed two efficient methods that automatically improved the third
(the association rule generation): Apriori-KC and Max-FGP. With Apriori-KC we
eliminate from the candidate sets all pairs of geographic objects that have well known
dependences. This method reduces the number of frequent sets independently of
minimum support and warrants that dependences among relevant feature types are
completely eliminated. The main advantage of this dependence elimination method is its
simplicity, since in one single step all dependences among the relevant feature types are
eliminated.

Not only exact dependences are eliminated with Apriori-KC, but hierarchical
dependences are eliminated as well. This avoids the generation of rules such as
contains(Island) >crosses(River) or contains(Island) >contains(Lake).

Apriori-KC also eliminates candidates with two predicates that contain the same
feature type and different topological relationships. This avoids the generation of
meaningless rules such as contains(Water) >touches(Water), which do not add any
novel knowledge to the discovery. Pairs of predicates hat have the same parent in a
concept hierarchy are also eliminated. This avoids the generation of rules such as
contains(Lake) >contains(Water).

The third step was addressed indirectly. The elimination of dependences in data
preprocessing and frequent set generation automatically reduces the number of
association rules, which can be generated by any rule generation algorithm.

With Max-FGP the number of frequent sets generated by Apriori-KC is reduced
much further. From the frequent sets without well known dependences generated by
Apriori-KC we generate only the maximal non-redundant frequent sets, similarly to the
closed frequent set approach proposed for transactional databases. The generation of
maximal frequent geographic patterns is a novel technique that as far as we know has
not been applied to geographic data. We showed that the closed frequent set approach
does not eliminate well known geographic dependences and predicate sets with same
feature types. Moreover, if applied over frequent sets after dependences elimination the
result quality is sacrificed and a relevant amount of information is lost.

Our methods proposed in this thesis warrant the elimination of all well known
geographic dependences in frequent geographic pattern mining. Indeed, they can be
applied to any Apriori-like algorithm that prunes frequent patterns and association rules
with different constraints (e.g. lift, improvement), since the dependences are eliminated
early.

Experiments showed that independent of the number of elements (predicates), one
dependence is enough to prune almost half of the total number of frequent sets, and the
higher the number of the dependences, the larger is the reduction.

The main contribution is for the data mining user, that will perform geographic data
preprocessing very easily, as well as analyze much less obvious patterns. The method is
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effective independently of other thresholds, and it warrants that spatial associations that
are previously known as non-interesting will not appear among the discovered patterns.

We showed that existing approaches for mining spatial association rules are based
on the paradigm of minimum support, minimum confidence and their variations, that
they generate a large number of rules and do not warrant the elimination of all well
known geographic dependences.

Approaches for mining spatial association rules or co-location rules have some
general drawbacks. The quantitative reasoning approach which extracts frequent
patterns and co-location rules from spatial data directly considers only distance
relationships and is limited to geographic objects represented by points. For mining real
geographic databases this method may generate unrealistic patterns when the centroid is
considered. Indeed, the problem of generating well known patterns is not addressed in
this approach.

Among qualitative reasoning approaches which preprocess geographic databases in
a first step and generate frequent sets and extract association rules in a second step, only
a few address the problem of generating well known rules. Those which remove well
known patterns do it a posteriori, while our methods remove well known dependences a
priori. Indeed these approaches compute all spatial relationships and transform data to
first order logic and extract patterns from the whole database. This process is
computationally expensive and non-trivial for real problems.

Existing approaches have not addressed the problem of generating meaningless
patterns and rules created when either different topological relationships (e.g.
contains(Water) = touches(Water)) are considered or geographic data have same parent
in a concept hierarchy (e.g. contains(Water)2crosses(Canal)). Our experiments
showed that the number of patterns generated by this kind of combinations in real
geographic databases is large. In this thesis we addressed this problem and solved it
very efficiently.

We also showed that the use of different topological relationships when mining
geographic data at feature instance granularity level, may not generate patterns, and
information might be lost. This problem has not been addressed in the spatial data
mining literature.

In summary, we can conclude that when mining spatial association rules with data at
high granularity levels, spatial relationships may be considered at lower granularities
(e.g. touches, contains). However, when mining data at lower granularities, mainly
when the instances of the relevant features are considered, spatial relationships must be
extracted at higher granularities (e.g. intersects and non-intersects).

Future Trends

Data mining techniques to extract knowledge from large spatial and non-spatial
databases have mainly considered syntactic constraints and the data by itself, without
considering semantics. The result is that the same geographic dependences that are well
known by GDB designers and are explicitly represented in GDB schemas and geo-
ontologies to warrant the consistency of the data, are extracted by data mining
algorithms, which should discover only novel and useful patterns. When dealing with
geographic data, which are semantically interdependent because of their nature, the
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meaning of data needs to be considered, at least to avoid the extraction of well known
patterns.

There is an emerging necessity to consider semantic geographic domain knowledge
in spatial data mining. The large amount of knowledge explicitly represented in
geographic database schemas and spatio-temporal ontologies needs to be incorporated
into data mining techniques, since they provide a valuable source of domain knowledge.
How to use this knowledge in data mining systems and for which purposes are still open
problems. In this thesis we presented an efficient solution, addressing a small piece of
these problems. We used prior knowledge in spatial association rule mining to reduce
well known patterns, but the use of domain knowledge in different data mining
techniques such as clustering, classification, and outlier detection are still open
problems. In clustering, for example, the use of semantics could either avoid the
separation of geographic objects that have mandatory constraints or organize them into
the same cluster without the necessity of computing their relationship. The use of prior
knowledge to evaluate the interestingness of patterns extracted with the different
techniques still needs to be addressed.

Future ongoing work is the implementation of Apriori-KC and Max-FGP into Weka,
as well as the submission of Weka-GDPM to the Weka developers group from the
Waikato University in New Zeland.

Future work also includes the investigation of how semantic knowledge can be used
in spatio-temporal data mining, more specifically in trajectory databases generated from
data collected by mobile devices. How semantic knowledge can be used to improve the
process of knowledge discovery in dynamic data which change in both time and space
will be addressed in the near future.
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APPENDIX A EVALUATING DEPENDENCES BETWEEN
THE TARGET FEATURE TYPE AND RELEVANT
FEATURE TYPES

=== Run information ===

Instances: 300

Attributes: 35
Crosses_build_up_area, overlaps_tunel, within_bridge, contains_River, bridge_overlaps,
touches_tunel, Contains_disturbed_soil, Touches_bridge, Overlaps_Trees,
Crosses_disturbed_soil, within_river, crosses_bridge, Overlaps_build_up_area,
touches_river, contains_Tunel, Within_build_up_area, touches_road, overlaps_Road,
within_tunel, contains_Bridge, Touches_build_up_area, within_road, Contains_trees,
within_Trees,Within_disturbed_soil, crosses_Tunel,Crosses_bridge,Contains_build_up_area,
overlaps_River,Touches_disturbed_soil, contains_Road, crosses_River,
Overlaps_disturbed_soil, touches_bridge, crosses_Road

Apriori

Minimum support: 0.15

Minimum metric <confidence>: 0.9
Number of cycles performed: 17
Generated sets of large itemsets:
Size of set of large itemsets L(1): 9
Size of set of large itemsets L(2): 23
Size of set of large itemsets L(3): 26
Size of set of large itemsets L(4): 14
Size of set of large itemsets L(5): 3
Best rules found:

1. overlaps_River=yes 216 ==> within_Trees=yes 216 conf:(1)

2. overlaps_Road=yes 190 ==> within_Trees=yes 190 conf:(1)

3. overlaps_Trees=yes 180 ==> within_Trees=yes 180 conf:(1)

4. overlaps_Road=yes overlaps_River=yes 149 ==> within_Trees=yes 149 conf:(1)

5. overlaps_tunel=yes 135 ==> within_Trees=yes 135 conf:(1)

6. overlaps_Trees=yes overlaps_Road=yes 133 ==> within_Trees=yes 133 conf:(1)

7. overlaps_Trees=yes overlaps_River=yes 128 ==> within_Trees=yes 128 conf:(1)

8. overlaps_tunel=yes overlaps_River=yes 107 ==> within_Trees=yes 107 conf:(1)

9. overlaps_Trees=yes overlaps_Road=yes overlaps_River=yes 104 ==> within_Trees=yes 104 conf:(1)
10. overlaps_tunel=yes overlaps_Road=yes 93 ==> within_Trees=yes 93 conf:(1)

11. overlaps_tunel=yes Overlaps_Trees=yes 86 ==> within_Trees=yes 86 conf:(1)

12. overlaps_tunel=yes overlaps_Road=yes overlaps_River=yes 77 ==> within_Trees=yes 77 conf:(1)
13. overlaps_tunel=yes Overlaps_Trees=yes overlaps_Road=yes 70 ==> within_Trees=yes 70 conf:(1)
14. contains_River=yes 69 ==> within_Trees=yes 69 conf:(1)

15. contains_River=yes overlaps_River=yes 67 ==> within_Trees=yes 67 conf:(1)
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overlaps_tunel=yes Overlaps_Trees=yes overlaps_River=yes 66 ==> within_Trees=yes 66 conf:(1)

within_road=yes 62 ==> within_Trees=yes 62 conf:(1)

contains_Bridge=yes 62 ==> within_Trees=yes 62 conf:(1)

contains_River=yes overlaps_Road=yes 59 ==> within_Trees=yes 59 conf:(1)

contains_Bridge=yes overlaps_River=yes 58 ==> within_Trees=yes 58 conf:(1)

contains_River=yes overlaps_Road=yes overlaps_River=yes 57 ==> within_Trees=yes 57 conf:(1)

overlaps_tunel=yes Overlaps_Trees=yes overlaps_Road=yes overlaps_River=yes 56 ==> within_Trees=yes 56 conf:(1)
overlaps_Road=yes contains_Bridge=yes 56 ==> within_Trees=yes 56 conf:(1)

contains_Road=yes 54 ==> within_Trees=yes 54 conf:(1)

overlaps_Road=yes contains_Road=yes 53 ==> within_Trees=yes 53 conf:(1)

overlaps_Trees=yes contains_Bridge=yes 53 ==> within_Trees=yes 53 conf:(1)

overlaps_Road=yes contains_Bridge=yes overlaps_River=yes 52 ==> within_Trees=yes 52 conf:(1)
contains_River=yes Overlaps_Trees=yes 52 ==> within_Trees=yes 52 conf:(1)

overlaps_Trees=yes overlaps_Road=yes contains_Bridge=yes 51 ==> within_Trees=yes 51 conf:(1)
contains_River=yes Overlaps_Trees=yes overlaps_River=yes 51 ==> within_Trees=yes 51 conf:(1)
overlaps_Trees=yes contains_Bridge=yes overlaps_River=yes 50 ==> within_Trees=yes 50 conf:(1)
overlaps_Trees=yes overlaps_Road=yes contains_Bridge=yes overlaps_River=yes 48 ==> within_Trees=yes 48 conf:(1)
contains_River=yes Overlaps_Trees=yes overlaps_Road=yes 47 ==> within_Trees=yes 47 conf:(1)
overlaps_River=yes contains_Road=yes 47 ==> within_Trees=yes 47 conf:(1)

contains_River=yes Overlaps_Trees=yes overlaps_Road=yes overlaps_River=yes 46 ==> within_Trees=yes 46 conf:(1)
overlaps_Road=yes overlaps_River=yes contains_Road=yes 46 ==> within_Trees=yes 46 conf:(1)

overlaps_Trees=yes contains_Road=yes 45 ==> within_Trees=yes 45 conf:(1)

contains_Road=yes 54 ==> overlaps_Road=yes within_Trees=yes 53 conf:(0.98)

within_Trees=yes contains_Road=yes 54 ==> overlaps_Road=yes 53 conf:(0.98)

contains_Road=yes 54 ==> overlaps_Road=yes 53 conf:(0.98)

contains_River=yes Overlaps_Trees=yes 52 ==> within_Trees=yes overlaps_River=yes 51 conf:(0.98)
contains_River=yes Overlaps_Trees=yes within_Trees=yes 52 ==> overlaps_River=yes 51 conf:(0.98)
contains_River=yes Overlaps_Trees=yes 52 ==> overlaps_River=yes 51 conf:(0.98)

contains_River=yes Overlaps_Trees=yes overlaps_Road=yes 47 ==> within_Trees=yes overlaps_River=yes 46 conf:(0.98)
contains_River=yes Overlaps_Trees=yes overlaps_Road=yes within_Trees=yes 47 ==> overlaps_River=yes 46 conf:(0.98)
overlaps_River=yes contains_Road=yes 47 ==> overlaps_Road=yes within_Trees=yes 46 conf:(0.98)
within_Trees=yes overlaps_River=yes contains_Road=yes 47 ==> overlaps_Road=yes 46 conf:(0.98)
contains_River=yes Overlaps_Trees=yes overlaps_Road=yes 47 ==> overlaps_River=yes 46 conf:(0.98)
overlaps_River=yes contains_Road=yes 47 ==> overlaps_Road=yes 46 conf:(0.98)

contains_River=yes 69 ==> within_Trees=yes overlaps_River=yes 67 conf:(0.97)

contains_River=yes within_Trees=yes 69 ==> overlaps_River=yes 67 conf:(0.97)

contains_River=yes 69 ==> overlaps_River=yes 67 conf:(0.97)

contains_River=yes overlaps_Road=yes 59 ==> within_Trees=yes overlaps_River=yes 57 conf:(0.97)
contains_River=yes overlaps_Road=yes within_Trees=yes 59 ==> overlaps_River=yes 57 conf:(0.97)
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APPENDIX B EVALUATING DEPENDENCES AMONG
RELEVANT FEATURE TYPES

Instances: 300

Attributes: 30
Touches_build_up_area,overlaps_Road, Contains_disturbed_soil
Crosses_disturbed_soil, Overlaps_disturbed_soil,
crosses_River,contains_River,crosses_Tunel, overlaps_River
Overlaps_build_up_area, crosses_Road, Touches_disturbed_sail,
within_bridge, within_river, touches_river, contains_Bridge,
touches_tunel, contains_Road, contains_Tunel,bridge_overlaps,
touches_road,overlaps_tunel,crosses_bridge, within_tunel,
Crosses_build_up_area, Within_disturbed_soil,Within_build_up_area,
within_road, Contains_build_up_area, touches_bridge,

Apriori

Minimum support: 0.08

Minimum metric <confidence>: 0.7
Number of cycles performed: 92

Generated sets of large itemsets:
Size of set of large itemsets L(1): 10
Size of set of large itemsets L(2): 25
Size of set of large itemsets L(3): 31
Size of set of large itemsets L(4): 21
Size of set of large itemsets L(5): 3
Best rules found:

1. contains_River=yes contains_Bridge=yes 38 ==> overlaps_River=yes 38 conf:(1)

2. overlaps_Road=yes contains_River=yes contains_Bridge=yes 34 ==> overlaps_River=yes 34 conf:(1)

SICORENSHROa0S) s overlaps_tunel=yes 31 ==> BlEllapelROad=yes 31 conf:(1)

4. contains_River=yes contains_Bridge=yes overlaps_tunel=yes 30 ==> overlaps_River=yes 30 conf:(1)

5. overlaps_River=yes contains_Road=yes overlaps_tunel=yes 28 ==> overlaps_Road=yes 28 conf:(1)

6. overlaps_Road=yes contains_River=yes contains_Bridge=yes overlaps_tunel=yes 27 ==>
overlaps_River=yes 27 conf:(1)

7. contains_Bridge=yes contains_Tunel=yes 27 ==> overlaps_River=yes 27 conf:(1)

8. contains_River=yes contains_Bridge=yes contains_Road=yes 26 ==> overlaps_River=yes 26 conf:(1)

9. overlaps_Road=yes contains_River=yes contains_Bridge=yes contains_Road=yes 25 ==> overlaps_River=yes 25 conf:(1)

10. contains_River=yes contains_Bridge=yes contains_Tunel=yes 25 ==> overlaps_River=yes 25 conf:(1)

11. contains_Bridge=yes EOMaMSAROa0=yes overlaps_tunel=yes 25 ==> lElapslROa0=-yes 25 conf:(1)

12. overlaps_Road=yes contains_Bridge=yes contains_Tunel=yes 25 ==> overlaps_River=yes 25 conf:(1)
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13. overlaps_River=yes contains_Bridge=yes EONANSHAROAH=yes overlaps_tunel=yes 24 ==>
BVEHERSHRGEE-y s 24 conf:(1)

14. overlaps_disturbed_soil=yes 24 ==> Overlaps_build_up_area=yes 24 conf:(1)

15. overlaps_build_up_area=yes 24 ==> Overlaps_disturbed_soil=yes 24 conf:(1)

16. contains_Road=yes 54 ==> overlaps_Road=yes 53 conf:(0.98)

17. overlaps_River=yes contains_Road=yes 47 ==> overlaps_Road=yes 46 conf:(0.98)

18. contains_River=yes overlaps_tunel=yes 44 ==> overlaps_River=yes 43 conf:(0.98)

19. overlaps_Road=yes contains_River=yes overlaps_tunel=yes 37 ==> overlaps_River=yes 36 conf:(0.97)

20. contains_River=yes contains_Tunel=yes 35 ==> overlaps_River=yes 34 conf:(0.97)

21. contains_River=yes 69 ==> overlaps_River=yes 67 conf:(0.97)

22. contains_Bridge=yes contains_Road=yes 33 ==> overlaps_Road=yes 32 conf:(0.97)

23. CONTaMSARNEI=yes contains_Road=yes 32 ==> SUSHADSHRNel=yes 31 conf:(0.97)

24. contains_River=yes EONaNSHROa0-yes 32 ==> BUeHapslRoan-yes 31 conf:(0.97)

25. overlaps_River=yes contains_Bridge=yes GONiaNSHROa0=-yes 31 ==> BUEHapSHRoan-yes 30 conf:(0.97)

26. overlaps_Road=yes contains_River=yes contains_Road=yes 31 ==> overlaps_River=yes 30 conf(0.97)

21. contains_River=yes overlaps_River=yes contains_Road=yes 31 ==> overlaps_Road=yes 30 conf.(0.97)

28. overlaps_Road=yes contains_River=yes contains_Tunel=yes 30 ==> overlaps_River=yes 29 conf:(0.97)

29. overlaps_Road=yes contains_River=yes 59 ==> overlaps_River=yes 57 conf;(0.97)

30. contains_River=yes contains_Bridge=yes contains_Road=yes 26 ==> overlaps_Road=yes 25 conf:(0.96)

31. contains_Road=yes contains_Tunel=yes 26 ==> overlaps_River=yes 25 conf:(0.96)

32. contains_Road=yes contains_Tunel=yes 26 ==> contains_River=yes 25 conf:(0.96)

33. EOMTEMSIR0a0-yes contains_Tunel=yes 26 ==> GUEHapSBROA0=-yes 25 conf:(0.96)

37. contains_Bridge=yes contains_Road=yes overlaps_tunel=yes 25 ==>
overlaps_Road=yes overlaps_River=yes 24 conf:(0.96)

38. overlaps_Road=yes contains_Bridge=yes contains_Road=yes overlaps_tunel=yes 25 ==>
overlaps_River=yes 24 conf:(0.96)
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APPENDIX C HIERARCHICAL DEPENDENCES

Instances: 109
Attributes: 17
Dengue, contains_arborizacao, croses_redes_adutoras, contains_hospitais,
contains_eta_pol, contains_vilas, contains_antenas_predio,
contains_pontos_de_coleta, contains_ponto_captacao, crosses_recurso_hidrico,
contains_eta_pt, contains_posto_saude, contains_ramal_e, contains_ParadaOnibus
contains_Rua, crosses_rua, contains_avenida, crosses_Avenida, contains_ponte
Apriori
Minimum support; 0.2
Minimum metric <confidence>: 0.9
Number of cycles performed: 16
Generated sets of large itemsets:
Size of set of large itemsets L(1): 13
Size of set of large itemsets L(2
Size of set of large itemsets L(3
Size of set of large itemsets L(4
Size of set of large itemsets L(5
Best rules found:
1. contains_ParadaOnibus=Yes 89 ==> crosses_Avenida=Yes 89 conf:(1)
2. crosses_Avenida=Yes 89 ==> contains_ParadaOnibus=Yes 89 conf:(1)
3. dengue=NAO contains_ParadaOnibus=Yes 75 ==> crosses_Avenida=Yes 75 conf:(1)
4. dengue=NAO crosses_Avenida=Yes 75 ==> contains_ParadaOnibus=Yes 75 conf:(1)
5. contains_Rua=Yes 61 ==> contains_ParadaOnibus=Yes crosses_Avenida=Yes 61 conf:(1)
6. contains_ParadaOnibus=Yes contains_Rua=Yes 61 ==> crosses_Avenida=Yes 61 conf;(1)

7. contains_Rua=Yes crosses_Avenida=Yes 61 ==> contains_ParadaOnibus=Yes 61 ~conf:(1)
8. contains_Rua=Yes 61 ==> crosses_Avenida=Yes 61 conf:(1)
9. contains_Rua=Yes 61 ==> contains_ParadaOnibus=Yes 61 conf:()

10. dengue=NAO contains_Rua=Yes 54 ==> contains_ParadaOnibus=Yes crosses_Avenida=Yes 54 conf:(1)

11. dengue=NAO contains_ParadaOnibus=Yes contains_Rua=Yes 54 ==> crosses_Avenida=Yes 54 conf:(1)

12. dengue=NAO contains_Rua=Yes crosses_Avenida=Yes 54 ==> contains_ParadaOnibus=Yes 54 conf:(1)

13. dengue=NAO contains_Rua=Yes 54 ==> crosses_Avenida=Yes 54 conf:(1)

14. dengue=NAO contains_Rua=Yes 54 ==> contains_ParadaOnibus=Yes 54 conf:(1)

15. contains_ramal_e=Yes contains_ParadaOnibus=Yes 37 ==> crosses_Avenida=Yes 37 conf:(1)

16. contains_ramal_e=Yes crosses_Avenida=Yes 37 ==> contains_ParadaOnibus=Yes 37 conf:(1)

17. contains_ramal_e=Yes contains_Rua=Yes 35 ==> contains_ParadaOnibus=Yes crosses_Avenida=Yes 35 conf:(1)
18. contains_ramal_e=Yes contains_ParadaOnibus=Yes contains_Rua=Yes 35 ==> crosses_Avenida=Yes 35 conf:(1)
19. contains_ramal_e=Yes contains_Rua=Yes crosses_Avenida=Yes 35 ==> contains_ParadaOnibus=Yes 35 conf:(1)
20. contains_ramal_e=Yes contains_Rua=Yes 35 ==> crosses_Avenida=Yes 35 conf:(1)

21. contains_ramal_e=Yes contains_Rua=Yes 35 ==> contains_ParadaOnibus=Yes 35 conf:(1)

o —

46
47
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22. crosses_recurso_hidrico=Yes 32 ==> contains_ponte=Yes 32 conf:(1)

23. contains_ParadaOnibus=Yes contains_ponte=Yes 31 ==> crosses_Avenida=Yes 31 conf:(1)

24. crosses_Avenida=Yes contains_ponte=Yes 31 ==> contains_ParadaOnibus=Yes 31 conf:(1)

25. contains_pontos_de_coleta=Yes contains_ParadaOnibus=Yes 31 ==> crosses_Avenida=Yes 31 conf:(1)

26. contains_pontos_de_coleta=Yes crosses_Avenida=Yes 31 ==> contains_ParadaOnibus=Yes 31 conf:(1)

27. dengue=NAO contains_ramal_e=Yes contains_ParadaOnibus=Yes 30 ==> crosses_Avenida=Yes 30 conf:(1)

28. dengue=NAO contains_ramal_e=Yes crosses_Avenida=Yes 30 ==> contains_ParadaOnibus=Yes 30 conf:(1)

29. croses_redes_adutoras=Yes contains_ParadaOnibus=Yes 30 ==> crosses_Avenida=Yes 30 conf:(1)

30. croses_redes_adutoras=Yes crosses_Avenida=Yes 30 ==> contains_ParadaOnibus=Yes 30 conf:(1)

31. dengue=NAO croses_redes_adutoras=Yes contains_ParadaOnibus=Yes 29 ==> crosses_Avenida=Yes 29 conf:(1)
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APPENDIX D GEOGRAPHIC DATA PREPROCESSING
USING GEO-ONTOLOGIES

An overview of the algorithm that implements geographic data preprocessing tasks
using geographic ontologies is presented in Figure A. The Dependence Elimination step
searches the ontology # and verifies the properties of T. If T has a mandatory
dependence M with any O in S, then O is eliminated from the set S of relevant feature
types. Notice that for each relevant feature type removed from the set S, no spatial join
is required to extract spatial relationships. By consequence, no spatial association rule
will be generated with this relevant feature type. If a prohibited relationship P is defined
between T and O in the ontology #;, then the set of possible relationships to compute for
data mining is given by Do) = R - P0), Where R is the set of all topological
relationships R = {touches, contains, within, crosses, overlaps, equals, disjoint}. If there
is no property of T in ¢ that relates T and O, then all relationships are computed.

The Spatial Join step computes the spatial relationships D between T and all
remaining O in S. Spatial joins D to extract spatial predicates are performed on-the-fly
with operations provided by the GIS. Before computing spatial joins, MBR (Minimum
Boundary Rectangle) is performed for accelerating the extraction of spatial
relationships.
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Given:
GDB, // geographic database
%, I/ geographic ontology
T, // target feature type
S, I/ set of relevant feature types O
R; // set of all topological relationships
Variables:
D; // relationships to compute for Data mining
Find: a dataset W without geographic dependences between T and S;

Method:
Dependence_Elimination
Begin
Y =T - geometry column;
For (i=1; i=#0 in S, i++) do
Begin
Find T in s;
If (T has a one-one or one-many property with O; in %)
Remove O;from S; // dependence elimination
Else
If (T has prohibited properties P with O;in )
D =R - P; // possible relationships to compute
Else
D =R// all topological relationships
Y =W + Spatial_Join (D, T,0;);//computes spatial relationships D between T and O
End;
End,;
Transformation (\P) // transforms the resultant dataset into the data mining algorithm
/l format preserving the non-spatial attributes of T;

Figure A: Pseudo-code of the data preprocessing algorithm

The Transformation step transposes as well as discretizes the Spatial Join module
output (¥) into the single table format understandable by association rule mining
algorithms.
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APPENDIX E CONTRIBUICOES DA TESE

A mineracdo de dados tem como objetivo principal descobrir conhecimento
implicito, ndo trivial, novo e ndo conhecido a priori. Uma das técnicas utilizadas na
mineracdo é a obtencdo de regras de associacdo. Esta técnica tem sido extensivamente
utilizada em bancos de dados transacionais e dezenas de algoritmos foram propostos na
altima década. J& em bancos de dados geogréficos pouquissimos trabalhos tém sido
desenvolvidos para descoberta de conhecimento utilizando a técnica de regras de
associacéo.

O maior e bem conhecido problema da técnica de mineracdo de regras de associacdo
é o grande numero de regras geradas, que precisam ser analisadas uma a uma pelo
usuario, na busca por algum conhecimento novo e interessante. Na mineracao de regras
de associacdo em bancos de dados geograficos este problema é ainda mais grave devido
ao grande numero de padrdes naturais e bem conhecidos que existem entre os dados
geogréficos. Enquanto em bancos de dados transacionais os itens sdo normalmente
independentes, em bancos de dados geograficos os objetos estdo naturalmente co-
rrelacionados e muitos sdo dependentes uns dos outros. Por exemplo, uma ilha esta
sempre relacionada a um recurso hidrico, um posto de gasolina esta sempre relacionado
a uma via, um trevo esta sempre relacionado a duas ou muitas estradas, e assim por
diante. Quando considerados na mineracdo de regras de associacdo espacial, objetos
geogréficos interdependentes sdo agrupados devido as suas dependéncias naturais e
geram uma grande quantidade de regras Obvias como por exemplo
contém_ilha =contém_rio.

Por um lado, embora existam muitos padrdes bem conhecidos/6bvios em bancos de
dados geograficos, é dificil definir medidas objetivas que eliminem estes padrdes, ou
que sejam capazes de definir se um padrdo € interessante ou ndo. Por outro lado,
conhecendo os padrGes que ndo sao interessantes é possivel utilizd-los como
conhecimento a priori para evitar que os algoritmos de mineracdo de regras de
associagao extraiam estes mesmos padroes.

As dependéncias geograficas sao bem conhecidas pelo projetista de bancos de dados
geogréaficos e normalmente séo explicitamente definidas nos esquemas de bancos dados
geograficos. Essas dependéncias também sdo representadas em ontologias geograficas,
uma vez que elas fazem parte do conceito dos dados geograficos e representam
restricdes de integridade espacial que precisam ser garantidas a fim de manter a
qualidade dos dados. As dependéncias geograficas também podem ser vistas como
restricdes semanticas. Por exemplo, considerando que um objeto geografico € um ponto
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e um outro objeto é um poligono, ndo podemos afirmar que estes objetos tem uma
dependéncia. Entretanto, quando sabemos que o ponto é uma ilha e que o poligono é um
lago, entdo podemos identificar essa dependéncia geografica.

Considerando a grande quantidade de padrbes bem conhecidos que o0s atuais
algoritmos de mineragdo de regras de associagédo espacial geram, nesta tese se propde 0
uso de conhecimento a priori a fim de reutilizar o conhecimento do projetista do banco
de dados geografico representado no esquema de dados ou o existente em ontologias do
dominio geografico, para evitar que esses padrfes sejam extraidos e mostrados ao
usuario de mineragédo de dados.

O Capitulo 1 da tese apresenta em maiores detalhes a motivacdo que levou a
realizacdo deste trabalho. O Capitulo 2 apresenta os conceitos basicos sobre bancos de
dados geograficos bem como um estudo de caso sobre esquemas de bancos de dados
geogréficos reais. O Capitulo 3 apresenta o estado da arte em mineracdo de regras de
associacdo em dados transacionais e dados geograficos. Também € apresentada no
Capitulo 3 uma anélise detalhada do nimero de conjuntos freglientes e regras de
associacdo gerados pelos padrées bem conhecidos, existentes nos dados geograficos.

Esta tese € um dos primeiros trabalhos que utiliza conhecimento a priori para reduzir
0 numero de padrdes bem conhecidos (6bvios) na mineragédo de regras de associacdo em
bancos de dados geograficos. Diferentes solu¢Ges para reduzir o problema séo
apresentadas. Estas solucGes estdo descritas no Capitulo 4 e os experimentos para
mostrar a eficiéncia e eficacia das solucBes propostas sdo apresentados no Capitulo 5.
Os experimentos foram realizados com bancos de dados reais. O capitulo 6 descreve
um prototipo desenvolvido para facilitar o pré-processamento de dados geograficos para
a mineracdo. Finalmente, o Capitulo 7 apresenta as conclusdes da tese e os trabalhos
futuros.

As principais contribuicfes desta tese incluem:

1. Automatizacdo do pré-processamento de dados geogréaficos, integrando a
ferramenta Weka com bancos de dados geograficos seguindo as normas
estabelecidas pelo padrdo OpenGIS visando a interoperabilidade com
diferentes bancos de dados. Este trabalho foi publicado em (BOGORNY,
2005a, 2006d);

2. Uso de ontologias geogréaficas para reduzir o numero de jungdes espaciais no
pré-processamento de dados geograficos. O resultado deste trabalho foi
publicado em (BOGORNY, 2005b);

3. Uso de ontologias para reducdo de regras de associacdo espacial que
contenham padrdes Obvios. Neste método ontologias geograficas sdo
utilizadas tanto no pré-processamento para reduzir o namero de juncdes
espaciais bem como as dependéncias possiveis de serem eliminadas no pré-
processamento. Também € proposta uma alteracdo no algoritmo Apriori que
elimina pares de objetos geograficos com dependéncias utilizando a
ontologia como base de conhecimento. Este trabalho serd publicado em
(BOGORNY, 2007) ;

4. Uso de conhecimento extraido esquemas ou definido pelo usuério, a fim de
eliminar parcialmente as dependéncias geograficas no processo de mineracao
de regras de associacdo espacial. Este método de eliminacdo de dependéncias
é aplicado no pré-processamento de dados geograficos e aumenta a eficiéncia
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e eficacia de qualquer algoritmo de mineracdo de regras de associagao
espacial, uma vez que a eliminacdo das dependéncias é realizada numa etapa
anterior a mineragdo. Esta contribuicdo foi publicada em (BOGORNY,
2006a)

Uso de conhecimento a priori, extraido de esquemas ou definido pelo
usuario, para eliminar parcialmente as dependéncias geograficas bem
conhecidas no processo de mineragdo de regras de associacdo espacial. Este
método é aplicado durante a geracdo dos conjuntos freqientes, a partir dos
quais posteriormente sdo geradas as regras, para eliminar dependéncias que
ndo podem ser removidas no pré-processamento. Para isso foi alterado o
algoritmo Apriori. O resultado deste trabalho foi publicado em (BOGORNY,
2006b)

Uso de conhecimento a priori, extraido de esquemas ou definido pelo
usuario, para excluir completamente as dependéncias geograficas na
mineragdo de regras de associacdo espacial. Este método reGine as duas
abordagens anteriores, ou seja, elimina todas as dependéncias passiveis de
serem removidas no pré-processamento sem que haja perda de informagcéo, e
as demais sdo eliminadas durante a geracdo dos conjuntos freqlientes. Este
trabalho foi publicado em (BOGORNY, 2006c).

Eliminacdo de dependéncias hierarquicas quando os dados sdo minerados em
niveis de granularidade mais gerais ou mais especificos. A mineracdo de
dados em niveis de granularidade menores gera mais atributos e como
conseqliéncia mais regras sdo geradas contendo as dependéncias bem
conhecidas. Os experimentos mostram que nesses casos 0 método proposto
nesta tese reduz significativamente o numero total de padrbes. Esta
contribui¢do ainda néo foi publicada.

Esta tese também apresenta uma contribuicdo para a reducdo ndo somente de
padroes bem conhecidos gerados pelos relacionamentos espaciais entre
diferentes objetos geograficos, mas também para a reducdo das regras
geradas pelos mesmos objetos com diferentes tipos de relacionamento
espacial  (topoldgicos). Por exemplo, toca rio—=contem_rio. Esta
contribuicdo também ainda ndo foi publicada.

Nas contribuicGes apresentadas acima as dependéncias sdo eliminadas no
pré-processamento ou durante a geracao dos conjuntos freqlientes (dentro do
algoritmo de mineragdo). Essa eliminacdo além de eliminar padrées bem
conhecidos, reduz significativamente o nimero total de conjuntos frequientes.
Na literatura de mineracdo de regras de associacdo em bancos de dados
transacionais existem dois tipos de algoritmos, 0s que geram conjuntos
frequentes e os que geram conjuntos frequentes fechados (closed frequent
sets). Os conjuntos freqiientes fechados sdo gerados numa segunda etapa,
apos a geracdo dos conjuntos frequentes. Conjuntos freqtientes fechados para
mineragdo de regras de associacdo espacial em bancos de dados geograficos
foram usados pela primeira vez nesta tese. E este método reduz
significativamente o nimero final de conjuntos e regras. Este trabalho sera
publicado em (BOGORNY, 2006g).



