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ABSTRACT

This thesis introduces a new interface for augmenting existing e-learning videos with
panoramic frames and content-based non-linear navigation. In conventional e-learning
videos, each frame is constrained to the subset of the lecture content captured by the cam-
era or frame grabber at that moment. This makes it harder for users to quickly revisit and
check previously shown subjects, which might be crucial for understanding subsequent
concepts. Locating previously seen materials in pre-recorded videos requires one to per-
form visual inspection by sequentially navigating through time, which can be distracting
and time-consuming.

We augment e-learning videos to provide users direct access to all previously shown
content through a simple pointing interface. This is achieved by automatically detecting
relevant features in the videos as they play, and assigning them hyperlinks to a buffered
version in a completely transparent way. The interface gradually builds panoramic video
frames displaying all previously shown content. The user can then navigate through the
video in a non-linear way by directly clicking over the content, as opposed to using a
conventional time slider. As an additional feature, the final panorama can be exported as
a set of annotated lecture notes.

We demonstrate the effectiveness of our approach by successfully applying it to three
representative styles of e-learning videos: Khan Academy, Coursera, and conventional
lecture recorded with a camera. We show that we can achieve real-time performance
for low-resolution videos (e.g., 320x240) on a single desktop PC. For higher resolu-
tion videos, some pre-processing is required for feature detection (using SIFT). However,
since the most expensive parts of our processing pipeline are highly parallel, we believe
that real-time performance might be soon achievable even for full HD resolution.

The techniques described in this thesis provide more efficient ways for exploring the
benefits of e-learning videos. As such, they have the potential to impact education by
providing more customizable learning experiences for millions of e-learners around the
world.

Keywords: Image registration, e-learning videos, computer vision.





RESUMO

Este trabalho introduz uma interface para estender vídeos educacionais com panora-
mas e navegação não-linear baseada em conteúdo. Em vídeos de e-learning convencio-
nais, cada quadro está restrito ao subconjunto da cena capturado naquele momento. Isso
torna difícil para o usuário revisitar conteúdos mostrados anteriormente, que podem ser
essenciais para o entendimento dos conceitos seguintes. Localizar conteúdos anteriores
nesses vídeos requer uma navegação linear no tempo, o que pode ser ineficiente.

Estendemos vídeo-aulas para prover ao usuário o acesso direto a todo o conteúdo apre-
sentado através de uma simples interface. Isso é feito pela detecção automática de pontos
relevantes no vídeo e a criação de hyperlinks a partir desses pontos de maneira comple-
tamente transparente. Nossa interface constrói gradualmente um panorama clicável que
mostra todo o conteúdo visto no vídeo até o dado momento. O usuário pode navegar pelo
vídeo simplesmente clicando no conteúdo desejado, ao invés de utilizar a tradicional barra
deslizante de tempo. Nosso panorama também pode ser exportado no final da execução,
juntamente com anotações feitas pelo usuário, como um conjunto de notas de aula.

A eficiência da nossa técnica foi demonstrada com a aplicação bem-sucedida a três ca-
tegorias de vídeos que são representativas de todo o conjunto de vídeo-aulas disponíveis:
Khan Academy, Coursera e aulas convencionais gravadas com uma câmera. Demonstra-
mos que foi possível atingir os resultados em tempo real para vídeos de baixa resolução
(320x240). No caso de resoluções mais altas, é necessário que a detecção de features
(usando SIFT) seja feita em uma fase de pré-processamento. Como a parte mais custosa
do nosso pipeline é extremamente paralelizável, acreditamos que a execução de vídeos de
alta resolução em tempo real seja um resultado alcançável em curto prazo.

As técnicas descritas nessa dissertação disponibilizam maneiras mais eficientes de ex-
plorar vídeos educacionais. Dessa forma, elas tem potencial para impactar a educação,
disponibilizando experiências educacionais mais customizáveis para milhões de estudan-
tes em todo o mundo.

Palavras-chave: Vídeos Educacionais Aumentados, Visão Computacional, Registro de
Imagens.
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1 INTRODUCTION

There is a recent trend towards the online publication of educational material from
universities around the world. Websites like Coursera (COURSERA, 2013), edX (EDX,
2013), MIT OCW (MIT OCW, 2013) and Khan Academy (KHAN ACADEMY, 2013)
are only some examples of a huge movement to make world-class education available
to everyone, for free. The impact is huge: top universities are providing high-quality
educational content to millions of students worldwide.

A recent study conducted on the student perception of instructor-made videos in on-
line education indicates extremely positive evaluations of this type of strategy (ROSE,
2009). The most famous online education websites all rely deeply on videos. Exam-
ples of different types of such videos can be seen in Figure 1.1. Videos have advantages
even when compared to face-to-face lectures. Pausing, repeating, skipping - those are all
features that make the watching experience more customizable and effective.

(a) (b)

(c) (d)

Figure 1.1: Videos are an essential part of online education. (a) Lecture on Separable
Equations, Khan Academy (KHAN ACADEMY, 2013). (b) Video from Probability,
on iTunesU (ITUNESU, 2013) (c) Video from Computational Science and Engineer-
ing I, MIT OCW (MIT OCW, 2013). (d) Video from Game Theory course, on Cours-
era (COURSERA, 2013).
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Unfortunately, although one can pause and repeat sections of the video as he/she
pleases, finding the points of interest requires sequential navigation with a time slider.
While this is not critical when repeating concepts just presented, it tends to be far less
convenient when one wants to revisit or double check a concept presented much earlier,
but which is key for understanding the subject being explained at the moment. It is often
hard to remember the point in time when the instructor presented a particular concept,
or when an equation was introduced and explained. In those situations, navigating with
a time slider tends to slow down the interaction and introduce distractions (as the user is
forced to see different concepts along the way). A much natural way of indicating the sub-
jects to be reviewed is to directly point over the equation or the word(s) representing the
concept to be reviewed. However, this will require creating a visual record of all content
presented along the lecture.

To achieve this goal, we create a panoramic representation of the video. Suppose the
camera focuses on a given part of the board. There is no reason why the user should not
be able to see the rest of the room, if this information can somehow be extracted. This
panorama can also be used to generate notes of the lecture. Also, the panorama is a new
dimension - we can use it, for example, to add notes to a given part of the video that is
not related to the time. The availability of such a panorama also allows us to directly go
the explanations of the displayed content. For this, one can use hyperlinks connecting the
contents the user sees to the exact points in the video where they were introduced. To the
best of our knowledge, our work is the first to propose this navigation style. Figure 1.2
illustrates our proposed extensions.

(a)
(b)

(c)

(d)

Figure 1.2: Interface first draft. (a) Regular frame at time 4:43. (b) Extended panoramic
frame at time 4:43. (c) Hyperlinks allowing direct navigation to times 0:30 and 1:47. (d)
Note added to video.

One of the main challenges is the variety of styles of e-learning videos available on
the web. We want our technique to be powerful, yet general enough to be applicable
to many videos. We explored three types of videos, that we believe cover the great
majority of lectures currently available on the internet: Khan Academy’s tablet videos
(Figure 1.1(a)), Coursera’s slide-based videos (Figure 1.1(d)) and regular video lectures
(Figure 1.1(b)(c)). We will discuss the specifities of each type in Chapter 2. These three



17

categories are very different from each other, and each imposes its own challenges to
the creation of our interface. The applicability of our technique to these three categories
does demonstrate that it not only covers the current scenario, but that it could probably be
extended to new types of videos that may appear in the future.

1.1 Thesis Statement

It is possible to augment e-learning videos with panoramic frames and hyperlinks to
allow content-based non-linear video navigation and exploration using a pointing inter-
face. Such hyperlinks can be created on the fly, during the video watch/streaming, pro-
viding direct access to all viewed content up to that moment. As they are created, these
hyperlinks provide an interface for exploring the video content in a non-linear way. More-
over, the videos can receive interactive annotations, which together with the hyperlinks,
can be created and shared in a collaborative way by a group of people over the Internet.
One can also automatically generate notes for the e-lectures.

To demonstrate this thesis, a few challenges must be overcome. First, we need to
register video frames to allow the creation of a panorama. Second, we need to be able to
find features that allow one to identify the instant in the video where each concept first
appeared. Finally, we need to apply these operations in a broad range of existing videos.

I demonstrate it by creating a system that performs these operations in three very
different categories of e-learning videos.

1.2 Structure of this Thesis

The remaining of this thesis is organized as follows: Chapter 2 discusses the different
e-learning systems available nowadays. In Chapter 3, we review the existent research in
the area of augmenting e-learning videos. We cover three main areas where we believe
our work fits, in terms of the possibilities it creates for interaction. The next two chapters
are dedicated to the background in Computer Vision needed to implement our system. In
particular, Chapter 4 discusses the techniques for feature detection and matching used in
this work, as well as the methods for image registration. Chapter 4.4 goes further into
Computer Vision techniques to discuss the method used to track objects in the videos
and the techniques for line detection used to automatically detect the limits of boards. In
Chapter 5, we discuss our implementation of the proposed interface. Chapter 6 presents
some results. Chapter 7 summarizes this thesis and discusses directions for future explo-
ration.
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2 ONLINE EDUCATION SYSTEMS

In the last few years, there has been a trend of top universities making educational
resources available online, for free. Most recently, with the advent of Massive Open
Online Courses - open online courses aimed at large-scale participation that have start
and end dates - this process has accelerated. The biggest sites have millions of students
from almost every country in the world. In this Chapter, we discuss the main existing
paradigms for online education.

Just like normal courses, online courses come in very different shapes. Some include
discussion forums, problem sets and final exams, while some are only a collection of
videos. Since we are mostly interested in the video lectures, we will divide our discussion
into three main categories, according to the kind of video provided: canvas-based videos,
slide-based videos, and recorded lectures. We believe most existing e-learning systems
can be mapped into one of these three categories.

The following sections provide a short review of the main e-learning systems that are
part of these three categories. We will, however, restrict ourselves to briefly introducing
the existing systems and discussing the type of video lectures they provide. A broader
discussion of the impacts of MOOCs in higher education and the historical development
of the current scenario are out of the scope of this thesis and can be found in a report
issued recently by Powell and Yuan (POWELL; YUAN, 2013).

2.1 Canvas-based videos

We define a video as canvas-based when the content shown can be seen as part of a
canvas where the information is drawn. The elements are typically text, equations, and
drawing made with some sort of stylus. This notion of a canvas is essential - the spatial
relation of the frames to each other can be easily inferred from it, which is very important
for our technique. In these videos, the background is usually of a fixed color, and the
information is drawn with high contrast relative to it. Also, because these are usually
explanations of a single concept, they tend not to be very long. These videos are the most
easily adaptable to our interface.

2.1.1 Khan Academy

Khan Academy, a not-for-profit organization created in 2006 by Salman Khan (KHAN
ACADEMY, 2013), is the biggest representative of canvas-based videos. It provides a
large number of short video lectures about a huge variety of subjects. This is different
than most other e-learning methods, that provide whole courses. The videos usually start
with a black canvas in which the text, equations, and drawings are progressively written
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with a stylus. They are usually no longer than 15 minutes. Examples can be seen in
Figure 2.4.

Figure 2.1: Examples of Khan Academy videos. (a) Differential equations lecture. (b)
Video on the similarity of triangles showing drawings instead of equations.

2.1.2 Independent videos

Many e-learning videos that are not part of courses in a bigger system - use the same
style as Khan Academy. A different approach that can also be seen as belonging to the
canvas-based category are videos that show the solution of mathematical problems on
paper. Tisdell’s series "Understand Mathematics" (UNDERSTAND MATHEMATICS,
2013) (Figure 2.2)) is a good example of independent videos.

Figure 2.2: Problem solving videos can be seen as canvas-based. Chris Tisdell’s "‘Under-
stand Mathematics"’ (UNDERSTAND MATHEMATICS, 2013).

2.2 Slide-based videos

In the slide-based category, the background of the video is composed by a set of slides.
On top of it, the instructor makes notes or marks specially important parts. Occasionally,
the instructor is also shown in a small portion of the slide. The most important differ-
ence from these videos to the canvas-based ones is that there is no explicit spatial relation
between the frames. While one can imagine the slides as being side-by-side, the informa-
tion of the global position of each frame is not available. To allow our system to deal with
these videos, we artificially give each slide a place in a global coordinate system. Since
the videos are originally created from a set of slides, we can easily export these slides and
create a global map putting them side-by-side.
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2.2.1 Cousera

Coursera is the biggest online educational site available today. It was created by two
professors from the Stanford University, Andrew Ng and Daphne Koller, in 2012. As of
March 2013, over 300 courses from 62 partner universities were available, in five different
languages. Coursera’s videos are mostly slide-based, and the website also provides the
slide notes, which we use for the registration task. Examples of two Coursera’s slide-
based videos can be seen in Figure 2.3(a).

Figure 2.3: Examples of slide-based videos. (a) Game Theory course on Coursera. (b)
Quantum Computation course on edX

2.2.2 Udacity

Udacity is a for-profit company founded by Stanford University professors Sebastian
Thrun, David Stavens and Mike Sokolsky. Udacity differs a little bit from other online
course providers in that it does not partner with universities; instead, it offers a small
amount of self-created courses. The type of video in Udacity also does not fit exactly in
the concept of slide-based, they are not necessarily coming from a set of slides. Instead,
the background may largely vary along the video.

Figure 2.4: Examples of Udacity videos. (a) Artificial Intelligence lecture. (b) Introduc-
tion to Computer Science.

2.2.3 edX

EdX is an open source online platform, thus differing from other MOOC providers,
which are commercial enterprises. It was founded by the Massachussets Institute of Tech-
nology and Harvard University. EdX also offers courses from the University of Berkeley.
Other prestigious universities should join the initiative in 2014. In terms of video lectures,
the courses provided are very similar to Coursera, as can be seen in Figure 2.3(b).
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2.3 Recorded conventional lectures

One of the most common ways to make lectures available online is by simply upload-
ing recorded lectures. While that is not the mostly adopted type of video for new courses,
many universities have done that in the past. Thus, there is a huge amount of legacy video
that follows this style. The variability is also huge, making the automatic handling of
all such videos a very difficult problem. This type of video certainly poses the biggest
challenge to our interface.

Figure 2.5: Examples of recorded video lectures. (a) MIT OpenCourseWare course on
Multivariable Calculus. (b) Introduction to Wave Theory at the Institute of Pure and
Applied Mathematics (IMPA).

The first problem is defining exactly which parts of the video have important content,
and which parts should be ignored. To detect the boards in the image of the entire room,
we have to rely on line detection algorithms. The state-of-art in line detection is often not
robust enough, specially when dealing with low-resolution and noise.

A second problem is that, even considering a video where the boards are perfectly de-
tected, the instructor or the students might occlude it at some points. To achieve the same
results obtained with unoccluded styles, such as slide-based and canvas-based videos, one
needs to be able to detect and remove unwanted (moving) objects, and fill in the resulting
"holes". These are difficult tasks for which robust algorithms are still an open problem in
Computer Vision.

Finally, registering frames to a global coordinate system is more complicated than for
other types of videos. While Khan Academy uses a black background and text is written
in bright colors, recorded lectures often do not have enough features to allow reliable
mapping from one frame to the other. Also, video lengths are usually over 40min, which
makes cumulative error an enormous issue. In addition, some boards can be moved,
making registration literally impossible in some cases. If a board covers a big part of
the video frame, registration cannot distinguish between board movement and camera
movement in the opposite direction.

2.3.1 MIT OpenCourseWare

One of the first websites to have video content online was MIT OpenCourseWare
(MIT OCW), which was launched in 2002. MIT OpenCourseWare is essentially an
attempt from the Massachussets Institute of Technology to make the material from its
undergraduate- and graduate-level courses freely available to everyone. Differently from
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other websites, OCW videos are not part of online courses, but materials from face-to-face
courses made available online. As such, the video lectures provided are simply regular
recorded lectures.

2.3.2 Legacy Lectures

While Udacity and Khan Academy offer their own content and Coursera partners
with a selected group of universities, hundreds of other institutions around the world
also move towards making education more accessible to everyone. Recording regular
lectures is the simplest and cheapest way of making a course available. For this reason,
this is probably still the most common type of e-learning video on the Internet. Many
prestigious universities have resources available in this format. Also, some regionally
recognized institutions have taken this path. In Brazil, one such example is the National
Institute of Pure and Applied Mathematics (IMPA) (IMPA - INSTITUTO NACIONAL
DE MATEMATICA PURA E APLICADA, 2013), that provides math lectures from the
graduation courses. In India, many courses from technological institutes are available
with the National Programme on Technology Enhanced Learning (NPTEL) (NATIONAL
PROGRAMME ON TECHNOLOGY ENHANCED LEARNING, 2013).

2.4 Summary

This Chapter briefly reviewed the main current e-learning systems. It highlighted the
differences between them, specially considering the type of videos they offer. It classi-
fied such systems according to three paradigms for generating e-learning videos: canvas-
based, slide-based and recorded lectures. It also discussed the challenges each one of
them poses to our technique.
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3 RELATED WORK IN INTERACTION

This Chapter discusses techniques that have been proposed for extending interaction
with videos - rather than Computer Vision techniques which make these extensions pos-
sible. The background necessary for the implementation will be discussed in subsequent
chapters. To provide a systematic review of the area, we will divide our discussion into
three main categories: non-linear video navigation, video annotation/summarization, and
interaction with e-learning videos.

3.1 Non-linear Video Navigation

In this Section, we will discuss the research in non-linear navigation of videos. We call
linear the navigation which consists of going through the video using a time slider. Non-
linear navigation, then, includes all types of interaction where we do not go sequentially
through time.

One of the first attempts to provide exploration that is not exclusively temporal is Cy-
bercoaster (SATOU et al., 1999). The authors introduce the idea of using the trajectory of
an object to navigate in the video: when the user moves an object to position p, the video
is browsed to a frame where the object lies at p. Figure 3.1(c) shows a nice illustrations
of this concept. The authors do not specify how to track the object, the main contribution
is on the user interface design. Many works (KIMBER et al., July) (GOLDMAN et al.,
2008) (DRAGICEVIC et al., 2008) (KARRER et al., 2008) were developed to put this
design into practice, automatically tracking the objects.

Kimber et al. (KIMBER et al., July) introduced a system called Trailblazing, that
allows this exploration by direct object manipulation in fixed-camera videos - specially
for surveillance. They use a Gaussian Mixture Model (REYNOLDS, 2009) (discussed
in detail on Appendix C) to model the background. Object detection and tracking are
performed by background subtraction. They also demonstrate a mapping from the object
trajectory in a multiple-camera environment to a trajectory in a floor plan. The user may
navigate by direct manipulation either on the video or on this floor plan.

Dragicevic et al. (DRAGICEVIC et al., 2008) developed a method based on optical
flow - tracking pixels instead of whole objects. The authors argue that optical flow is more
reliable than object tracking. They also deal with background motion by estimating the
most representative motion between two frames. This background motion is taken into
account when calculating the relative motion of objects. Karrer et al. (KARRER et al.,
2008) presented a similar technique, that used a slower, but even more reliable optical
flow method.

Goldman et al. (GOLDMAN et al., 2008) introduced yet another system that provides
video navigation by direct manipulation, extending the prior set of features to allow anno-
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(a) (b)

(c) (d)

Figure 3.1: Related work in non-linear navigation of videos. (a) Trailblazing, first di-
rect manipulation by object trajectory (KIMBER et al., July). (b) Dragimation, direct
manipulation for computer animations (WALTHER-FRANKS et al., 2012). (c) Direct
manipulation using per-pixel optical flow (DRAGICEVIC et al., 2008). (d) Recent work
extending trajectory do 3D space-time representation (SHAH; NARAYANAN, 2013).

tations to be added to moving objects. They discuss the idea of hyperlinks on the video,
which is closely related to our proposed navigation method. According to the authors,
the idea of hyperlinks in videos has been introduced by Hypersoap (DAKSS et al., 1998),
and the taxonomy defined by Smith et al. (SMITH; STOTTS; KUM, 2000). Differently
from us, they use manually added hyperlinks, from annotations in the video to websites.
We automatically create hyperlinks, from elements in a given frame to the moment when
these elements were explained.

Walther-Franks et al. (WALTHER-FRANKS et al., 2012) introduced the concept of
navigating in time by object manipulation in a different context. It explores the frames of
a computer animation - not a video. Their work is aimed at helping animators finding the
exact moment where an object was at a given position - they claim such navigations are
unintuitive because computer animations are interpolated from key frames.

Very recently, Shah and Narayanan (SHAH; NARAYANAN, 2011) (SHAH; NARAYANAN,
2013) created a variation of the concept of direct manipulation by presenting the user with
a 3D trajectory of the object. In videos, we can only detect whether the object has moved
in the plane - their work uses the time as a third dimension. This results in a volumetric
representation of the object trajectory that can be used for navigation (Figure 3.1(d)).

3.2 Video Summarization

A different topic closely related to ours is video summarization. This subject is ex-
tremely vast, since a summary can be of many different forms: a storyboard, a panorama,
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a set of images, or a 3D visualization of the video, among others. In our context, for
example, we can see the final set of notes as providing a synopsis of the video. We will
try to cover the main types of summarization in breadth. A more complete review can
be found in Truong and Venkatesh (TRUONG; VENKATESH, 2007), though it does not
cover the most recent research.

The first approaches usually focused on graphically representing the video in novel
ways. One of the precursors of these visualizations is the work by Fels and Mase (FELS;
MASE, 1999), which introduces the visualization of videos as 3D volumes, having time
as a third dimension. Later, Daniel and Chen (DANIEL; CHEN, 2003) proposed some
simple variations of the visualization as a cube, taking into account the differences in the
frames to find important checkpoints of the video. Recently, Nguyen et al. (NGUYEN;
NIU; LIU, 2012) introduced VideoSummagator, a new visualization for videos that also
uses 3D volumes, in a more sophisticated way. They use computer vision techniques to
detect dynamic voxels, which receive higher opacity values. An example of a video cube
generated by VideoSummagator can be seen in Figure 3.2(a).

A different approach is the summarization of videos to a single image. Salient stills (TEO-
DOSIO; BENDER, 2005) represents one of the first attempts in this area. The idea is to
create a single image that preserves the salient features of each individual frame. An
example of this technique can be seen in Figure 3.2(b). Assa et al. (ASSA; CASPI;
COHEN-OR, 2005) considered the problem of selecting key frames or poses to generate
a storyboard-like single frame. Goldman et al. (GOLDMAN et al., 2006) further extended
this notion to create real single image storyboards - with the addition of arrows and frame
outlines to better represent movement. The result can be seen in Figure 3.2(c).

More recently, two works on the creation of single images that represent videos have
been introduced concurrently. Dynamic video narratives (CORREA; MA, 2010) and
video tapestries (BARNES et al., 2010) both create summaries of long narratives by merg-
ing together a collection of still images, which are already formed by multiple frames.
They refer to that process as summary of summaries. Examples can be seen in Fig-
ure 3.2(d)(e).

Finally, another possibility for summarization is the creation of video skims. Video
skims (SMITH; KANADE, 1995) (SMITH; KANADE, 1998) (MA; ZHANG, 2002) (KANG
et al., 2006) are shorter summary videos that represent the longer ones. The skims can be
useful for navigation, but may require that the user observe the video for a long time. We
will not review this type of summary in depth, since it is not closely related to our work.

3.3 Interaction with e-Learning Videos

The area where we believe our work is contributing most is the interaction with e-
learning videos. While there is a huge accelaration in the availability of this type of
resource, research dedicated to provide more effective interaction still has not followed.

Zhang et al. (ZHANG et al., 2006) is one of the first works to investigate interactivity
in e-learning videos. They discuss a system based on a paradigm called learning by asking
(LBA). The main idea is to have many short videos, each about one specific topic, that
can be accessed randomly by the user - simulating the answer to one specific question. In
the paper, they have one small video explaining each slide of a lecture. The user is able
to navigate by slide. The authors report significant improvement when the students use
this type of interactive e-learning videos, in comparison to sequential ones. One of the
main restrictions is that it is necessary to generate and segment the videos in advance -
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(a)
(b)

(c)

(d)

(e)

Figure 3.2: Related work in video annotation and summarization. (a) VideoSummaga-
tor (NGUYEN; NIU; LIU, 2012). (b) Salient stills, one of the precursors of single image
video summarization (TEODOSIO; BENDER, 2005). (c) Goldman et al. (GOLDMAN
et al., 2006) creates very expressive storyboards from videos. (d) Dynamic video narra-
tives (CORREA; MA, 2010). (e) Video tapestry (BARNES et al., 2010).

Figure 3.3: The interface of DragonFly (CORSTEN, 2010). Left: the interface for navi-
gation, showing a planar presentation pre-generated with a tool. Right: the video of the
lecture using the presentation.

we cannot apply this technique to existing videos without pre-processing.
One of the most recent works in interaction with video lectures, and certainly one of
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the most closely related to ours, is DragonFly (CORSTEN, 2009) (CORSTEN, 2010).
DragonFly is a system to spatially navigate through video lectures of slide presentations -
the interface can be seen in Figure 3.3. The idea is that the video lecture uses a particular
type of slide presentation (HOLMAN et al., 2006) that already has a sort of planar repre-
sentation. This map is then used to provide a spatial slider in addition to the regular time
slider.

The main limitation of the system is that it only works for videos of lectures that use
this specific type of presentation. That limits the application of this tool to a very narrow
portion of the existing e-learning videos. Our technique, on the other hand, can not only
handle existing videos but is also general enough to be easily customizable to different
categories of videos we might not have seen yet. Also, the spatial navigation provided
by DragonFly is not based on the true spatial relations between frame but in artificially
created relations in a map. Finally, the users from DragonFly reportedly complained about
the lack of direct manipulation on the video, which is the base of our system.

3.4 Summary

In this Chapter, we discussed the most relevant research related to our work. We
reviewed three sub-areas: non-linear navigation, that deals with navigation of videos
guided by elements other than time, video summarization and interaction with e-learning
videos.
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4 RELATED WORK IN COMPUTER VISION

One of the main goals of our framework is to replace the usual linear navigation in
time by a content-based navigation. In most of the videos we are interested in, there
is implicit information of the position of each frame in relation to others. In the first
part of this Chapter, we will discuss the problem of aligning video frames to a common
coordinate system. In the second part, we will review work related to the object tracking
- used to solve occlusion problems when the instruction is in front of the board.

4.1 Video Registration

The applications of image and video registration are many. The most obvious ones are
the automatic creation of panoramas out of a set of images of the same scene (BROWN;
LOWE, 2007) and the augmentation of videos to be panoramic (AGARWALA et al.,
2005) (HERMANS et al., 2008). Less immediate applications include new approaches
to navigate through many photographs of a scene (SNAVELY; SEITZ; SZELISKI, 2006),
interfaces for re-taking a photograph from a given viewpoint (BAE; AGARWALA; DU-
RAND, 2010), alignment of videos for various effects (SAND; TELLER, 2004), among
others.

    (a)                         (b)                                   (c)

Figure 4.1: Common pipeline to image and video registration applications. (a) Feature
detection and matching. (b) Transformation estimation between two images. (c) Image
stitching with seam optimization.

Image registration applications usually go through a common pipeline. Suppose we
have a sequence of images of a scene - partially overlapping - that we want to put in the
same coordinate system. For simplicity, we will consider registration between pairs of
images. First, we need to identify parts of the image that are distinguishable enough to be
matched reliably. We do this separately for each image. Then, we find the most similar
pairs of feature points and match them. These first steps are called feature detection and
matching and are illustrated in Figure 4.1(a).



32

Once we have a set of match candidates, we want to find a transformation T from
the first set of points to the other. Two issues have to be observed in this step: first,
many of the candidate matches might be outliers, due to mismatched features; second,
even features that are correctly matched might have small errors due to lack of precision
in feature detection. Taking that into account, we first estimate the transformation using
RANSAC (FISCHLER; BOLLES, 1981), which is robust to outliers. Once we have an
initial estimation of T and the set of points we consider as inliers, we use every point in
this set to refine the result.

Finally, even perfectly aligned frames might have inconsistencies - a moving object, a
change in illumination, etc. To create a new image from the two existing ones, we need to
stitch the images together in a way that artifacts are not noticeable. As a first approxima-
tion, cutting images around the edges usually leads to more visually plausible results. The
complete pipeline can be seen in Figure 4.1. In the next two sections, we will discuss the
first two steps of the image registration pipeline in more detail. While we implemented
some image composition techniques during the development of our interface, they were
not used in the final version of the system. To avoid confusion, we moved this discussion
to Appendix A.

4.2 Feature Detection and Matching

Feature detection and matching are an essential component of video registration ap-
plications. Consider two frames of a video and the task of creating a panorama from
them. While there is much coherence in the two images, the information about how they
would fit together is not explicit. The similarity of a part of the first image with a part of
the second image needs to be formalized in a way that a computer can understand it. We
will now review the detection and matching of points and patches. We will not discuss the
detection of lines at this point because the difficulty in the detection of such high-level fea-
tures makes them unreliable for registration (HESS; FERN, 2007). Moreover, points and
regions of interest provide the most generally applicable algorithms (SZELISKI, 2010).
The approach we will discuss finds the most prominent features of each image and then
tries to match the sets.

We will organize the discussion in this Section in three main steps:

• Feature detection: The first step we are concerned with is finding which parts of
the image make the most distinctive features, in order to avoid ambiguities;

• Feature description: Once we found good points and patches, we want to describe
them in a way that is memory efficient and, more importantly, invariant to the trans-
formations a feature may suffer when projected;

• Feature matching: We need to compare features to find which ones correspond
to the same entity in a scene. We would be interested in estimating how close our
matched features are from each other, i.e., estimate a level of confidence for our
match.

4.2.1 Feature detection

This first question that comes up when confronted with the task of selecting a set of
features from an image is: what makes a good feature? Intuitively, one can immediately
answer that the most distinctive patches should be selected - in Figure 4.2, patch (b) makes
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a characteristic feature, while (a) and (c) would be much harder to position exactly in the
second image, even for a human observer.

(a)
(b)

(c)

Figure 4.2: Different patches of the image.
We can see (b) is a good feature, while (a) and (c) suffer from ambiguity.

Let us make this intuition more clear. Given a patch p in an image, the simplest
algorithm to find its correspondent patch in the other image is to look at all possible
patches and take the one most similar to p. One way to think of that in a more formal way
is trying to minimize the sum of squared differences between them. This operations can
be described by the following equation, where I0 and I1 are the images being compared,
and u is a displacement vector (representing the position of the patch in I1).

Error(u) =
∑

[I1(xi + u)− I0(xi)]2 (4.1)

Now observe again Figure 4.2. If we move the patch (a) a little bit, there is almost
no change in the color. That means that the equation above would have very similar
results when compared to any patch in the region around (a). Also, for patch (c), if we
move along the edge, there would be only a small variation of the color of the patch. In
contrast, moving patch (b) would generate a patch that is very different from it. To avoid
ambiguity, that is exactly what we want - that the patch cannot be mismatched without
increasing the error function. Now, in our description we use the idea of matching p to
patches in a different image - but we can easily remove that dependency. If p cannot be
mismatched to neighbor patches, it is distinctive enough to avoid ambiguities. The exact
formula can be seen below and is called autocorrelation function.

AutoCorrelation(u) =
∑

[I0(xi + u)− I0(xi)]2 (4.2)

Figure 4.3 shows the autocorrelation results for three distinct cases (not the same as the
patches shown in Figure 4.2). The error is plotted in terms of the displacement. We can see
that the autocorrelation matrix on the left generates a distinctive minimum, while patch
the matrix at the center generates a minimum line and the matrix on the right generates
a function with many minima. The phenomenon illustrated in the matrix in the center
is called aperture problem, and is caused by ambiguity along a single direction (HORN;
SCHUNCK, 1980).

We can approximate the function using the first terms of a Taylor Series expansion,
to generate a matrix that will then be used to define how distinctive a feature is. Using
∇I0(xi) = (∂I0

∂x
, ∂I0

∂y
)(xi) as the gradient of an image at point xi, we can approximate the

value of the image I0(xi+u) as I0(xi)+∇I0(xi)u. Note that u is the displacement vector,
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Figure 4.3: Three types of features and the respective autocorrelation values. (left) a good
feature with a distincted minimum. (center) a feature suffering from aperture (HORN;
SCHUNCK, 1980). (right) a very bad feature for which many points in the neighborhood
are minima. Figure adapted from (SZELISKI, 2010).

and does not vary with the image. This rewriting allows some interesting simplifications,
as shown in Equation 4.3.

AutoCorrelation(u) =
∑

[I0(xi + u)− I0(xi)]2 (4.3)

≈
∑

[I0(xi) +∇I0(xi)u− I0(xi)]2 (4.4)

=
∑

[∇I0(xi)u]2 (4.5)

=
∑

uTAu (4.6)

(4.7)

The matrix A is called the autocorrelation matrix and its properties can be used to
decide whether a feature is distinct or not. It is defined as follows (SZELISKI, 2010).

A = w ∗
[
I2x IxIy
IyIx I2y

]
(4.8)

How the properties of the autocorrelation matrix are used to determine whether a
feature should be used or not depends on the type of detection we do. We will discuss
some examples of the literature.

Shi and Tomasi: One of the first analysis of the autocorrelation matrix is due to Shi
and Tomasi (SHI; TOMASI, 1994). The eigenvectors of a correlation matrix indicate the
direction of maximum variance from a dataset and the respective eigenvalues show the
magnitude of the variance of the set along that direction. If the correlation matrix of a
feature has small eigenvalues then no direction can represent a high variability, which
means the window is composed by a roughly constant intensity. Similarly, a matrix with
a large eigenvalue and a small one represents an image that has high variability only in
one direction, probably an edge. Shi and Tomasi (SHI; TOMASI, 1994) suggest that the
good features to track are given by an autocorrelation matrix where both eigenvalues are
above a given threshold, which would represent a corner, a salt-and-pepper texture, or
other patterns that can be reliably tracked.
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Förstner-Harris: The minimum eingenvalue is not the only possibility for analyzing
the properties of the autocorrelation matrix. A simpler approach, described independently
by Harris and Stephens (HARRIS; STEPHENS, 1988) and Förstner (FöRSTNER, 1994),
is to use the determinant and the trace of the matrix A.

det(A) + α× trace(A), α = 0.06 (4.9)

Note that the determinant of A is equivalent to the product of the eigenvalues of
A, λ0λ1, while the trace is equal to their sum λ0 + λ1. Alternative functions from
the eigenvalues have been been proposed such as using λ0 + αλ1 (TRIGGS, 2004) and
det(A)/trace(A) (BROWN; SZELISKI; WINDER, 2005).

SIFT: In some cases, it is important that an object can be identified despite the dif-
ferences in scales between the two images. Our detectors should find features that are
stable with respect to both scale and location. The most important work in scale invariant
features is due to Lowe (LOWE, 1999). We will discuss this work in more depth than
others - both because of its relevance and because it was used in our implementation.

Before describing this type of feature detector, we should define a representation of
the image that considers different scalings. The scale space theory is a framework for
handling images at different scales, by representing one image as function of three pa-
rameters - the usual x and y denoting position, and one additional scaling parameter σ.
We consider that the convolution of the image with Gaussian kernels of variable size su-
presses the fine scale details giving many levels of coarseness - that could be interpreted
as smaller versions of the image. Let us denote L(x, y, σ) as the scale-space representa-
tion, then L(x, y, σ) = I(x, y) ∗ G(x, y, σ), where I is the image, G is a Gaussian filter
and σ is the kernel size. The symbol ∗ denotes a convolution. We can see some levels of
the scale space of an image in Figure 4.4.

o = 1                    o = 5                  o = 10                 o = 20

Figure 4.4: Scale-space. Convolution with Gaussian kernels of different sizes yield the
multiple scale representation.

The idea is to search for features that are stable across the whole scale space. The
technique searches for extrema using differences-of-Gaussians, that can be written as the
difference between two images at different scales, as seen in the equation below. k is a
multiplier that denotes the next scaling level.

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y) (4.10)
= L(x, y, kσ)− L(x, y, σ) (4.11)

To detect local extrema, we compare a pixel with its 3D neighborhood. The pixel
is only selected as a maxima or minima if it is bigger (or smaller) than its 8 neighbors
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on the image, the 9 neighbors in the next level of the scale space and the 9 neighbors in
the previous level of the scale space. It is important to emphasize that this detection is
performed using differences-of-Gaussians. Each point p that is a feature candidate will
have a position defined by (x, y, σ). From this initial point, we can fit a function, with
the origin located in p, to determine the exact location of maximum (which could be an
interpolated location - see Figure 4.5).

ôp + x

p

Figure 4.5: Fit a function to find maximum value. Note that x̂ can lie between samples in
any dimensions, x, y or σ.

The function can be approximated by a Taylor series expansion - up to quadratic terms
- see Equation 4.12. In this equation, x is the vector of parameters defined by the offset
(x, y, σ) from the origin - the sampled point. The position of the maximum x̂ can be
found by taking the derivative of equation 4.12 relative to x and setting it to zero. The
final formula for x̂ is Equation 4.13.

D(x) = D +
∂DT

∂x
+

1

2
xT
∂2D

∂x2
(4.12)

x̂ = −(∂
2D

∂x2
)−1

∂DT

∂x
(4.13)

The term ∂2D
∂x2 is the Hessian matrix. Both the Hessian and ∂D

∂x
can be approximated

by finite differences. Note that x here is a vector formed by the original (x, y, σ). The
Hessian, then, is a 3x3 matrix and the Equation 4.13 results in a 3x3 linear system. Once
we have the offset x̂, we can add it to the sample point p.

Again, it is important to take care of edges - which are detected as peaks by the algo-
rithm above, and would cause ambiguities along one direction. To remove edges, we can
use the same strategy as in Harris detector - we simply calculate the autocorrelation matrix
in the scale space of the sample point. Following the development by Harris (HARRIS;
STEPHENS, 1988), we can use the singular values ofA to determine the variability along
the two main directions. Also, we can once again avoid calculating the eigenvectors by
using Equation 4.9.

4.2.2 Feature description

Once we have decided which patches of the image would generate good features, we
need to match them. A simple approach would be minimizing the sum of squared differ-
ences. Unfortunately, this would only work if the transformation applied to the patch was
a translation. In most cases, the patch will undergo arbitrary affine transformations that
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will require more sophisticated methods for comparison. In this Section, we discuss some
ideas on how to describe our patch information to be invariant to some transformations.

MOPS: The multi-scale oriented patches (BROWN; SZELISKI; WINDER, 2005) are
mostly used in applications that do not require invariance for transformations, due to the
simplicity of implementation. It consists of sampling a lower frequency version of the
image around the feature. Using a coarser version makes it more robust to inaccuracies
in feature detection. Patch intensities are re-scaled such that their mean is zero and the
variance is 1 to compensate for photometric changes, like exposure variations.

SIFT: The descriptors for SIFT features are formed by computing the gradient at
each pixel in a 16x16 window around the feature point - the feature point scale is used to
determine the level of Gaussian blur - see Section 4.2.1. The magnitude of each gradient
is weighted by a Gaussian centered at the pixel, to give less emphasis to gradients far
from the center. The 16x16 window is divided into sixteen 4x4 regions, and the gradient
of each of these regions is represented by a histogram with 8 bins. Each pixel in the region
is added to this histogram to form the final descriptor. The 128 resulting values (the values
in each of the 8 bins, in each of the 16 regions, 16x8 = 128) form the SIFT descriptor. A
schematic drawing of this process, using a 8x8 window grouped in 4 regions, can be seen
in Figure 4.6.

Figure 4.6: Sift descriptor. On the left, we can see each pixel contributing with a gradient
for the final descriptor. The blue circle indicates the Gaussian weighting. On the right,
we can see the grouping of the pixels into regions. Taken from (LOWE, 1999).

GLOH: The Gradient Location-Orientation Histogram (MIKOLAJCZYK; SCHMID,
2005) is basically an extension of SIFT that uses polar bins instead of square ones. They
divide the space into 3 radial bins and 6 angular bins - with one additional bin for radius
= 0.

4.2.3 Feature matching

There are two important steps when matching features. The first one is to define a
matching strategy; the second one to combine data structures and algorithms in order to
efficiently perform the matching evaluations.

One of the simplest matching strategies that can be adopted is to immediately reject
matches that are further away from each other than a threshold t, using Euclidean distance.
In this case, we must of course observe that the threshold is consistent with our expected
camera motion, to avoid false positives and false negatives. The problem with this strategy
is that the threshold depends on each case and is difficult to optimize. A different approach
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is to use nearest neighbors in feature space. Since some features would not have matches,
a threshold approach is still used to avoid extreme false positives.

The naïve approach to comparing features is O(N2), comparing all features against
each other. The data structures used to improve the performance of this search are numer-
ous. Muja and Lowe (MUJA; LOWE, 2009) reviewed many of the existent data structures
for the problem. Their benchmarks showed that multiple randomized kd-trees yield the
best results for many cases.

4.3 Homography Estimation

In this Section, we will discuss the problem of estimating the transformation from one
image into another, given point correspondences between them. At first, we will study
some basic definitions necessary to understand this transformation and its properties.

4.3.1 Projective Plane and Homogeneous Representation

The first important concept in understanding camera transformations is the projective
space. The projective space is, informally, the representation of what a camera can see. In
that sense, things that are equivalent for the camera are equivalent in this space. The only
information a camera uses when forming an image is the direction and intensity of the
incoming light rays. It cannot distinguish between two different points lying on the same
ray. Therefore, a reasonable representation for the projective space, from now on referred
to as P2, is a set of rays in R3, as can be seen in Figure 4.7. The stablished convention is
to use the set of rays that go through the origin.

All points along a ray in P2 are equivalent. Algebraically, we represent this by the use
of homogeneous coordinates, i.e., a point p = (x, y)T is represented by p = (x, y, 1)T or
any multiple of it. To find the 2D (inhomogeneous) coordinates of the point, we simply
divide all coordinates by the last one. The vector v = (0, 0, 0)T does not belong to the
projective space.

(x/z, y/z, 1)

(x, y, z)

(0, 0, 0)

Figure 4.7: Representation of projective plane P2 as rays in R3.

4.3.2 Projective Transformations

A projective transformation is a linear inversible mapping H from a point p in P 2 to
another point p′ in P 2 that preserves collinearity. If p1 and p2 lie on the same line, Hp1
and Hp2 should also be collinear. A common name for a projective transformation that
will be used throughout this text is homography.

The matrix H is a homogeneous matrix, i.e. any multiplication of H by a scalar is
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equivalent to H . In fact, the homography is a simple linear transformation in R3, and the
ambiguity results form the use of projective space.

4.3.3 The Direct Linear Transformation (DLT) Algorithm

We consider a set of point correspondences xi ↔ x′i in two images. Our task is to
compute an arbitrary 3 × 3 matrix H, such that x′i = Hxi. The 2D points will be treated
as homogeneous vectors with w = 1.

The simplest way to compute a homography is to set up the correspondences as con-
traints and solve a linear system. It is important to note that the points are in the projective
space, i.e. they have homogeneous coordinates. That means x′i is not necessarily equal
to Hxi, as they may differ by a scaling factor. Thus, our constraint has to be the paral-
lelism of the two rays, not their equality. The parallelism of these two rays in R3 can be
described by setting the cross product to zero.

To make our calculations more intuitive, our first step will be to write the product Hxi
as the dot product of the rows of H and the vector xi. The n-th row of the matrix will be
denoted Hj .

Hx =

H1 · x
H2 · x
H3 · x

 (4.14)

Taking the cross product of two 2D vectors a and b is equivalent to taking the determi-
nant of a matrix where the first row is formed by the unit vector i, j and k, the second row
is formed by the components of vector a and the third row is formed by the components
of vector b.

x′ ×Hx = det

∣∣∣∣∣∣
i j k
x′1 x′2 x′3

H1 · x H2 · x H3 · x

∣∣∣∣∣∣ =
 (H3 · x)x′2 − (H2 · x)x′3

(H1 · x)x′3 − (H3 · x)x′1
(H2 · x)x′1 − (H1 · x)x′2

 = 0 (4.15)

We want to isolate the elements of H , since these are our unknowns. Using the dis-
tributive property of the dot product ((A ·B)k = (A ·Bk)), we can write the matrix above
as follows.

 0 0 0 −x1x′3 −x2x′3 −x3x′3 x1x
′
2 x2x

′
2 x3x

′
2

x1x
′
3 x2x

′
3 x3x

′
3 0 0 0 −x1x′3 −x1x′1 −x3x′1

x1x
′
1 x2x

′
1 x3x

′
1 −x1x′2 −x1x′2 −x3x′2 0 0 0





H11

H12

H13

H21

H22

H23

H31

H32

H33


= 0

(4.16)
Note that, since we are dealing with homogeneous coordinates, a correspondence be-

tween two points only has 2 degrees of freedom (the ratios between x and w and y and
w). Indeed, the last constraint does not add any information to the linear system and is
usually discarded (HARTLEY; ZISSERMAN, 2004). Now, each point provides us with
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two constraints, and the matrix H has 8 degrees of freedom (9 matrix elements of the
matrix less 1 for the scaling factor), so we need 4 point correspondences to determine the
exact transformation between two images. The resultant vector will be determined only
up to scale, so an additional constraint has to be used. Two usual examples are setting the
last element or the norm of the vector to 1.

Normalization. A point p = (200, 200)T is not uncommon when considering image
coordinates. This would lead to entries of magnitude 4 × 104 in the matrix H - which
is bad conditioned and can lead to unstable results. The common way to solve this -
which should not be considered as an optimization, but as part of the method - is to
normalize point coordinates x and x′ before applying DLT. The normalization should be
implemented as follows (SZELISKI, 2010):

• Translate the points so that their centroid is at the origin.

• Scale the point coordinates so that the average distance to centroid is
√
2.

This normalization should be applied independently to both images being matched.
Also, the homography must be denormalized once DLT is over. Suppose T1 is the trans-
formation applied to the first image and T2 is the transformation applied to the second one.
The final homography will be H = T ′−1ĤT , where Ĥ is the normalized homography.

Minimal Solutions and Over-Determined Systems: For every correspondence xi ↔
x′i, we can add two constraints on the values of the matrix H . If we have exactly four
correspondences, this is called a minimal solution. If more than four correspondences are
given, the system will be over-determined. In the presence of noise, an over-determined
system will not have an exact solution Ah = 0. We must therefore solve this system of
equations in a least-squares sense. Since we are ideally looking for Ah = 0, a reasonable
choice of cost function to be minimized is ‖Ah‖. It can be shown that h will be the
unit singular vector correspondent to the smallest singular value of A. This can be easily
calculated using the Singular Value Decomposition (SVD) (STRANG, 2006), available
in many linear algebra libraries.

Degenerate Configurations: When estimating a homography from 2D point corre-
spondences, it is important to verify that our configuration is not degenerate. A degenerate
configuration will lead to a homography that is not significant. For example, let us con-
sider a minimal solution from 4 points, where 3 of the points, x1, x2 and x3 are collinear.
If the correspondent points (let us call them x′1, x

′
2 and x′3 ) are also collinear, we can infer

that the homography is not sufficiently constrained, while if they are not collinear there
cannot be a homography H mapping xi → x′i, since homographies preserve collinearity.

Let l be the line where the 3 collinear points lie, such that lTxi = 0. Now suppose
we have a matrix H∗ = x4l

T of rank 1 (all matrices derived from the outer product of
two vectors have rank 1). It is easily verified that the matrix H∗ satisfies the cross product
condition for xi, i = 1, 2, 3, since H∗xi = (x4l

T )xi = x4(l
Txi) = 0 and the cross product

of a vector with zero is always zero. For x4, we have H∗x4 = (x4l
T )x4 = kx4, which

would also result in a zero cross product.
The problem with this solution is that the rank of matrix H∗ is 1, which means it

is not a projective transformation. If H∗ is the only solution to the system, there is no
homography mapping xi to x′i. If there are other solutions, then the system is clearly not
constrained enough.
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4.3.4 Robust Estimation using RANSAC

When estimating a homography the way described in Section 4.3.3, we assume a
Gaussian distribution for the errors in point correspondences. Under this assumption,
we can minimize a cost function using least squares to achieve a satisfactory result. In
practice, however, feature matching will often generate wrong matches. These points will
be outliers in the Gaussian distribution. If we take these outliers into account in a normal
least-squares minimization, they may severely compromise the result. The problem is
demonstrated in Figure 4.8(a) - a single outlier can lead to a bad estimation in an otherwise
perfect measurement.

(a)                                               (b)

Figure 4.8: Least-squares problem when dealing with outliers. (a) Least-squares result
(b) Result when outliers are removed

The goal of robust estimation is to make good estimations in the presence of a large
proportion of outliers. We will discuss in detail one of the most used robust estimation
algorithms, the RANdom SAmple Consensus (RANSAC) (FISCHLER; BOLLES, 1981).

The idea behind RANSAC is a very simple, yet powerful one. Suppose we are estimat-
ing a homography and therefore need 4 points for a minimal solution. We select 4 points
randomly from the set of all points and estimate the homography based on these 4 points.
Then we go through all point correspondences and see whether they would agree with this
homography, up to a small threshold t. The number of inliers is the support of the given
homography in this set of point correspondences. We repeat this procedure a number of
times to find the homography with the biggest support, which is then considered to be the
robust fit.

One of the problems with RANSAC which can be seen right away is that, as an it-
erative algorithm, it is not guaranteed to return the best possible solution. Three main
parameters must be optimized to give the best possible results: the threshold t, the num-
ber of iterations and the minimum size of a consensus set.

The distance threshold: The maximum distance that a feature can be from its corre-
spondent to be considered an inlier is one of the parameters to be chosen when applying
RANSAC. It is usually chosen empirically. If the error distribution is known, the thresh-
old t can be optimized such that it will select inliers with high probability. The problem
with misestimating the threshold is that, if the value is too high, any fit in a range will be
considered good enough, if the value is too low there will not be enough inliers even for
the right fit. These problems are demonstrated in Figure 4.9. In my experience, the best
results were achieved by starting with a small threshold t and go up until there are enough
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inliers (until a certain limit).

(a)                                          (b)

distance < t 

Figure 4.9: Threshold problem in RANSAC. (a) Threshold is too high - many solutions
are considered optimal (b) Threshold is too low - not enough inliers

The number of iterations: For N matched points, the total number of homography
estimations to test all possibilities would be N !

(N−4)!4! , which is O(N4). This calculation
is often computationally infeasible. Instead, we try to ensure that at least one sample
consists of inliers only with a high probability p. Suppose w is the probability that a point
is an inlier. Then, we need to select at least M samples with s points each such that
(1−ws)M = 1− p. If we set ε = 1−w to be the probability that a point is an outlier, we
can rewrite this equation as

M = log(1−ws)(1− p)

=
log2(1− p)
log2(1− ws)

=
log2(1− p)

log2(1− (1− ε)s)

(4.17)

The probability p is usually chosen to be 0.99, while ε would normally assume con-
servative values depending on the model being fitted. A different approach is to estimate
the number of samples adaptively - at each iteration we update M using Equation 4.17,
with probability ε = (1− #inliers

#points
).

The minimum support: Since we already used a probability w that the point is an
inlier, we can assume that the support of the homography is good enough when the number
of inliers is close to the number of expected inliers, i.e., #inliers ≈ #points ∗ w.

4.4 Object Tracking

This part of the Chapter reviews Computer Vision techniques dedicated to address one
peculiar situation found in e-learning videos, that has to be solved before we can apply
the techniques described in the previous chapter. One main problems was found when
dealing with conventional recorded lectures: and detecting the instructor, whose features
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are not part of the important content of the lecture, and as such, should not be taken into
consideration during most of our pipeline. Note that the occlusion of the content by the
instructor is not a problem, because as long as he is the center of the frame - which is most
often the case - the panorama will be formed correctly (for an example, see Figure 6.2).

We are interested in detecting the instructor, such that features that are not part of the
important content are not take into consideration in the rest of the pipeline. To be able to
remove these SIFT points precisely, we need to know the whole silhouette of the object.
For simplicity, let us consider we already have a segmented object in the first frame, and
are only interested in tracking this contour through the video. Yilmaz et al. (YILMAZ;
JAVED; SHAH, 2006) name this problem contour evolution.

A different area, called video matting, substantially overlaps with contour evolution.
Matting refers to the problem of estimating the foreground of a video, usually from little
user interaction such as strokes. If we consider a unique object as the foreground, the re-
sult is the same. For a review of the state-of-art on matting, see Wang and Cohen (WANG;
COHEN, 2008).

4.4.1 State space models

One way to think about contour evolution is to define a formal description of the
characteristics of the object and track these characteristics to update the contour. Features
that can be used to model the object are, for example, the shape of the contour and the
color distribution. That is the state of the object. It is updated trying to maximize the a
posteriori probability of the contour.

Isard and Blake (ISARD; BLAKE, 1998) maximize this probability using a particle
filter. Given a set of observations z, the state x of the object is estimated using Bayes’
rule:

p(x | z) = p(z | x)p(x)
p(z)

(4.18)

Note the p(z) is equal to one, since this is the probability of an observation that has
already been done. The authors define the object state using a spline to model shape
parameters and an affine motion to model the dynamics.

Chen et al. (CHEN; RUI; HUANG, 2001) proposed a silhouette tracking where we
use a Hidden Markov Model to propagate the state. To adapt the HMM to be applied in
the image instead of in time, we note that the contour we are tracking is a 1D function.
We can sample around the countour setting each sampled point to be a node of the HMM.
This parametrization can be seen in Figure 4.10.

4.4.2 Roto Brush

Roto brush (BAI et al., 2009) was introduced in 2009 as a significant advancement of
the state-of-art in the video matting community. We will review this technique in more
detail, since we use it in our implementation. It could be classified as a state space model.

The algorithm is initialized with an accurate mask separating background and fore-
ground. Given this initial mask, a set of overlapping windows is created by uniformly
sampling along the contour (Figure 4.11(a)). Each of these windows will have a local
classifier that will define a probability of the pixel belonging to the foreground. Each
classifier consists of a color model Mc, a color model confidence fc, and a shape model
Ms. Let us discuss these three elements separately.
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        (a)                                                (b)  

Figure 4.10: Countour evolution using Hidden Markov Models. (a) Sampled contour. (b)
HMM representation.

Figure 4.11: RotoBrush - Figure adapted from (BAI et al., 2009). (a) Contour with win-
dows - the initial segmentation is given as input.. (a) Contour in the next frame. (c) Final
result as calculated using the probability of each pixel belonging to the foreground.

Color model and color confidence: The color model Mc consists of two Gaussian
Mixture Models, one for the background and one for the foreground. Only three Gaus-
sians are used in each GMM. Having these two models, we can define the probability that
the pixel belongs to the foreground as

pc(x) =
pc(x | F )

pc(x | F ) + pc(x | B)
, (4.19)

where pc(x | F ) and pc(x | B) can be taken from the probability distributions. Gaus-
sian Mixture Models are explained in Appendix C. The color confidence is used to de-
scribe how separable the colors from the foreground are from the background - that is,
how reliable this classification is.

Shape model: The shape model consists of the segmentation, together with a confi-
dence value that is related to the distance from the border.

Once initialized, these classifiers are propagated into the next frames using motion
estimation. The color and shape classifiers are updated and the outputs of all classifiers
are aggregated to generate a new segmentation.

4.5 Summary

This Chapter reviewed the existent literature in Computer Vision that is related to
our proejct. The first part reviewed video registration, divided in two sections: feature
detection and homography estimation. This organization mimics the first two steps of
the pipeline used for this type of application. In the second part, we went over another
important sub-area of Computer Vision that is used in our project: object tracking.
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5 PANORAMIC VIDEOS FOR NON-LINEAR NAVIGATION

This chapter describes our solution for creating panoramic videos for non-linear navi-
gation. It discusses the faced challenges and how we solved them. We will first discuss the
interface and the features we want to provide. Then, we will focus on how to implement
these features in the three different categories of videos we presented on Chapter 2. Note
that while the implementation has specifities according to the type of video, our interface
is conceptually general.

5.1 Interface

The key contribution of this work is the idea of a user-friendly interface for providing
more effective navigation and interaction for e-learning videos. In this Section, we discuss
the features it provides to the user.

5.1.1 Panoramic view

The first feature we want our videos to provide is a panoramic view of all the pre-
viously shown content of the lecture. For videos where there is a clear spatial relation
between frames, we introduce the extended classroom metaphor: the idea that student sit-
ting in the classroom would be able to see things not shown by the limited field of view of
the current video frame. We go beyond showing the current content of the board/canvas,
and provide immediate access to all content previously shown during the lecture (includ-
ing erased and hidden content). Figure 5.1 shows two examples of panoramic images
(i.e., extended frames) that illustrate this concept.

Figure 5.1: Extended video. Two examples of how the panoramic view of the lecture tries
to simulate what the student would see if not restricted by the camera. The red rectangle
shows the regular video frame at the same time.
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5.1.2 Automatic generation of notes

The panoramic view shows the whole content of the lecture, making it a good sum-
mary to be exported as a set of lecture notes. Our interface also allows the user to annotate
the video at any time, and export these annotations together with the panorama to a file.
Figure 5.2 shows one annotated panoramic frame.

Figure 5.2: Automatic generation of notes. From our interface, one should be able to
annotate the panoramic video and export the final notes to a file.

5.1.3 Hyperlinks

A key concept in our design is the notion of non-linear navigation through a pointing
interface. We want the user to able to immediately access the instant when any topic first
appeared by just pointing to it.

5.1.4 Extensions available on the fly

A very important feature in our interface, and also a very restricting one, is that every-
thing should be calculated in real-time. It would be very hard to imagine that the user who
wants to watch a video would sit and wait for hours. Also, many videos are watched by
while they are being downloaded, which would not be possible if our technique involved
offline calculations.

5.2 Creating Panoramic Videos

The first essential feature we provide in our videos is the extension to panoramic
frames. As we discussed in Chapter 4, we need to register the frames to find a projective
transformation from the individual video frames to a global coordinate system. We will
discuss the approaches for canvas-based videos, slide-based videos, and recorded lectures
separately. In all cases, for the feature detection, description and matching, we used a
GPU implementation of SIFT (WU, 2007). Feature detection is performed separately to
each frame of the video (Figure 5.3).
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Figure 5.3: Sift points. Location of features detected in a frame, as calculated in our
system.

5.2.1 Canvas-based videos

Canvas-based videos are the easiest to adapt to our technique. They have instrinsic
spatial relations, high contrast and no occlusion problems.

Matching: In this type of video, there is a clear spatial relation from one frame to the
next. Subsequent frames have significant overlap when transformed to a world coordinate
system. Having significant overlapping regions is a pre-requisite for robust registration.
In this case, we match the features in frame i to the ones in frame i− 1.

Homography: Once the features are properly detected and matched, we need to es-
timate a homography between the sets of points. As we discussed in Section 4.3, we use
RANSAC to ensure the estimation is robust to outliers. A high-level description of this
algorithm follows:

• Randomly select four pairs of matched points from the frames i and i− 1;

• Estimate a homography from these points, using SVD;

• Check which pairs are inliers to the homography, given a certain threshold;

• Repeat until you find enough inliers or reach the maximum number of iterations.

We estimate a homography for each group of four pairs using the Singular Value De-
composition implementation from CHOLMOD (CHEN et al., 2008). In terms of thresh-
olding, we set our threshold t empirically between 0.01 and 0.0001. For the number of
iterations, we use the approach described in Chapter 4, setting ε = 0.01 initially and
updating it at each iteration.

The estimated transformation maps the points from one video frame to the next. To
find the global transformation, we multiply all homographies together. To create the
panorama, we simply render the transformed frame over the existing ones.
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5.2.2 Slide-based videos

Slide-based videos have, in comparison to canvas-based ones, the additional difficulty
of not having explicit spatial information. Once we define an artificial position for every
slide, the registration can be done very robustly. Again, we do not have the occlusion
problems.

Matching: When dealing with slide-based videos, the approach discussed in Sec-
tion 5.2.1 is not effective since slides do not overlap. However, since this type of lecture
consists of a set of slides that can usually be downloaded with the video. In our system,
we import these slides and place them side-by-side to create a big panoramic map of all
content in the video. Once this is done, we match the features of each frame to this map.

Homography: In this case, we use a simpler approach to define the projective trans-
formation of each frame. From our previous step, we already have the noise-free informa-
tion of the position for the slide. Instead of estimating a homography, we calculate which
slide has the most matches to the current frame. This strategy results in a fast and robust
solution.

5.2.3 Recorded Lectures

Recorded lectures pose the biggest challenge to our technique among all types of
e-learning video styles. The variability of this category is huge and the difficulties we
encountered are far from solved problems in the current state-of-art.

The first part of the problem results from the fact that the boards are often occluded
by the instructor. Also, the movement of the instructor can cause severe misregistrations
if the board does not have many features. For this type of video, then, we added a step
of pre-calculating a binary mask identifying which parts of the frames correspond to the
instructor.

A second problem is that we do not know in advance which parts of the frame belong
to the board. This is specially problematic when boards move. If many features move
in one direction, this might be perceived by our algorithm as a movement of the camera
between two frames, causing severe misregistration problems. If we detect and track
boards, this problem can be partially solved, except for the cases when the board covers
a majority of the frame, making it impossible to estimate the transformation from points
outside it.

It is important to note that the goal of this thesis was not to propose new solutions in
Computer Vision. With that in mind, we solved some of the problems - in some cases
with a significant amount of user interaction - to the extent that was allowed by existent
research.

Professor Tracking and SIFT Removal: To generate the binary mask of the instruc-
tor, we used the implementation of RotoBrush in Adobe AfterEffects (ADOBE AFTER
EFFECTS, 2013). RotoBrush is used to detect the instructor’s silhouettes (Figure 6.4a)
from a set of user-provided scribbles. Given the silhouette, RotoBrush automatically
computes a binary mask for segmenting the instructor (Figure 6.4b). The length of the
videos made this a very difficult task, requiring user intervention from time to time. In our
pipeline, the detected sift points that are inside this mask are removed from subsequent
stages, i.e., are not considered for the image registration and the creation of hyperlinks.

Board Segmentation: To segment the boards, we tried standard Hough transform (DUDA;
HART, 1972), as well as the Kernel-based Hough transform (FERNANDES; OLIVEIRA,
2008). While the latter significantly out-performed the former, its results were still not
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robust enough to be applicable to our system. We decided to focus on more simple cases
and leave the case of moving boards as a future path for exploration.

Figure 5.4: Professor tracking. (a) Contour of the professor, as tracked by RotoBrush. (b)
Binary mask.

Recorded Lectures as Canvas-based Videos: Once we removed the problems of
instructor occlusion and misregistration, we can see a recorded lecture simply as a canvas-
based video. The registration and the generation of hyperlinks can all be done using the
exactly same algorithm as the one described in the previous sections.

5.2.4 Erased Boards

In canvas-based videos and recorded lectures, content will sometimes be erased to
give place to newer formulations. When this happens, we want the old content to be kept
accessible somewhere. Our approach was to allow the user to move new content (soon to
be rendered), thus extending the panoramic video frame. We do not detect automatically
when a board is erased. We tested a few simple metrics to decide whether a new frame
shows an erased board, such as the number of features, but these are not robust enough to
handle all cases in a satisfactory way.

5.3 Creation of hyperlinks

The creation of hyperlinks is the most important extension we provide with our tech-
nique. Since we want non-linear navigation to be available in real-time, we cannot afford
to process the whole video to find the hyperlinks. Instead, we rely on data we are already
using for registration. When some text or an equation appears in the video, it usually con-
tains one or more distinctive edges and, as such, it defines sift points. For each location
in our reference coordinate system, we store the moment where a feature first appeared,
and use it to navigate back when that content is selected.

More specifically, every time we calculate the transformation of a new frame into
the global panorama we go through its sifts and test whether their respective locations
already have a feature point. If not, the current frame is stored as the first appearance
of the feature corresponding to that region. When a user clicks on the video, we find
the nearest stored feature and navigate to the corresponding frame. To avoid excessive
cluttering, we segment our clickable map in 10 × 10 regions with at most one feature
each. The stored features for a video segment can be seen in Figure D.2.
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Figure 5.5: Creation of hyperlinks. The red dots represent feature points with associated
hyperlinks (for non-linear navigation) stored at those particular locations. Note how there
is at most one feature per cell.

In Figure D.2, we can see there are some red dots on regions that are not equations
or text. This happens because, since each region keeps the first feature to appear inside
it, the cursor might generate SIFT points that are stored as a hyperlink. This will gen-
erate unexpected behavior if the cursor appears much earlier in a region where later an
important element will be drawn. Clicking that element will browse the video to the mo-
ment when the cursor was at that position. One strategy we tested to reduce this problem
is to remove feature points in completely blank areas (when the cursor moves away, the
area should be completely blank again). This approach greatly reduced the number of
spurious hyperlinks in canvas-based videos. It is unfortunately not trivially generalized
to more complex videos where the background does not have a constant color. A robust
way to detect which feature points should be kept as hyperlinks is a future direction for
exploration.

One issue that comes from non-linear navigation is that when we navigate back in
time, for example, to the beginning of the video, we lose part of the content that was
visible in the panorama (Figure 5.6(b)). While this is the expected behavior, it causes
a problem when the user wants to return to the point where he was, or even to other
explanations in between. To solve that, we give the user the option of seeing all the
content shown so far by pressing a key. This "directory" is shown in gray shades to differ
from the actual video frames (Figure 5.6(c)). By seeing the hyperlinks position, the user
can navigate back to the desired moment in the video.

Another issue with allowing non-linear navigation is that we do not store the frames
of our panoramic videos - instead, they are created by the renderization of subsequent
frames on top of each other. If we jump in our navigation, this renderization will not
create a panorama (Figure 5.7)(a). Also, when we navigate back in time, we do not want
to keep future content visible (Figure 5.7)(b). To prevent that, every time our registration
shows that a frame has moved significantly, we keep a panorama base for that moment
saved in a buffer. The panoramic frame for any moment in the video can be restored using
the panoramic base + the regular frame.

5.4 Automatic Generation of Notes

Our system automatically generates lecture notes from the panoramic video frames.
For this, we simply export the panoramic view of the lecture together with the annotations
the user made during the lecture. To handle PDF files robustly, we used the Poppler
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Figure 5.6: Forward navigation. Navigating back may cause the panorama to be erased.
We allow the user to press a key to see the latest map available. (a) One panoramic frame.
(b) After navigating to a point back in time, the user cannot see the content required
for selection to move forward. (c) The "directory" shown in gray provides necessary
information to allow the user to move to any of the contents presented so far.

(a) (b)

Figure 5.7: Jumps in navigation might destroy panorama. (a) If we jump from a frame in
the beginning to one in the end (possible using the forward navigation discusse earlier),
the panorama will not be formed. (b) Navigating back also causes problems.

library, that integrates nicely with the Qt Framework we are using for the interface.

5.5 Real-time Implementation

Ideally, our system should be able to handle videos in real time, without any pre-
processing. We were able to achieve this for low-resolution videos (e.g., 320 × 240). To
allow that, we divided the main workloads of our system into threads. The core computa-
tion is done using 3 other threads: one for the calculation of sifts, one for the estimation
of transformations, and one for the creation of the buffered panoramic views that allow
non-linear navigation.

Sift thread: The first thread computes sifts for every image in the video and matches
them accordingly. This is the bottleneck of our computation and sometimes leads to less
than real-time performance. The task is highly parallel: each image generates its own sifts
and each match between a set of sifts from one image to another is also dependent only
on that specific pair of images. In our setting, however, we performed every calculation
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sequentially due to the limited hardware. This thread is also responsible for removing
sifts that are inside the instructor mask, in the case of recorded lectures.

Transformation thread: The second thread computes the transformation each frame
has to undergo, based on the sifts calculated by the first thread, as well as the hyperlinks.
It is necessary that the hyperlinks be calculated together with the transformation, since
the sift thread only has information about the local position of each feature.

Map thread: The third core processing thread stores a panoramic view every time a
frame moves away significantly from its predecessor. As we explained in Section 5.3, this
is important to allow us to navigate non-linearly back and front without generating gaps
in the panorama.

5.6 Summary

This Chapter described the features available our system. It also discussed the chal-
lenges involved in providing them to the three classes of e-learning videos handled by our
system.
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6 RESULTS

This Chapter illustrates the use of our technique applied to the three classes of e-
learning videos described in Chapter 2. Since our technique involves processing and
interacting with videos, it is hard to demonstrate the results using using only images.
Thus, some short videos illustrating the use of our technique are available online at
http://www.inf.ufrgs.br/~rgschneider/research/msc/videos/. We encourage the reader to
watch them, as a way to get a better idea of the dynamic aspects of our method.

6.1 Panoramas

The first step in our pipeline is the generation of panoramic frames. As we described
in Chapter 5, we detect the SIFT points for each video frame and match them, from one
frame to the next. The homographies are estimated accordingly and the global transforma-
tion that each frame has to undergo is found by concatenating these local transformations.

Figure D.3(left) shows the panorama created for a lecture from Khan Academy. We
can see how the view is significantly extended: the regular video resolution is 320 × 240,
while the panoramic frame has resolution 320× 644. Also, the panoramic frame has qual-
ity comparable to the original frames, i.e., the content elements do not significantly lose
sharpness. Figure D.3(right) illustrates the process of creating the panorama by rendering
subsequent frames one over another.

Figure 6.2 shows a panorama of a conventional recorded lecture. Once again, the
panorama significantly extends the field of view of the user: from regular video frames
of resolution (480 × 268) we generated a panoramic frame of resolution (831 × 260).
Also, even in the case of this low resolution video, we were able to generate a high qual-
ity panorama - note how the text is still perfectly recognizable and the result is visually
satisfactory. In Figure D.4, we can see some of the frames that were used to generate the
panorama and their respective final positions. Note how the final panorama does not have
artifacts, even in the presence of significant zooming (Figure D.4, last frame).

6.2 Content-based Navigation

Hyperlinks are an inherently dynamic property of our interface. In order to demon-
strate our results, we resorted to capturing some moments of the navigation: we show the
panoramas and a set of hyperlinks, with the corresponding video frames they let the user
navigate to.

Figure D.5 shows the results when using our technique with a canvas-based style
video. The image on the left shows the reconstructed panorama, highlighting three hyper-
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Figure 6.1: Panorama results for a lecture on probability from Khan Academy. (left) Final
panorama result. (right) A subset of the frames that form the panorama.

Figure 6.2: Panorama results for the Computational Science and Engineering Lecture on
MIT OpenCourseWare.

links. The images on the right show the frames associated with the corresponding links.
We also highlighted the position of the cursor in these target video frames, to show how
our interface precisely navigates to the moment the content is being drawn on the screen.

Figure 6.5 shows another video from Khan Academy. In this case, the canvas was
erased once, such that user intervention was needed to move the content and stop it from
erasing existing equations. In this case, our interface simply extends the panorama to
cover the new and old contents. Since hyperlinks are kept according to their position in
the global coordinate system, the technique handles such cases naturally.

Figure D.6 shows the results for a slide-based style video. The panorama is shown
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Figure 6.3: Some frames (left) used in conventional lecture panorama (right). Note how
the system naturally handles camera zooming.

a

b

c

(a)

(b)

(c)

Figure 6.4: Results for a lecture on probability from Khan Academy. Panorama with
some hyperlinks indicated, as well as the respective target video frames.

on the top. As explained in Chapter 5, this panorama is calculated by importing a set of
slides from a file and putting them side-by-side. It is the same for the whole video, so we
ommited the panoramic frames when showing the targets of the hyperlinks on the right.
Note that in some cases, when all the text is showed directly in the first appearance of the
slide, every hyperlink will point to the moment of that first appearance. In the result we
show, the instructor writes on the slide, giving us the possibility to add those hyperlinks
to the right time.

The final result on the content-based navigation is the conventional lecture recorded
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(a)
(b)

(c)

(d)

a

b c

d

Figure 6.5: Results for a lecture on separable equations from Khan Academy. (left)
Panorama with highlighted hyperlinks. (b) Target video frames.

with a camera (Figure D.7). To demonstrate the hyperlinks, we used a lecture with high
resolution. In this case there is no cursor, but we can see that in each of the target video
frames the instructor is about to write the content that was selected.

To generate the conventional lecture panorama shown in Section 6.1, we used a short
video segment (1min23s), to help us achieve good registration results. In the beginning
of this video segment, most of the equations are already written on the board, so content-
based navigation will not work. For one part that was written during the video segment,
our algorithm found the right moment in the video (Figure 6.8).

6.3 Annotated Lectures Notes

Finally, our system also allows the automatic generation of lectures notes. The user
can also annotate the video, and the annotations will be exported together with the final
set of notes. We show the results for two videos to demonstrate this possibility.

In Figure D.8, we can see two moments of the video where the user is making notes.
These were taken from our interface. Figure 6.10 shows the final set of exported notes, as
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(a) (b)

(c)

a

b

c

Figure 6.6: Results for the Greedy Algorithms Lecture on Coursera. (top) Panorama.
(bottom) Target video frames.

seen inside a PDF viewer.

In Figure 6.12, we can see the final annotated lecture notes. Again, to demonstrate
that these annotations were made during the watching experience, we added two images
of our interface at the moment when the notes were taken. We also show our notes inside
a PDF Viewer to demonstrate that our notes are compatible with existing APIs.
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a
b c

(a)

(b)

(c)

Figure 6.7: Results for the Synapses, Neurons and Brains Lecture on Coursera. (left)
Panorama with highlighted hyperlinks. (b) Target video frames - note that the instructor
is about to write the selected content.

6.4 Summary

This Chapter shows the results we achieved for the three classes of e-learning videos
we discussed in Chapter 2. We demonstrate the three main features of our interface:
panoramic frames, content-based non-linear navigation, and automatic generation of lec-
ture notes.
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Figure 6.8: Results for the Computational Science and Engineering Lecture on MIT
OpenCourseWare. (top) Panorama with one highlighted hyperlink - the video was too
short to allow for more. (bottom) Target video frame.

Figure 6.9: User can take notes while watching the video. (a) Video time: 3min07s .(b)
Video time: 5min25s .
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Figure 6.10: Annotated panorama of a Khan Academy lecture with the respective notes,
as seen inside a PDF Viewer.

Figure 6.11: Annotated panorama of a Khan Academy lecture with the respective notes,
as seen inside a PDF Viewer.
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(a)

(b)

Figure 6.12: Annotated lecture notes from conventional lecture video. (a) Video time:
0min0s. (b) Video time: 1min23s.
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7 CONCLUSIONS AND FUTURE WORK

This thesis presented a new interface for augmenting existing e-learning videos with
panoramic frames and content-based navigation. Our technique improves current video
players by allowing non-linear navigation through a simple pointing interface. We have
demonstrated the effectiveness of the described concepts by applying them to three dis-
tinct classes of e-learning videos: canvas-based videos, slide-based videos, and recorded
conventional lectures. For those, our system achieves real-time performance for low reso-
lution videos (320 × 240). For higher resolution videos, some pre-processing is required
for feature detection (using SIFT). However, since the most expensive parts of our pro-
cessing pipeline are highly parallel, we believe that real-time performance might be soon
achievable even for full HD resolution.

To create the panoramic frames, we detect relevant features in each frame, and use
them to estimate a transformation of the frame into a global coordinate system. Once the
frame is correctly mapped, simply rendering it over the others creates a panorama. The
features are also stored to allow content-based navigation - the panorama is divided in 10
× 10 regions and the first appearance of a feature in each region is kept as the target frame
of that hyperlink. Finally, we let the user export the final panorama as a set of annotated
lecture notes. The techniques described in this thesis provide more efficient ways for
exploring the benefits of e-learning videos. As such, they have the potential to impact
education by providing more customizable learning experiences for millions of e-learners
around the world.

Our system relies on Computer Vision techniques and, as such, inherits their limi-
tations. First, the registration of videos does not give us satisfactory results in all cases.
Having a robust registration step is essential to the creation of visually pleasing panoramas
and to allow our hyperlinks to navigate to the correct moment in the video. Some works
in Computer Vision (SZELISKI, 2010) suggest that generating SIFT points and match-
ing them might not be the best approach for the registration of videos, which have very
similar frames. Since this is a totally automatic step, we could allow more sophisticated
methods, pre-calculating the final transformations and storing them for later use.

A second issue is that some sifts might not relevant to the actual content of the lecture.
In canvas-based or slide-based video, one example would be the sifts generated by the
cursor. In recorded lectures, the effect can come from shadows and even from noise in
the video. One idea that might be used to overcome these issues is to track sifts for
some time before adding them as a hyperlink. While this might significantly reduce the
detection of irrelevant features, it may also cause some real hyperlinks to disappear if the
corresponding features become occluded for some time.

A variety of other issues might come up when analyzing special cases of videos. For
instance, when rendering the video in a panoramic frame, the lecturer might leave the
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regular video frame. If the instructor moves to an area where a part of the panorama is
rendered (which of course consists only of the boards, and not of the instructor) it gives
the impression that the professor disappeared. Also, the movement of boards was not
treated in our implementation. Finding solutions for above issues and limitations provides
interesting directions for future exploration.
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APPENDIX A IMAGE COMPOSITION

When matching real images, it is common that two pictures have different exposition
or objects in different positions. To create a panorama without artifacts, we need to choose
which pixels will contribute to the final image, and how much.

The simplest possible approach is to take the average of all pixelspixels. Unfortu-
nately, it does not perform very well. A better filter already is the median filter. It works
well for removing objects that do not stay in any position for a long time.

A third possibility is to weight pixel contribution according to the distance from the
center of the image. Pixels at the center are less likely to overlap and to have radial
distortion. This process is usually called feathering. When the image has some cut-out
regions, this can be done by using a distance map.

A.1 Optimal Seam Selection

In many situations, the overlapping regions of the images will be different from each
other in more than just the tone of the colors, even if they are correctly aligned. The main
reason is that the scenes we are interested in stitching are, mostly, not completely static -
some of the elements might be in different positions when we use different views. In this
case, we will assume we are not interested in which position the objects will be on the
final panorama, as long as the final result is visually satisfactory.

A relevant fact is that the most noticeable artifacts come from moving objects. Uytten-
daele et al. (UYTTENDAELE; EDEN; SZELISKI, 2001) propose a method for solving
this problem, where the first step is to detect movement by finding which parts of the
scene differ in different views. These regions are called regions of difference (RODs).
The main idea is that only one image will be used to fill a ROD, avoiding seams. To select
which image to use, they create a graph where intersecting RODs are connected by edges
- and remove the vertex cover of the graph until only disconnected nodes remain.

A different approach to generating seamless merging of images is Graphcut Tex-
tures (KWATRA et al., 2003). Their technique starts from two overlapping images and
selects an optimal seam to divide them. It works by creating a graph where each pixel is
a node connected to its 8-neighborhood, as shown in Figure A.1. A simple approach for
the cost of each edge is the difference of the color of the pixels in image. Let A(s) and
B(s) be the colors of pixel s in the images A and B, respectively, the cost function for an
edge between two neighboring pixel s and t would be given by

M(s, t, A,B) = ‖A(s)−B(s)‖+ ‖A(t)−B(t)‖ (A.1)

Then, some pixels are denoted to be necessarily part of one image or the other - the
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non-overlapping regions, if any, are good candidates. Finally, a min-cut algorithm is used
to divide the graph into two parts: the pixels/nodes belonging to the first image and the
pixels/nodes beloging to the second one.

Figure A.1: Graph-cut textures. A graph is used to represent the image and a min-cut
algorithm to find the optimal seam. Image taken from (KWATRA et al., 2003).

A more sophisticated cost function for the edges is to take into account how homoge-
neous the region being cut is. The reason for that is that a discontinuity in the merging
of the two images is less likely to be noticed if it is along an image edge. To add this
factor to our function, we make it inversely proportional to the gradient of the image in
the region.

M ′(s, t, A,B) =
‖A(s)−B(s)‖+ ‖A(t)−B(t)‖∥∥Gd

A(s)
∥∥+ ∥∥Gd

A(t)
∥∥+ ∥∥Gd

B(s)
∥∥+ ∥∥Gd

B(t)
∥∥ (A.2)

where Gd
A(s) is the gradient of the image A in the pixel p along direction d. The

direction used is the direction of the edge.
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APPENDIX B LINE DETECTION

Line segments are very interesting in describing the geometric content of an image.
Human-made objects are often composed of planar surfaces which that a description using
lines can be a expressive and very economic representation.

B.1 Hough Transform

The Hough transform (HOUGH, 1962) is a voting scheme to detect straight lines in
images. The original idea is that every edge pixel on the image votes for all potential lines
passing through it (Figure B.1). Here, we understand an edge pixel as one whose image
gradient is above a certain threshold. The votes are stored and the most voted lines are
then picked as the probable real lines of the image. This maps the problem of finding the
most prominent lines to the much simpler problem of finding peaks of a function. Once
the vote peaks are selected, we can perform a least squares fitting of the line to the points,
to achieve a more robust result.

Lines are represented as a slope θ and a distance r from the origin, so the domain
of voting is two dimensional - as can be seen in Figure B.1. The set of all lines that go
through a point can be represented by a sinusoid in the (r, θ)-plane - often, however, these
parameters will be quantized into bins. This representation is not part of the original
patent (HOUGH, 1962), and was introduced later by Duda and Hart (DUDA; HART,
1972), resulting in great memory savings.

Alternative representations of the domain are the use of the 2d normal n̂ instead of the
slope, resulting a 3D voting space m = (n̂x, n̂y, r). A reasonable way to represent this
voting domain is to use a cubemap. In fact, if we restrict r to be positive, only 3 faces of
the cube will be used.

Figure B.1: Hough transform voting scheme. (a) Three points voting for all lines they
could belong to - the most voted line is the one they are all in. (b) Intersection in (r, θ)-
space represents real line.
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Kernel-based Hough Transform. A more recent alternative to the original Hough
transform is to use a kernel-based scheme to cluster groups of approximately collinear
edge pixels and vote for each such a group at once using a bivariate Gaussian distribution
based on the variances of the points. The technique provides a much faster voting scheme
and a cleaner accumulator.

B.2 LSD

Recently, Gioi et al. (GIOI et al., 2010) introduced a new algorithm for line segment
detection that provides significantly better results than Hough Transform. Their algorithm
is divided into three main steps: partition the image into line-support regions, find the best
line segment for each region and validate the line segment. According to the authors, their
technique was based on two other works, Burns et al. (BURNS; HANSON; RISEMAN,
1986), that first suggested this pipeline, and Desolneux et al. (DESOLNEUX; MOISAN;
MOREL, 2002), whose a contrario approach is used in the third step.

Line-support regions. When the algorithm starts, we have in our region only one
pixel as a seed and one angle - the line-angle, that is orthogonal to the gradient at that pixel.
At each step, the adjacent pixels - in a 8-neighborhood - are tested: if their orientation
coincides to the region angle (the average of line-angles), up to a certain threshold, they
are added to the region, and the region angle is updated. We always choose the pixels
with greater gradient magnitude for the seeds, since they have higher probability of lying
in a straight line.

Finding best line segment. Once we have a region, we define a straight line segment
that best describes this region. In LSD, the line segment - with length, width and angle
- is represented by a rectangle. To find the center of the rectangle, the authors propose
using the center of mass, where the mass of each pixel is given by the magnitude of its
gradient. The orientation is chosen using the first axis of inertia, and the width and length
are set such that the rectangle covers the whole region.

Validating line segment. To validate a line segment, we try to model the background
and statistically determine that the segment does not belong to the same probability dis-
tribution. The authors propose that a good model for the background is to assume that
gradient angles are independent and uniformly distributed.

Inside each rectangular region detected by step two, we count how many pixels are
aligned to the region-angle - up to a certain threshold. We do a hypothesis test to see
whether the line segment is part of the background.
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APPENDIX C GAUSSIAN MIXTURE MODELS

Gaussian Mixture Models, or GMMs, is probabilistic model for representing the pres-
ence of subpopulations within a dataset. We will discuss how we apply this model to the
representation of images.

C.1 Sparse Modeling

For the task of removing noise from an image, we usually want to minimize the error
from the recovered image to the original one. Suppose y is the measured image and x is
the one we are trying to find, we want to minimize |x− y|22. Now, unless we have some
additional constraint, the solution to this equation is simply setting x = y. A very useful
ideia is to define a model that we believe is true for good, noise free images, and use that
as a constraint. This model is usually called a prior, and we will represent it by G(x).
Note that our equation is now given by error(x) = |x− y|22 +G(x).

Many different priors have been suggested over the years. To give an illustration, one
may say that a natural image without noise should be smooth. One way to encode that as
a prior is to minimize the magnitude of the Laplacians, G(x) = |Lx|22.

A different idea, that we are mostly interested in, is to use a dictionary to represent the
prior of the image. For example, suppose we want to represent a patch p, which is 8x8.
We can do that by creating a dictionary D of 8x8 patches and representing p as a linear
combination of these patches - called atoms. We represent that by setting y = Dα, where
D is out dictionary and α has the coefficients of each patch. See Figure C.1. This model
generalizes, for example, the DCT and the Fourier transform. We can define each of the
atoms in the dictionary D to be one vector of the, for example, cosine basis.

Now, we want our representation to be sparse, that is, we want the patch to be repre-
sented by a small number of atoms from the dictionary. The assumption is that if we use
only a few atoms, we will not be able to fit the noise well, resulting in a good image. To
measure the sparsity of our representation, we can use the L0 norm of the vector, which
is equivalent to the number of non-zero elements. Our error equation will be as follows.

error(x) = |Dα− y|22 s.t. |α|
0
0 < L (C.1)

One important observation, when treating images, is that having a dictionary for the
whole image would be hard. Instead, we can divide the image into patches and represent
the final color of the pixel by the average of all the patches that touch it. The final equation
would be as follows, where Rij is a matrix that extracts the patch around the pixel at row
i and column j and µ is a normalization factor.
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D p
atom

Figure C.1: Sparse modeling. The image can be represented by a linear combination of
atoms in the dictionary - in the case of sparse modeling, we force this combination to have
few non-zero elements.

error(x) = |x− y|22 + |Rijx−Dαij|22 s.t. |α|
0
0 < L (C.2)

Note that all the overlapping patches are considered. Also, note that in this case the
model is for the individual patches.

C.2 Gaussian Mixture Models

One very used sub-category of sparse modeling in Gaussian Mixture Models. Again,
we will model each patch of the image as a linear combination of atoms in a dictionary.
In the general case, supposing we have set a sparsity parameters of a maximum of L
elements, and that we have K atoms in our dictionary, we have a total of

(
K
L

)
subspaces

that could be used to approximate a patch. So many possibilities might make it unstable -
small variations in the images generate very different representations.

In GMMs, we will have a dictionary formed by a small number of Gaussians - around
10 or 20. We define our Gaussians to have the number of dimensions equal to the number
of pixels in the patch - for a 8x8 patch, that will be a 64 dimensions. Then, we generate an
atom of the dictionary for each of these dimensions. Now for a small number of Gaussians
and a reasonable patch size, the number of combinations also grows very quickly. The
main difference then, is that in this case we group the atoms in such a way to generate
much less possibilities: each patch has to be represented by only one Gaussian - by a
linear combination of the atoms that belong to it. That makes the number of subspaces
that can be used to represent each patch decrease from

(
K
L

)
to the number of Gaussians

we have. Having 10-20 Gaussians already generates very good results.
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APPENDIX D VÍDEOS PANORÂMICOS PARA NAVEGAÇÃO
NÃO-LINEAR

D.1 Introdução

Existe um movimento por parte de grandes universidades para a divulgação de ma-
terial educacional na internet, sem custos, para todos. O impacto é enorme - centros de
excelência estão educando milhões de alunos ao redor do mundo.

Um estudo recente mostra que o uso de vídeos é parte fundamental da instrução dos
alunos (ROSE, 2009). Vídeos tem vantagens mesmo quando comparados com aulas con-
vencionais. Pausar, repetir, avançar - todas essas são interações que tornam a experiência
mais customizável e efetiva.

Apesar dessas características, para encontrar pontos de interesse no vídeo, ainda é
necessário navegá-lo usando uma barra temporal. Frequentemente, é difícil lembrar ex-
atamente em que ponto do vídeo uma equação ou conceito foi explicado. Uma maneira
natural de navegar o vídeo, sem usar a barra de tempo, é apenas indicando o conteúdo
que se deseja rever. Nesse trabalhamos, propusemos uma nova interface que permite
ao usuário navegar de maneira mais intuitiva. Na figura D.1, podemos ver algumas das
extensões propostas por nós.

Primeiramente, criamos uma representação panorâmica dos vídeos para permitir que
o usuário navegue para um ponto específico do vídeo, apenas apontando para ele. Acred-
itamos que esse seja o primeiro trabalho a propor esse tipo de navegação não-linear.

D.2 Sistemas de e-Learning

Para atingir o objetivo de ser aplicável em abrangência, nosso sistema precisa tratar
uma variedade de vídeos. Nessa seção, discutiremos as principais classes de vídeo-aulas
existentes.

D.2.1 Vídeos Baseados em Canvas

Um vídeo baseado em canvas é um vídeo cujo conteúdo é mostrado em um quadro.
Os elementos do vídeo são texto e equações. Essa ideia de canvas é essencial - ela nos
permite inferir a posição relativa dos frames, importante na criações do panorama. O
maior representante desse tipo de vídeo é o site Khan Academy (KHAN ACADEMY,
2013).
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(a)
(b)

(c)

(d)

Figure D.1: Interface. (a) Frame regular no tempo 4:43 do vídeo. (b) Frame panorâmico
no tempo 4:43 do vídeo. (c) Hyperlinks permitindo a navegação direta para os momentos
0:30 e 1:47 do vídeo. (d) Nota adicionada ao vídeo.

D.2.2 Vídeos Baseados em Slides

Nos vídeos baseados em slides, o fundo do vídeo é um conjunto de slides. Em cima
disso, o instrutor eventualmente marca partes importantes ou faz anotações. Nesse caso,
não há uma relação espacial explícita - no nosso sistema, essa informação é inserida artifi-
cialmente. Os maiores representantes desses tipods de vídeos são Coursera (COURSERA,
2013) e edX (EDX, 2013).

D.2.3 Aulas Convencionais Gravadas

Uma das maneiras mais comuns de disponibilizar vídeo aulas ainda é simplesmente
gravar aulas convencionais. Esses vídeos certamente constituem o maior desafio para
nossa técnica. Possuem imensa variabilidade, tornando o processamento automático uma
tarefa extremamente difícil. Vídeos dessa categoria incluem o MIT OpenCourseWare e
vídeos de aulas convencionais gravados por universidades que são simplesmente disponi-
bilizados online.

D.3 Videos Panorâmicos para Navegação Não-Linear

Essa seção descreve o método proposto para criar vídeos panorâmicos que permitam
a navegação não-linear. Primeiramente, discutiremos a interface proposta, com todas as
extensões que queremos prover. Em seguida, discutiremos as estratégias utilizadas para
tornar a implementação da interface possível.

D.3.1 Interface

A interface é a maior contribuição deste trabalho. Nessa seção vamos discutir cada
extensão proposta separadamente. Nas próximas seções, discutiremos os desafios que
tiveram que ser enfreantados para possibilidar a implementação dessas extensões.
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Panoramas. A primeira extensão que queremos prover é a visão panorâmica da sala
de aula ou do canvas onde a aula está sendo ministrada.

Geração automática de notas. O panorama mostra todo o conteúdo da vídeo-aula,
sendo um bom sumário para ser exportado como um conjunto de notas. Nossa interface
também permite que o usuário faça anotações e exporte para um arquivo.

Hyperlinks. Um conceito chave no nosso design é a noção de navegação não-linear
através de uma interface simples. Nós queremos possibilitar ao usuário o acesso ao in-
stante em que um tópico foi introduzido apenas clicando nele.

Extensões disponíveis em tempo real. Uma questão muito importante no nosso sis-
tema é a performance. Dificilmente um usuário vai esperar horas para assistir um vídeo,
portanto é importante que as extensões estejam disponíveis em tempo real. Isso não seria
possível se nossa técnica envolvesse pré-processamento.

D.3.2 Criando Vídeos Panorâmicos

A primeira extensão essencial que provemos nos nossos vídeos são os frames panorâmi-
cos. Para isso, é preciso registrar os frames em relação uns aos outros e encontrar uma
transformação projetiva de cada frame em um sistema de coordenadas global. Em todos
os casos, para a detecção de features, sua descrição e correspondência, foi usada a imple-
mentação em GPU do algoritmo SIFT (WU, 2007). Essa detecção é feita em separado
para cada frame do vídeo.

D.3.3 Criando Hyperlinks

A criação de hyperlinks é a extensão mais importante da nossa interface. Como quer-
emos que a navegação não-linear esteja disponivel em tempo real, não podemos pre-
processar o video inteiro. Em vez disso, usamos os dados que já estão sendo extraídos
para a criação dos panoramas. Quando um texto aparece no vídeo, ele provavelmente gera
alguns pontos SIFT. Para cada local no nosso sistema de coordenada global, guardamos o
momento em que uma feature apareceu ali pela primeira vez, e usamos essa informação
para navegar quando o conteúdo é selecionado.

Cada vez que calculamos a transformação de um frame no panorama global, percor-
remos os sifts e testamos se as posicões já possuem feature. Se não, o frame atual é salvo
como a primeira aparição do feature daquela região. Quando um usuário clica no mapa,
a interface navega para o respectivo frame. Para evitar o aglomeramento de features,
segmentamos nosso mapa clicável em regiões de 10 × 10 pixels, com no máximo uma
feature cada. Podemos ver os SIFTs armazenados na Figura D.2.

Figure D.2: Criação dos hyperlinks. Os pontos vermelhos representam SIFTs ligados a
hyperlinks.
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D.3.4 Geração Automática de Notas

Nosso sistema gera notas de aula automaticamente. Para isso, simplesmente expor-
tamos o panorama juntamente com as anotações feitas pelo usuário. Para tratar arquivos
PDF de maneira robusta, foi usada a biblioteca Poppler, que é facilmente integrada com o
biblioteca Qt, usada para a interface.

D.4 Resultados

Essa Seção demonstra o uso da nossa técnica, aplicada aos três tipos de vídeos discu-
tidos.

D.4.1 Panoramas

O primeiro passo no nosso pipeline é a criação de frames panorâmicos. Nós detec-
tamos SIFTs para cada frame e achamos as correspondências, de um frame ao próximo.
As homografias são estimadas de acordo com isso, e a transformação global é encontrada
conectando essas projeções.

Figure D.3: Resultados do panorama - Khan Academy. (esquerda) Panorama final. (dire-
ita) Subconjunto de frames que forma o panorama.

D.5 Navegação beaseada em Conteúdo

Hyperlinks são uma propriedade dinâmica da nossa interface. Para demonstrar nossos
resultadoss, capturamos alguns momentos: mostramos os panoramas e os hyperlinks, com
os frames aos quais eles levam.
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Figure D.4: Alguns frames (esquerda) usados no panorama da aula convencional (direita).
Note como o sistema dá suporte ao zoom da câmera naturalmente.

Na Figura D.5 vemos um resultado de um vídeo baseado em canvas. A imagem à
esquerda mostra o panorama, destacando 3 hyperlinks. As imagens àdireita mostra os
frames destino correspondentes. Também destacamos a posição do cursos, para demon-
strar como nossa interface navega precisamente para o momento em que o conteúdo está
sendo introduzido no vídeo.

a

b

c

(a)

(b)

(c)

Figure D.5: Resultados de hyperlinks - Khan Academy. Panorama com alguns hyperlinks
e os respectivos frames-alvo.

A Figura D.6 mostra os resultados para um vídeo baseado em slides. Como explicado,
o panorama é calculado importando-se um conjunto de slides - ele é constante para todo
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o vídeo.

(a) (b)

(c)

a

b

c

Figure D.6: Resultados de hyperlinks - Coursera. (acima) Panorama. (abaixo) Frames
destino.

O último resultado da navegação com hyperlinks é a aula convencional. Para demon-
strar, utilizamos um vídeo de alta resolução. Nesse caso, não há cursor, mas podemos ver
que o instrutor está prestes a escrever o conteúdo selecionado.
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Figure D.7: Resultados para aula convencional. (esquerda) Panorama com hyperlinks
destacados. (direita) Frames destino.

D.6 Notas de aula

Nossa sistema também permite a geração de notas de aula. O usuário toma as notas
durante o vídeo, e elas são exportadas junto com o panorama final em um PDF.

Na Figura D.8, podemos ver dois momentos do vídeo onde o usuário está tomando
notas. Esses momentos foram gravados de dentro da nossa interface.

Figure D.8: Usuário pode tomar notas durante o vídeo . (a) 3min07s. (b) 5min25s.

Na Figura D.9, podes ver uma panorama com anotações dentro de um visualizador de
PDFs.
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Figure D.9: Notas de aula de vídeo convencional em um visualizador de PDF.

D.7 Conclusões e Trabalhos Futuros

Essa dissertação introduziu uma nova interface para e-learning com frames panorâmi-
cos e navegação baseada em conteúdo. Demonstramos a abrangência da nossa técnica
aplicando-a a três tipos diferentes de vídeos: baseados em canvas, baseadaos em slides e
aulas convencionais gravadas. Nosso sistema alcança performance de tempo real para
baixas resoluções (320 × 240). Para resoluções mais altas, é necessário algum pré-
processamento.

Nosso sistema é baseado em técnicas de Visão Computacional, e assim, herda as lim-
itações dessas técnicas. Melhoria nos algoritmos de Visão Computacional utilizados rep-
resentariam melhores resultados na nossa interface. Outro problema é que alguns SIFTs
podem ser detectados como relevantes, mas serem resultado apenas de um sombreamento
ou do instrutor. Nesse caso, nossa navegação linear pode se perder. Soluções para esse
problemas constituem direções interessantes para exploração futura.


