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Abstract

Language change consists in the variation of linguistic features through time.
Previous work was able to account for influences of language acquisition on those
changes, establishing the dynamical system grounds behind language change. This
work provides a general framework able to uniformly integrate several existing ap-
proaches to the subject and via a configurable simulator it enables the assessment
of different configurations of that framework.

Key-words: Natural Language Processing, Language Evolution and Change, Bayesian
Agents.





Resumo

Mudança de linguagem consiste na variação das características linguísticas
ao passar do tempo. Trabalhos anteriores tiveram sucesso em contabilizar influências
da aquisição da linguagem nessas mudanças, estabelecendo os princípios do sistema
dinâmico por trás da mudança de linguagem. Esse trabalho fornece um framework
capaz de integrar uniformemente diversas abordagens existentes e através de um
simulador configurável ele permite avaliar diferentes configurações desse framework.

Palavras-chaves: Processamento de Linguagem Natural, Evolução e Mudança de
Linguagem, Agentes Bayesianos.
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1 INTRODUCTION

The study of language change is a core subject on cognitive sciences. The un-
derstanding of its fundamental principles can enlighten the comprehension of how human
cognition works. To provide support to that kind of study, computational evaluations have
been used for a long time to assess mathematical models accounting for the evolution and
change of different linguistic features.

Several approaches have been proposed to model language evolution and change.
Initially, the main belief was that those linguistic changes were a result of our innate
capacities. Different languages were stated as instances of a Universal Grammar, impos-
ing different restrictions over the possible linguistic features, mainly due to our genetic
inheritance (CHOMSKY, 1969).

More recently, it has become clear that language acquisition and social interac-
tion can have a major role in the construction of human languages (LIGHTFOOT, 1991;
NIYOGI; BERWICK, 1995; KIRBY, 2001). Lightfoot (1991) showed that the parame-
ters of that Universal Grammar were defined through cultural interactions, and suggested
that language acquisition was an important piece of that puzzle. Niyogi & Berwick (1995)
were successful in demonstrating the role of language acquisition on language evolution
dynamics, showing that small imperfections of individual learning patterns could precip-
itate population characteristics after several generations. Kirby (2001) analysed a simple
population setup, verifying that several complex linguistic features could occur due to
cultural exposure alone. This population setup was named iterated learning and was ex-
plored thoroughly in the literature (BRIGHTON, 2002; BRISCOE et al., 2002; KIRBY;
HURFORD, 2002; SMITH; KIRBY; BRIGHTON, 2003; KIRBY; SMITH; BRIGHTON,
2004; GRIFFITHS; KALISH, 2005; DEDIU, 2009; NIYOGI; BERWICK, 2009; TRIJP,
2011; SWARUP; GASSER, 2009). Furthermore, different population setups (KIRBY,
2001; NIYOGI; BERWICK, 2009; NOWAK et al., 1999), and different individual learn-
ing algorithms (DEDIU, 2008; GRIFFITHS; KALISH, 2007; OLIPHANT; BATALI, 1997;
SAKAS; FODOR, 2001; LIGHTFOOT, 1999; NOWAK et al., 1999; SWARUP; GASSER,
2010) were proposed.

Among all those language evolution modelling features, different behaviours may
be verified. However, a direct comparison between approaches is not always possible given
different data sets and assumptions made in each of these works. Therefore there is a strong
need for a unified framework that incorporates them and allows them to be uniformly
compared.
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1.1 Motivation and Objectives
This Computer Engineering Bachelor Thesis fits in the subject of the Natural Lan-

guage Processing, a major field interfacing Computer Science, Linguistics and Cognitive
Sciences in which computer techniques allow to assess different scenarios produced by
different models of natural language.

This work addresses an important topic in modelling language evolution and
change and its main objective is to provide a computational framework for some of the
main models suggested by the literature, in particular Bayesian approaches to language
evolution and change. This unified framework may be used to investigate some of the
essential phenomena behind the dynamic systems ruling language evolution and change.

1.2 Document Structure
This document is structured as follows.

Chapter 2 contains a brief review of the literature. The selected papers’ rationale
are presented, exposing the main ideas and the related case studies when appropriate.

Chapter 3 presents the unified framework for language change models and high-
lights how that framework relates to the main models, giving examples of which setups
relate to the published papers. Furthermore, this chapter brings up unpublished similar-
ities between the models using the framework.

Chapter 4 describes how the individual models were executed and their results
compared to the original published data.

Finally, Chapter 5 displays the conclusion and future work.
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2 BACKGROUND

2.1 From language acquisition to language change
Niyogi & Berwick (1995) describe how the language acquisition mechanism has in-

fluences on the distribution of different grammars in a population, inferring that language
acquisition is a major driver of language change.

The logical problem of language change is that if children acquire their grammars
from their teachers1 without errors, grammatical change could never arise in a population
setting, since the very same grammar would to be transmitted from one generation to
another indefinitely.

However, as children are exposed to a finite number of examples of their teachers
grammars, even with error free learning methods, the probability the children will acquire
a grammar that is different from their teachers’ is not zero.

Children will attempt to learn the previous generation’s language. From those chil-
dren, only some amount will actually converge to that grammar, with the other group
converging to different instances. The following generation will use that mixed grammar
set as source to their own learning, having mixed examples to learn from. Over all the fol-
lowing generations the language state will evolve accordingly, forming a linguistic dynamic
system.

To model those dynamics, a discrete time system is defined, where there are several
different generations, each generation with several individuals. The system is defined in
way that in any given generation each individuals learns from a single individual in the
previous generation (NIYOGI; BERWICK, 1995; NIYOGI; BERWICK, 1997; NIYOGI;
BERWICK, 1998). Furthermore, it is defined:

∙ A class of grammars 𝒢, from which each individual chooses a target;

∙ A set of expressions 𝐿𝑔 ⊆ Σ* generated by 𝑔 ∈ 𝒢;

∙ A probability distribution 𝑃𝑔 over 𝐿𝑔, with which a speaker of 𝑔 produces utterances.
An utterances 𝑠 ∈ 𝐿𝑔 is, therefore, produced with probability 𝑃𝑔(𝑠);

∙ A learning algorithm 𝒜 that an individual will use to hypothesize a grammar with
some given linguistic data. For instance, an individual exposed to a n-tuple of ex-

1 Teachers here refers to the children’s source of language data. Practically speaking, the learners acquire
their grammars from several different sources, e.g. their parents, other children, other caretakers, etc.
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pressions 𝑆𝑛 = (𝑠1, . . . , 𝑠𝑛) ∈ (𝐿𝑔)𝑛 will acquire the grammar 𝑔 = 𝒜(𝑆𝑛), defined by
the map:

𝒜 :
∞⋃︁

𝑖=1
(Σ*)𝑖 → 𝒢 (2.1)

∙ A probability distribution 𝑃 (𝑡) over 𝒢, such that in generation 𝑡, a speaker of 𝑔 ∈ 𝒢
can be found with probability 𝑃 (𝑡)(𝑔);

To evaluate how the model effectively generates scenarios according to existent
phenomena, Niyogi & Berwick (1998) define a setup to reproduce the linguistic results
published by Galves & Galves (1995). They expose the loss of proclitic constructions in
the Portuguese spoken in Portugal from 1800 to modern times.

From the 16th to the 19th century both proclisis and enclisis were possible in root
affirmative sentences with non-quantified subjects:

1. Paulo a ama.

2. Paulo ama-a.

During the 19th century, the first kind of sentence ceased to be used with root
affirmative sentences with non-quantified subjects, and the second one became the sole
option. That did not, however, affect Wh-subject sentences, where proclisis is still used,
as in 3.

3. Quem a ama?

The language spoken before the 19th century is henceforward named Classical
Portuguese (CP) and the one after the 19th century Modern European Portuguese (EP).

To apply the model to this specific case, Niyogi & Berwick (1998) describe three
stress contours, 𝑐𝑖, each referring to a type of production:

∙ 𝑐1, to the first kind of production, as in sentence 1;

∙ 𝑐2, to the second one, as in sentence 2;

∙ 𝑐3, to the third one, as in sentence 3.

Also, two grammars are defined:

∙ Classical Portuguese, 𝐺𝐶𝑃 , where all three stress contours happen;

∙ European Portuguese, 𝐺𝐸𝑃 , where 𝑐1 does not occur.
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Afterwards, the work further defines the production probabilities, as given in table
1.

Stress Contour CP EP
𝑐1 𝑝 0
𝑐2 1 − 2𝑝 1 − 𝑞
𝑐3 𝑝 𝑞

Table 1: Production probabilities per grammar

To study the evolution of the dynamical system, the population distribution of the
grammars is as follows:

∙ The proportion of 𝐺𝐶𝑃 speakers in a generation 𝑖 is given by 𝛼𝑖;

∙ The proportion of 𝐺𝐸𝑃 speakers in a generation 𝑖 is given by 1 − 𝛼𝑖.

The learning algorithm is the Maximum Likelihood Method: It chooses between
𝐺𝐶𝑃 and 𝐺𝐸𝑃 by selecting the grammar that maximizes the probability of generating the
given data.

Therefore, all the modelling pattern is defined:

∙ The class of grammars 𝒢 = {𝐺𝐶𝑃 , 𝐺𝐸𝑃 };

∙ The set of expressions, represented by the stress contours, 𝐿𝑔 = {𝑐1, 𝑐2, 𝑐3};

∙ The probability distribution over 𝐿𝐺𝐶𝑃
, 𝑃𝐺𝐶𝑃

= [𝑝, 1 − 2𝑝, 𝑝];

∙ The probability distribution over 𝐿𝐺𝐸𝑃
, 𝑃𝐺𝐸𝑃

= [0, 1 − 𝑞, 𝑞];

∙ The probability distribution over 𝒢, 𝑃 (𝑖) = [𝛼𝑖, 1 − 𝛼𝑖];

∙ The learning algorithm defined as the Maximum Likelihood Method.

To analyse the individual learning algorithm to infer population dynamics, given
a set of linguistic data 𝑆𝑛 = {𝑠1, . . . , 𝑠𝑛}, we need to calculate the likelihoods 𝑃 (𝑆𝑛|𝐺𝐶𝑃 )
and 𝑃 (𝑆𝑛|𝐺𝐸𝑃 ). Assuming that the linguistic data set was drawn using independent and
identically distributed (i.i.d.) random variables:

𝑃 (𝑆𝑛|𝐺𝑘) =
𝑛∏︁

𝑖=1
𝑃 (𝑠𝑖|𝐺𝑘) (2.2)

The likelihoods are, therefore, defined by the equations 2.3 and 2.4, given that the
linguistic data set has 𝑎 draws of 𝑐1, 𝑏 draws of 𝑐3 and 𝑛 − 𝑎 − 𝑏 draws of 𝑐2:

𝑃 (𝑆𝑛|𝐺𝐶𝑃 ) =
𝑛∏︁

𝑖=1
𝑃 (𝑠𝑖|𝐺𝐶𝑃 ) = 𝑝𝑎(1 − 2𝑝)(𝑛−𝑎−𝑏)𝑝𝑏 (2.3)
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𝑃 (𝑆𝑛|𝐺𝐸𝑃 ) =
𝑛∏︁

𝑖=1
𝑃 (𝑠𝑖|𝐺𝐸𝑃 ) = 0𝑎(1 − 𝑞)(𝑛−𝑎−𝑏)𝑞𝑏 (2.4)

The learning algorithms define that a learner chooses 𝐺𝐸𝑃 if its associated likeli-
hood is greater than the one associate with 𝐺𝐶𝑃 :

𝑃 (𝑆𝑛|𝐺𝐸𝑃 ) > 𝑃 (𝑆𝑛|𝐺𝐶𝑃 ) ⇔ (1 − 𝑞)(𝑛−𝑏)𝑞𝑏 > (1 − 2𝑝)(𝑛−𝑏)𝑝𝑏 (2.5)

Verifying the evolutionary dynamics of the system, the conclusions are that lan-
guage learning has some accountability in language change over time.

2.2 Language Change Models: Iterated Learning
Kirby (2001) showed that an initially unstructured communication system, map-

ping words to some meanings, may eventually converge to a fully compositional2 syntactic
mapping through cultural iteration.

Given two characteristics of human language: (i) the human-unique (OLIPHANT,
1999) structure-preserving nature of the evolution of the mappings between signals and
meanings, both in syntactic (as compositionality) and morphological (as regularity) terms;
and (ii) the stable irregularity usually found in existing historical records; Kirby (2001)
defines the Iterated Learning Model.

Iterated Learning is defined as a sequence of agents where each agent learns with
a single teacher, and afterwards act as a teacher, speaking to a single agent. This process
is repeated several times.

In his setup, Kirby (2001) furthermore describes the Induction and the Invention
Algorithm. The first describes a parser that will update the agent’s internal representation
of the language, and the second will use that representation to generate output utterance
strings. Both algorithms use no biological evolution, natural selection or measures of
success in communicating to achieve its results.

The setup is then used in a simulation in which a meaning was represented by a pair
of signals (𝑎, 𝑏). The initial signals produced by the Invention Algorithm were randomly
associated to meanings . The results show that, after only 30 generations, the language
represented already has clear stable compositionality. To show the rise of irregularity
on the system, he runs the setup again, this time with a non-uniform distribution over
meanings.

The given setup is of major importance to the understanding of language evolution
and change phenomena, since it shows the importance of pure cultural transmission on
2 Compositionality is the characteristic of language that states that the meaning of a complex expression

is determined by the meaning of its constituent expressions and the rules used to link them.
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that subject, since its learning and production algorithms show no biological or individual
biases.

2.2.1 Bayesian Agents and Iterated Learning

Griffiths & Kalish (2007) provide quantitative and analytic assessments about the
Iterated Learning Model. To do so, they define two Bayesian Agents, the Maximum A
Posteriori and the A Posteriori Sampler that are Bayesian Inference methods, that define a
posterior distribution for the linguistic data exchanged in each new generation of Iterated
Learning, as described below:

∙ 𝑆𝑛 a set of 𝑛 utterances, given as input linguistic data;

∙ The prior probability distribution, 𝑃 (ℎ), defining the agents’ biases3;

∙ The posterior distribution 𝑃 (ℎ|𝑆𝑛), given by:

𝑃 (ℎ|𝑆𝑛) = 𝑃 (𝑆𝑛|ℎ)𝑃 (ℎ)
𝑃 (𝑆𝑛) (2.6)

where
𝑃 (𝑆𝑛) =

∑︁
ℎ∈ℋ

𝑃 (𝑆𝑛|ℎ)𝑃 (ℎ) (2.7)

An agent using Maximum A Posteriori as learning method will select the hypoth-
esis producing the biggest posterior distribution. Therefore it will choose a grammar 𝐺𝑤

given by:
𝐺𝑤 = arg max

𝐺𝑖

𝑃 (𝐺𝑖|𝑆𝑛) (2.8)

A given A Posteriori Sampler learner will select a grammar using a stochastic
sample from the posterior distribution. In that way, grammars with bigger posterior values
will be more likely selected.

Modelling Iterated Learning as a Markov Chain on data and the probability dis-
tributions hypotheses as another Markov Chain, they compare the specific dynamical
systems created by Maximum A Posteriori and A Posteriori Sampler with well estab-
lished statistical methods.

A Posteriori Sampler Iterated Learning corresponds to a Gibbs Sampler (GEMAN;
GEMAN, 1984). The dynamics show that the Markov Chain absorbing state will corre-
spond to the language prior probability.
3 The prior defines how likely the agent considers the hypothesis ℎ as true before seeing the input

linguistic data. Further discussion on the interpretations of the prior is available in the work of
Griffiths & Kalish (2007).
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Maximum A Posteriori Iterated Learning is approximated to a Expectation Max-
imisation (EM) algorithm (DEMPSTER; LAIRD; RUBIN, 1977). It shows, then, that the
setup still favors languages with high prior probability. The absorbing state will, however,
depend on other parameters, such as the amount of noise.

2.3 Language Change Models: Social Learning
Niyogi & Berwick (2009) suggest an improvement of the Iterated Learning Model,

including the fact that learners are exposed to linguistic data from multiple sources: the
Social Learning (SL).

They define:

∙ 𝑃 (𝑡)(𝑔) the probability a speaker of generation 𝑡 has the grammar 𝑔;

∙ 𝑃𝑔 the probability distribution over utterances of the grammar 𝑔.

Furthermore, in SL each agent learner receives linguistic data from every agent in
the previous generation, i.e., data drawn from a distribution 𝜇𝑡 given by the equation:

𝜇𝑡 =
∑︁
𝑔∈𝒢

𝑃 (𝑡)(𝑔)𝑃𝑔 (2.9)

Given a learning algorithm 𝒜, a learner will learn a grammar ℎ with probability

𝑝𝑟𝑜𝑏[𝒜(𝐷) = ℎ|𝐷 drawn according to 𝜇𝑡] (2.10)

The proportion of speakers of ℎ in the generation 𝑡 + 1 is also given by that
probability:

𝑃 (𝑡+1)(ℎ) = 𝑝𝑟𝑜𝑏[𝒜(𝐷) = ℎ|𝐷 drawn according to 𝜇𝑡] (2.11)

To evaluate the behaviour of the proposed language change model, Niyogi &
Berwick (2009) propose a choice of the learning algorithm 𝒜, a cue learner. Given:

∙ Two languages 𝐿1 and 𝐿2;

∙ A set of possible utterances grouped as two kinds:

– Utterances producing cues4, named 𝑢𝑐;

– Utterances not producing cues, named 𝑢𝑛.

∙ A target cue language5, defined as 𝐿1.
4 In this example, a cue is a language characteristic that points the learner to a given language. For

instance, Verb-Object constructions can be cues to a Verb-Object language.
5 i.e., the agent will choose 𝐿1 if it decides that it is being exposed to a cue abundant environment.
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In a set 𝐶 ⊆ (𝐿1 𝐿2) of 𝑛 example utterances, 𝑘 cue-utterances can be counted.
The learner will choose 𝐿1 if those cues occur often enough, i.e, if 𝑘

𝑛
> 𝜏 , otherwise

selecting 𝐿2.

Niyogi & Berwick (2009) use that abstraction to assess the evolution of the pro-
portions of Verb-Initial and Head-Initial speakers on a population.

The SL model substantially differs from IL, in that:

1. The iterated map 𝑠𝑡+1 = 𝑓(𝑠𝑡) is generically nonlinear;

2. As an outcome of that condition, and as parameters change continuously, bifurca-
tions are possible;

3. For the same reasons, multiple stable states are possible, allowing language stability.

2.4 Language Change Models: A Genetic Approach
Dediu (2009) proposed several approaches to assess the importance of the genetic

endowment together with cultural transmission on language change.

Namely, it uses Bayesian Inference learning algorithms together with three different
cultural transmission configurations:

1. Chains of single agents, where a chain of single learners communicate;

2. Chains of pairs of agents, where a chain with two agents in each iteration com-
municate;

3. Complex populations, a setup modelling the agent’s lifespan, migration and gen-
eration overlapping.

To evaluate the proposed method, an example setup is given, where agents use
Maximum A Posteriori (MAP) and A Posteriori Sampler (SAM) learning algorithms, as
explained in the section 2.2.1.

The setup defines a genetic endowment composed by two genes, each with two
alleles. Those genes generate two linguistic features, 𝐹1 and 𝐹2, each with two possible
values, denoted by 𝐹𝑖 and 𝐹 *

𝑖 . To ease the notation, this linguistic features are mapped as
utterances of the form 𝑢 = 𝑓1𝑓2, where 𝑓𝑖 corresponds to the linguistic feature 𝐹𝑖. Hence,
four possible utterances are possible (where 1 means that * is present on the feature):
00, 01, 10 and 11. This language can be described by a vector of probabilities of the four
possible utterances p = [𝑝00, 𝑝01, 𝑝10, 𝑝11]. Also, the agents will be exposed to linguistic
data represented by the vector of occurrences of the utterances n = [𝑛00, 𝑛01, 𝑛10, 𝑛11].
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The likelihood function used in the learning algorithm is a multinomial distribution
n ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚(p). Their prior distribution is defined using the Dirichlet distribution,
p ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼). Given that those are conjugate distributions, it can be derived that
the posterior follows a Dirichlet distribution, p|n ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼 + n).

With those definitions, Dediu (2009) concludes that the priors have considerable
importance on the resulting linguistic outcomes.

2.5 Language Change Models: A Game Theoretic Approach
Nowak et al. (1999) give a completely innovative Game Theory approach. They

describe a setup whose language maps words to their meanings. Initially, they describe
the learners, that have two matrices 𝑃𝑛×𝑚 and 𝑄𝑚×𝑛.

𝑃 is called active matrix. Its entries 𝑝𝑖𝑗 define the probability with which a speaking
agent produces the word 𝑗 referring to the meaning 𝑖. The columns of that matrix sum
to one (∑︀𝑚

𝑗=1 𝑝𝑖𝑗 = 1).

𝑄 is called passive matrix. Its entries 𝑞𝑗𝑖 define the probability with which a lis-
tening agent will link the word 𝑗 to the meaning 𝑖. The rows of that matrix sum to one
(∑︀𝑛

𝑖=1 𝑞𝑖𝑗 = 1).

A learner listen to other agents and constructs an association matrix, 𝐴. Its el-
ements, 𝑎𝑖𝑗, give how often the listener has observed other individuals referring to the
meaning 𝑖 using the word 𝑗. Then, it builds its active and passive matrix as below:

𝑝𝑖𝑗 = 𝑎𝑖𝑗∑︀𝑚
𝑙=1 𝑎𝑖𝑙

(2.12)

𝑞𝑖𝑗 = 𝑎𝑖𝑗∑︀𝑛
𝑙=1 𝑎𝑙𝑗

(2.13)

Nowak et al. (1999) describe a measure of communication efficiency, the payoff:

𝐹 (𝐿1, 𝐿2) = 1
2

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

(𝑝(1)
𝑖𝑗 𝑝

(2)
𝑗𝑖 + 𝑝

(2)
𝑖𝑗 𝑝

(1)
𝑗𝑖 ) (2.14)

Furthermore, they define the agent’s payoff, i.e., its ability to convey information
to all other agents in the same generation, as in the equation 2.15, that gives the payoff
of the Agent I:

𝐹𝐼 =
∑︁

𝐽

𝐹 (𝐿𝐼 , 𝐿𝐽) (2.15)

Then, they use the agents’ payoffs to define three cultural transmission setups:
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1. Role Model Learning A learner selects 𝐾 Role Models from the previous genera-
tion, from whom it will sample its linguistic knowledge. The Role Models are chosen
proportionally to their Payoffs;

2. Parental Learning Each learner selects a single parent from the previous genera-
tion. The parent is selected proportionally to its Payoff;

3. Random Learning The agent selects 𝐾 teachers from the previous generation,
randomly.

The work concludes that, from an initially random linguistic setup, a population
can evolve to a common language.
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3 THE FRAMEWORK

Chapter 2 presented the state of art in language evolution and change modelling.
Moreover, it allows the reader to grasp some understanding of the different approaches to
achieve that modelling.

To enable the comparison and analysis of the different proposed solutions for mod-
elling of language evolution and change, a general framework is proposed. The goal of this
framework is to isolate the different individual components of the individual approaches,
allowing the analysis of each component separately and also the constructions of novel
solutions, composed by a combination of different ones.

Figure 1: Proposed framework

The proposed framework, in Figure 1 divides the problem in two parts: (i) the
environment and (ii) the agents, explained in the next sections.

3.1 The environment

A major part of the rationale behind modelling language change is the definition
of the linguistic environment for the agents to exchange linguistic data. Changing the
environment produces different data, even with identical agents (DEDIU, 2009; NIYOGI;
BERWICK, 2009).

Furthermore it is possible that hearing agents give different costs or weights to
linguistic data from different speakers. Therefore, the environment should also contain
information about these weights.

This can be seen as a directed graph, as in Figure 2 where vertices are agents and
edges are the hearer-speaker connection, with the weight as a parameter to the edge. The
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Figure 2: A sample environment

weight parameter could easily be modelled as the number of sentences communicated1.
The graph is, therefore, modelled according to the figure 3, on which the agent A speaks
𝑛 sentences to the agent B.

Figure 3: Environment graph logic

It should be noted that these graphs need not to be static. The information they
convey is updated in the next iteration of the communication.

Dynamic graphs are useful for situations where agents change their speaking tar-
gets or change their communication weights, for instance, the parents are more important
during language learning phase than later on the agent’s life.

3.2 The agents
An agent is modelled as an entity receiving and producing linguistic data, as in

Figure 4.

The input linguistic data is produced by the other agents in the previous iteration.
For instance, in Figure 5, Agent D is exposed to the linguistic data generated by agents
A, B and C in the previous iteration.
1 This abstraction uses the hypothesis that an agent learning mechanism gives more importance to

constructions heard more often.
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Figure 4: Agent representation

Figure 5: Input Linguistic Data formation

The agent uses this input to acquire linguistic knowledge and produce output
Linguistic Data.

Linguistic Data is represented in a simplified way through storing how many times
a given utterance is produced by an agent during its communication. This representa-
tion form is more often adopted quantitative models (NIYOGI; BERWICK, 2009; GRIF-
FITHS; KALISH, 2007; NOWAK et al., 1999; DEDIU, 2009)

3.2.1 Bayesian Agents

This work focuses on models using probabilistic methods with Bayesian Agents
defined in terms of different parameters in Figure 6.

1. Learning Method The agent uses a learning method from Bayesian Decision The-
ory, as Maximum Likelihood, A Posteriori Sampler, Maximum A Posteriori, Maxi-
mum Expected Utility, etc. to estimate the hypotheses;

2. Hypotheses The agent’s internal representation of the language in its environment



30 Chapter 3. THE FRAMEWORK

Figure 6: Bayesian Agent

is defined as a vector of probability distribution’s parameters used to configure the
distributions in order to produce linguistic data;

3. Production Method The agent generates its output Linguistic Data by drawing
stochastic samples from probability distributions using its hypotheses as parameters.

3.3 Evaluation

This section evaluates the proposed framework in terms of how closely it models
the approaches of Chapter 2. Similarities and differences between the individual features
of those models become more clear as they are separated into the aspects covered by the
framework.

3.3.1 Iterated Learning Environment

The environment described in section 2.2 is given by a set of agents distributed in
generations, and a dynamical procedure to define the graph’s edges, in such way that only
one generation is speaking at a given iteration, and each agent speaks only once through
the entire experiment. An example structure is given Figure 7.

3.3.2 Social Learning Environment

Niyogi & Berwick (2009) describe the Social Learning environment, as described in
Section 2.3. This approach uses a structure graph identical to Iterated Learning, differing
on the edges setup. To better illustrate that change, a sample iteration is given in Figure
8.
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Figure 7: Iterated Learning - Structure Graph and Iteration 1

Figure 8: Social Learning - Iteration 1 (the parameter 𝑛 on the edges is understood)

3.3.3 Portuguese Clitics Evaluation

Niyogi & Berwick (1998) define a setup to evaluate the proportion of Classical
Portuguese speakers on a population, as a function of 𝑝, 𝑞 and 𝑛, as described in Section
2.1.

The defined model uses an environment that can be mapped as Iterated Learning.
Its agents are described below:

1. Learning Method: As described in Section 2.1, the Maximum Likelihood learning
method is used. However, that method can be regarded as a Maximum A Posteriori,
as follows.
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A grammar chosen by a Maximum Likelihood method will be chosen according to:

𝐺𝑤 = arg max
𝐺𝑖∈ℋ

𝑃 (𝑆𝑛|𝐺𝑖) (3.1)

A grammar chosen by a Maximum A Posterior, however, will follow:

𝐺𝑤 = arg max
𝐺𝑖∈ℋ

𝑃 (𝑆𝑛|𝐺𝑖)𝑃 (𝐺𝑖)
𝑃 (𝑆𝑛) (3.2)

If we select a prior in such a way it follows a uniform distribution (𝐺𝑖 ∼ 𝒰ℋ)
over all possible grammars, the equations 3.2 and 3.1 are equivalent, since now
𝑃 (𝐺𝑖) = 1

𝐶𝑎𝑟𝑑(ℋ) = 𝜅:

𝐺𝑤 = arg max
𝐺𝑖∈ℋ

𝑃 (𝑆𝑛|𝐺𝑖)𝜅∑︀
𝐺𝑖∈ℋ[𝜅𝑃 (𝑆𝑛|𝐺𝑖)]

= arg max
𝐺𝑖∈ℋ

𝑃 (𝑆𝑛|𝐺𝑖)𝜅
𝜅

∑︀
𝐺𝑖∈ℋ[𝑃 (𝑆𝑛|𝐺𝑖)]

(3.3)

Since the likelihood function is a probability distribution, ∑︀
𝐺𝑖∈ℋ[𝑃 (𝑆𝑛|𝐺𝑖)] = 1:

𝐺𝑤 = arg max
𝐺𝑖∈ℋ

𝑃 (𝑆𝑛|𝐺𝑖) (3.4)

2. Hypotheses: The agent’s hypotheses are defined a probability vector, as defined
is the Table 1: ℎ𝐶𝑃 = [𝑝, 1 − 2𝑝, 𝑝] for Classical Portuguese speakers, and ℎ𝐸𝑃 =
[0, 1 − 𝑞, 𝑞] for European Portuguese speakers;

3. Production Method: To draw samples using those probability vectors, a Multi-
nomial distribution must be employed.

3.3.4 Verb-Object Languages Evaluation

Niyogi & Berwick (2009) use Social Learning to assess the evolution of the pro-
portions of Verb-Initial and Head-Initial speakers on a given population as a function of
𝑝 and 𝜏 , as described in Section2.3. That abstraction defines an agent:

1. Learning Algorithm: The Cue-Based learning algorithm is used, as defined in
Section 2.3;

2. Hypotheses: The agent uses a probability vector as hypothesis, defined as 𝑝 =
[𝑝(𝑢𝑐), 𝑝(𝑢𝑛)]. Given 𝑝 the probability a cue language speaker will produce a cue,
the vector instances are 𝑝1 = [𝑝, 1 − 𝑝] for cue language speakers and 𝑝2 = [0, 1] for
non cue languages speakers;

3. Production Method: To draw samples using those probability vectors, a Multi-
nomial distribution must be employed.
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3.3.5 Genetic Approach

Dediu (2009) proposed different setups to assess the importance of the genetic
endowment on language change, as described in Section 2.4. Three environments were
designed:

1. Chains of single agents is clearly mapped as Iterated Learning;

2. Chains of pairs of agents can be mapped as a limited case of Social Learning,
with two agents per generation;

3. Complex Populations is a novel approach, that can also be mapped as a graph
under the proposed framework.

To simulate his results, he also proposes an agent configuration:

1. Learning Algorithm: As explained in Section 2.4, the Maximum A Posteriori
and the A Posteriori Sampler are used, with Dirichlet distribution as prior and
Multinomial distribution as likelihood;

2. Hypotheses: The vector 𝑝 in its definition is used as the agent’s hypothesis;

3. Production Method: The approach supposes the learning algorithm has access to
the agent’s producing method to define its Likelihood distribution (DEDIU, 2009).
Therefore, the learning algorithm’s likelihood distribution, the Multinomial, is used
as production method.

3.3.6 Game Theoretic Approach

Nowak et al. (1999) shows how stable linguistic states can arrise form initially
random language basis, as described in Section 2.5. To that end they propose three cul-
tural transmission environments, that can be modelled under the proposed framework as
follows:

1. Role Model Learning: At each iteration, 𝑘 agents are created. Then, each select 𝐾

Role Models from the previous generation. Since a given Role Model cannot serve
twice as teacher to the same agent, the stochastic process selecting it is without
replacement. Furthermore, their parenthood probabilities are proportional to their
payoffs (i.e. not uniform) requiring a non-central stochastic process. The Wallenius’
Non-central Hypergeometric Distribution (WALLENIUS, 1963) is an appropriated
distribution to model that process;

2. Parental Learning: This environment can be modelled as Role Model Learning
with 𝐾 = 1;
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3. Random Learning: In this environment, the creation process is similar to Role
Model, with the exception that the agents in the previous generation are chosen
disregarding their payoffs, i.e., with an uniform distribution.

Furthermore, they define an agent:

1. Learning Algorithm: The learning algorithm described in Section 2.5 can be
regarded as a Maximum Likelihood method, as follows:

As originally described, 𝐴 represents the agent’s input Linguistic Data. As Multino-
mial Distribution’s Maximum Likelihood Estimator is equivalent to the normalisa-
tion of the sample vector,for a data sample vector 𝑦 = [𝑦1, 𝑦2, . . . , 𝑦𝑛], the Maximum
Likelihood Estimator for the parameter 𝑝𝑖 of a Multinomial Distribution is given
by:

𝑝𝑖 = 𝑦𝑖∑︀𝑛
𝑗=1 𝑦𝑗

(3.5)

The game theory learning corresponds to the Maximum Likelihood Learning which
in turn, as explained in Section 3.3.3, is equivalent to the Maximum A Posteriori
learner with a uniform distribution as prior;

2. Hypotheses: For a learning agent only matrix 𝑃 is important, since 𝑄 will be used
to assess the agent’s communication ability to form the environments, and only 𝑃

will be used to generate linguistic data. Each column defines a probability vector
that the agent assigns to a signal meaning pair2. The 𝑃 matrix defines, therefore,
the agent’s hypotheses;

3. Production Method: To draw samples using 𝑃 probability vectors, a Multinomial
distribution must be employed.

3.4 Summary
The described approaches can be configured under the proposed abstraction as in

the table below. Furthermore, those results can be laid on a plan, as in Figure 9.

Model Environment Learning
Kirby ’01 IL Non-Bayesian
Niyogi ’98 IL MAP3

Niyogi ’09 SL Cue-Based
Dediu ’09 - Chain of Single Agents IL MAP

2 It should be noted that every meaning will be used in a conversation transaction. (NOWAK et al.,
1999)

3 With prior given by ℎ ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚
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Dediu ’09 - Chain of Single Agents IL SAM
Dediu ’09 - Chain of Pairs of Agents SL4 MAP
Dediu ’09 - Chain of Pairs of Agents SL4 SAM

Dediu ’09 - Complex Populations Complex Populations MAP
Dediu ’09 - Complex Populations Complex Populations SAM

Nowak ’99 - Random Learning Random MAP3

Nowak ’99 - Parental Learning Role Model5 MAP3

Nowak ’99 - Role Model Learning Role Model MAP3

Figure 9: Analytical Results - Plan

4 With two agents per generation.
5 With 𝐾 = 1.
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4 EXPERIMENTAL RESULTS

To verify the correctness of both the framework described in Chapter 3 and the
implementation described in Appendix A, the simulation results were compared against
published results.

4.1 Portuguese Clitic Placement Change

The first test scenario uses the case described in Section 3.3.3 to verify its re-
sults against the data published in Niyogi & Berwick (1998): To assess the proportion of
Classical Portuguese and European Portuguese on a population of speakers after a given
number of generations each agent would acquire the most likely the grammar, as described
in Section 3.3.3.

Among the possible solutions of the inequation 𝑃 (𝑆𝑛|𝐺𝐶𝑃 ) ?
> 𝑃 (𝑆𝑛|𝐺𝐸𝑃 ), the case

were 𝑝 < 𝑞 < 2𝑝 was selected for this test. In that case, the state update rule is given by
the equation 4.1, that states that the proportion 𝛼𝑖+1 of 𝐺𝐶𝑃 speakers in the generation
𝑖 + 1 is:

𝛼𝑖+1 = (1 − 𝛼𝑖𝑝)𝑛 (4.1)

Niyogi & Berwick (1998) example that if 𝑝 = 0.05, 𝑞 = 0.02 and 𝑛 = 4 and if
the parents were all speaking Classical Portuguese (𝛼 = 1) then the probability with
which the child would pick 𝐺𝐸𝑃 (European Portuguese) is 0.66. In this case, even if the
majority of children choose the grammar of European Portuguese, the speakers of Classical
Portuguese will never disappear. In fact, the fixed point is 0.11. Roughly 11 percent of
the population will continue to speak Classical Portuguese. (NIYOGI; BERWICK, 1998)

The results of the simulation with those parameters, in Figure 10, are consistent
with the original results reported by Niyogi & Berwick (1998).

4.2 Game Theoretic Example

The second evaluation is against the results published in Nowak et al. (1999)
(a game theory based approach explained in Section 3.3.6) using Parental and Random
Learning. Although the original data was unavailable the simulation results with the same
measures were consistent with those published, what can be verified in Figure 11 and in
Appendix C.
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Figure 10: Portuguese Clitics Placement Change - Classical Portuguese speakers propor-
tion (vertical axis) vs. Generation - Dotted line displays the theoretical expected values,
crosses display simulated values.

(a) Simulated (b) Published (NOWAK et al., 1999)

Figure 11: Evaluation Results - Parental Learning, 𝑘 = 1 - Generations on horizontal axis,
Normalized Payoff on vertical axis
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4.3 Bayesian Inference and Iterated Learning
Dediu (2009) used Bayesian Inference learning agents with Iterated Learning to

assess the importance of genetic endowments in language change, as described in Section
2.4. That approach was mapped to the proposed framework in Section 3.3.5, and the
simulation suggest that the abstraction yields similar results to the published ones, as
displayed in Figure 12.

(a) Simulated (b) Published (DEDIU, 2009)

Figure 12: Evaluation Results - Bayesian Inference and Iterated Learning - 𝑚𝑒𝑎𝑛(𝑝1) on
the vertical axis, 𝜇 on the horizontal axis. SAM agents on black (displaced by 0.015) and
MAP agents on grey.
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5 CONCLUSIONS

In this work, a unifying framework was proposed, a simulator was built under that
abstraction, and the results were validated against established models.

Given the abstract framework proposed, the results of the selected models’ anal-
ysis, explaining how hey fit under the framework, and the simulation results, some con-
clusion may be drawn.

Firstly, it is clear that breaking monolithic models in different individual pieces
allow to better understand the accountability of each phenomena. For instance, the 11
studied models can be expressed as only 5 environments and 3 learning methods.

The proposed framework is a useful tool and a valid proposal of structure defining
in which pieces those models may be decomposed. Furthermore, the framework allows to
build mixed approaches, using parts from initially different publications.

Finally, the simulation results show that the simulator is a correct implementation
of the framework, correctly reproducing the same results as the ones originally published.

5.1 Future Work
Several expansions are foreseen for this work.

First of all, this work only models Bayesian Agents, even though the framework
proposed could easily be applied to agents based on other theories.

Finally, mixed models were not produced due to the lack of comparative data
for evaluation. However, the analysis of a mixed language change environment could
interesting tendencies.
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APPENDIX A – Implementation

This chapter describes the implementation of the proposed framework.

A.1 Architecture

For reasons of extensibility and portability of the framework, it was implemented
in Java, an Object Oriented programming language. Furthermore, a set of customised was
implemented.

A.2 Linguistic Data

The Linguistic Data exchanged by the agents at each iteration is modelled using
the class BayesianLinguisticData, as in Figure 13.

Figure 13: BayesianLinguisticData Class Diagram

An utterance is represented in the class as two integer indexes. This approach
allows to account signal-meaning pair utterances, representing the signal and the meaning
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as integers. Furthermore, it allows the representation of uni-dimensional language setups1

by setting the first integer as zero.

The class then stores another integer for each utterance, representing how many
times that specific utterance has been used in the communication represented by this
Linguistic Data.

A.3 Agents
The agents have been implemented using four distinct classes, displayed in the

Figure 14.

Figure 14: Agent Class Structure

The main class implementing the agent’s behaviour is BayesianAgent abstract
class. Beyond its Learning Method, Hypotheses and Production Method, the agent has
a field called memory, where it stores its input Linguistic Data. That field is updated
through the listen method, that takes Linguistic Data as argument. In that way, the
agent can listen to several different speakers, constructing its memory.

A.3.1 Learning Method

The agent’s Learning Method is modelled through the BayesianDecisionMethod
interface. It has a single method decide, that takes LinguisticData as argument. Its output
are Linguistic Hypotheses, i.e. the internal representation of the language the agent has
learned observing the given Linguistic Data.

A.3.2 Linguistic Hypotheses

The class BayesianLinguisticHypotheses models the agent’s Linguistic Hy-
potheses. It contains several probability distribution parameters.

A.3.3 Production Method

The class BayesianProductionMethod is responsible for producing the agent’s
output Linguistic Data. It stores several probability distributions. Those will be used in
1 As, for instance, the one employed in the case described in the section 2.1.
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Figure 15: BayesianAgent Abstract Class Diagram

Figure 16: BayesianDecisionMethod Interface Diagram

the method produce, on which they will use the parameters passed as argument to draw
𝑛 samples each, producing the output Linguistic Data. 𝑛 is also passed as argument. The
number of probability distributions is equal to the language’s first dimension size.

A.3.4 Implemented Agents

To be able to run a simulation, a key parts of an Agent need to be implemented:
The BayesianLearningMethod interface. Some models were selected and their rationale,
as described in the section 3.3, was implemented as follows.

Four learning methods were implemented. Their class structure is displayed in
Figure 19.

A.3.4.1 Bayesian Inference Methods

To implement the methods described on Griffiths & Kalish (2007), four classes
were designed.
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Figure 17: BayesianHypotheses Class Diagram

Figure 18: BayesianProductionMethod Class Diagram

The first, BayesianInference, contains the structure behind those learning meth-
ods. It stores the Posterior probability distribution and contains two important methods.
posteriorParameters decides the parameters to be set on the posterior distribution, us-
ing the agent’s input Linguistic Data and the Prior distribution’s parameters as argument.
decide effectively decides the output Linguistic Data distribution parameter’s, using the
posterior distribution parameter’s as argument.

The second, MultinomialDirichlet, implements the posteriorParameters method,
using a Dirichlet distribution as Prior, and a Multinomial distribution as likelihood. Since
those are conjugate distributions, there as is closed formula to that operation. Specifically,
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Figure 19: Learning Methods Class Structure

Figure 20: BayesianInference Abstract Class Diagram
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given:

𝑃 (ℎ|𝑑) = 𝑃 (𝑑|ℎ)𝑃 (ℎ)
𝑃 (𝑑) (A.1)

If ℎ ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼) and 𝑑 ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(ℎ), then ℎ|𝑑 ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼+𝑑). There-
fore, the method returns Dirichlet parameters defined as the sum of the prior parameters
with the frequency of the utterances on the input Linguistic Data.

The third class, MaximumAPosteriori defines the decide method. It defines that
the output Linguistic Data’s distribution’s parameters are the ones that maximize the
Posterior Distribution. Therefore, it returns the mode of the Distribution.

Figure 21: MaximumAPosteriori Class Diagram

Finally, the fourth class, APosterioriSampler, also defining the decide method,
does so by simply drawing a stochastic sample from the posterior distribution.

Figure 22: APosterioriSampler Class Diagram

A.3.4.2 Maximum Likelihood

As explained in section 3.3.3, Maximum Likelihood Learning Method can be re-
garded as Maximum A Posteriori with an Uniform distribution as Prior.

However, to use that approach without restricting the choice on the Likelihood
distribution, a numerical approach would be necessary. This happens because in order to
analytically construct the Posterior distribution on Bayesian Inference methods, the use
of conjugate distributions is necessary2.
2 For instance, the Beta distribution is the conjugate prior to Bernoulli and Binomial Likelihoods, as

is Dirichlet to Categorical and Multinomial.
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Even though the Uniform distribution is somewhat general, and can be regarded as
specific cases of other distributions3, it still limits the choice of the Likelihood distribution
to the conjugate of those Priors.

For those reasons, the Maximum Likelihood method was implemented under a
different class inheritance, saving the choices of Likelihood distributions.

The class MaximumLikelihood implementing the named Learning Method, does
so by using distribution probabilities’ Maximum Likelihood Estimator.

Figure 23: MaximumLikelihood Class Diagram

A.3.4.3 Maximum Likelihood with Restricted Parameter Space

The Maximum Likelihood Learning method with constraints on the Parameter
space is implemented by the RestrictedMaximumLikelihood class. It uses a distribu-
tion probability likelihood function to select a language among a set of possible target
languages.

Figure 24: RestrictedMaximumLikelihood Class Diagram

A.4 Environment
The environment is mainly represented by the abstract class Environment. It

contains a graph4 and two important methods. The first, iterate iterates the environ-
ment,calling updateEnvironment to put its structure to date, and producing the com-
munication between the agents, following the edges. updateEnvironment is an abstract
3 For instance, using Beta distributions with 𝛼 = 𝛽 = 1, or using Dirichlet distribution with ∀𝛼𝑖, 𝛼𝑖 = 1.
4 Whose data structures are given by the JGraphT library.
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method that is responsible to make any changes to the Environment structure between
iterations.

Figure 25: Environment Abstract Class Diagram

The environment graph edges are constructed using the UtterancesEdge class.
It is solely a wrapper to the integer parameter of the edges, representing the number of
sentences exchanged.

Figure 26: UtterancesEdge Class Diagram

A.4.1 Implemented Environments

Four distinct environments were implemented, using a structure composed by eight
classes, as displayed in the figure 27.

All the implemented environments share the inheritance to NonOverlappingGenerations
class, modelling environments with well-defined, separated generations. It defines the
updateEnvironment, that calls setEdges, that will update the edge relationship be-
tween the agents, storeGenerationHypothesis, for storage of the agents metrics, and
initFirstGenerationHypothesis, for initialising the environment.
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Figure 27: Environments Class Structure

Figure 28: NonOverlappingGenerations Abstract Class Diagram

A.4.1.1 Canonical Environments

Some common features among Iterated Learning and Social Learning were im-
plemented on the CanonicalEnviroment abstract class. It implementes the initialisation
method using Hypotheses passed as arguments on the constructor, and the agent’s metrics
storage, saving every agent Hypotheses to further analysis.

A.4.1.2 Iterated Learning

Iterated Learning environments are constructed using the IteratedLearning class,
that implements the setEdges method as required, associating a parent agent to each child
agent.
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Figure 29: CanonicalEnviroment Abstract Class Diagram

Figure 30: IteratedLearning Class Diagram

A.4.1.3 Social Learning

Social Learning is implemented on the SocialLearning class, implementing the
setEdges in way that a child agent is connected to every parent agent.

Figure 31: SocialLearning Class Diagram

A.4.1.4 Nowak Environments

Parental Learning and Random Learning have several common features, imple-
mented on NowakEnvironment abstract class. It the defines the initialisation method,
defining random initial hypotheses. Furthermore it stores the generations’ resulting pay-
off.

A.4.1.5 Random Learning

Random Learning is implemented using the NowakRandomLearning class. It im-
plements the setEdges method using random parenthood probabilities.
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Figure 32: Nowak Abstract Class Diagram

Figure 33: NowakRandomLearning Class Diagram

A.4.1.6 Parental Learning

Parental Learning, which implements a setEdges method using the agent’s payoff
as weight to its parenthood probability, is implemented with the NowakParentalLearning
class.

Figure 34: NowakParentalLearning Class Diagram

A.5 Statistical Module

The statistical features modelled consist on probability distributions and its pa-
rameters. Those are modelled by three interfaces: (i) ContinuousDistribution, (ii)
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DiscreteDistribution and (iii) DistributionParameters. Each distribution imple-
ments the methods mode, sample, likelihood and maximumLikelihoodEstimator.

Figure 35: ContinuousDistribution Interface Diagram

Figure 36: DiscreteDistribution Interface Diagram

A.5.1 Implemented Features

Two distributions, and its corresponding parameters, were implemented: (i) Multi-
nomial and (ii) Dirichlet, according to the class structure in the figure 38.



A.5. Statistical Module 59

Figure 37: DistributionParameters Interface Diagram

Figure 38: Distributions Class Structure
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APPENDIX B – Sample Experiment

As an example, this chapter describes the procedures needed to simulate the ex-
periment whose results are presented on Section 4.1, namely the one assessing the change
on Portuguese Clitic Placement.

Firstly, the target languages (Classical and European Portuguese) are defined:

double [] cp = {p, 1 - 2*p, p};
double [] ep = {0, 1 - q, q};

BayesianLingusiticHypotheses classicalPortuguese =
new BayesianLingusiticHypotheses (new MultinomialParameters (cp));

BayesianLingusiticHypotheses europeanPortuguese =
new BayesianLingusiticHypotheses (new MultinomialParameters (ep));

List < BayesianLingusiticHypotheses > languages = new ArrayList < >(2);
languages .add( classicalPortuguese );
languages .add( europeanPortuguese );

The standard learning method can be defined. The Restricted Maximum Likeli-
hood uses a set of target languages and a probability distribution to calculate its likeli-
hoods:

BayesianDecisionMethod portugueseCliticsDecider =
new RestrictedMaximumLikelihood (

languages ,new Multinomial ()
);

The standard production method is defined using a set of probability distributions
and the language dimensions:

List < DiscreteDistribution > distributions = new ArrayList < >(1);
distributions .add(new Multinomial ());

int meaningSpaceSize = 1;
int signalSpaceSize = cp. length ;
BayesianProductionMethod mult = new BayesianProductionMethod (

distributions , meaningSpaceSize , signalSpaceSize
);

Then, the environment can be set, using six parameters:
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1. The number of agents per generation;

2. The number of sentences exchanged at each iteration;

3. The standard production method to be used when creating agents;

4. The standard learning method to be used when creating agents;

5. A list of hypotheses defining the initial hypotheses;

6. A list of numbers defining the proportion associated with each initial hypothesis.

List < BayesianLingusiticHypotheses > initList = new ArrayList <>();
initList .add( classicalPortuguese );
List <BigDecimal > proportion = new ArrayList <>();
proportion .add(new BigDecimal (1.0));

IteratedLearning il = new IteratedLearning (
agentsPerGeneration ,
n,
mult ,
portugueseCliticsDecider ,
initList ,
proportion );

The experiment can then be performed, iterating the environment through the
generations:

for(int i=0; i< generations ; i++){
il. iterate ();

}

Finally, the experiment results can be accounted, verifying the proportion of Clas-
sical Portuguese speakers per generation:

List <List < BayesianLingusiticHypotheses >> hyp = il. getHypothesis ()

List <Double > perGen = new ArrayList <>();

for (int i = 0; i < h.size (); i++) {
List < BayesianLingusiticHypotheses > thisGeneration = hyp.get(i);
perGen .add (0.0);

for (int j = 0; j < thisGeneration .size (); j++) {
if ( thisGeneration .get(j). equals ( classicalPortuguese ))

perGen .set(i, perGen .get(i) + 1);
}

perGen .set(i, perGen .get(i) / thisGeneration .size ());
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}
}

for(int gen =0; gen < hyp.size (); gen ++){
System .out. println (gen+";"+ perGen .get(gen));

}
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APPENDIX C – Evaluation Results - Game
Theoretical Approach

This appendix contains the evaluation results, complementing the ones presented
on section 4.2. It should be noted that, on the Random Learning results, the original
plots contained the variable 𝑘 (number of sentences exchanged) on evidence. However,
the variable 𝐾 (number of parents selected) is the variable parameter on those, and
should therefore be the one displayed.

(a) Simulated (b) Published (NOWAK et al., 1999)

Figure 39: Evaluation Results - Parental Learning, 𝑘 = 4 - Generations on horizontal axis,
Normalized Payoff on vertical axis

(a) Simulated (b) Published (NOWAK et al., 1999)

Figure 40: Evaluation Results - Parental Learning, 𝑘 = 7 - Generations on horizontal axis,
Normalized Payoff on vertical axis



66 APPENDIX C. Evaluation Results - Game Theoretical Approach

(a) Simulated (b) Published (NOWAK et al., 1999)

Figure 41: Evaluation Results - Parental Learning, 𝑘 = 10 - Generations on horizontal
axis, Normalized Payoff on vertical axis

(a) Simulated (b) Published (NOWAK et al., 1999)

Figure 42: Evaluation Results - Random Learning, 𝐾 = 1 - Generations on horizontal
axis, Normalized Payoff on vertical axis

(a) Simulated (b) Published (NOWAK et al., 1999)

Figure 43: Evaluation Results - Random Learning, 𝐾 = 4 - Generations on horizontal
axis, Normalized Payoff on vertical axis
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(a) Simulated (b) Published (NOWAK et al., 1999)

Figure 44: Evaluation Results - Random Learning, 𝐾 = 7 - Generations on horizontal
axis, Normalized Payoff on vertical axis

(a) Simulated (b) Published (NOWAK et al., 1999)

Figure 45: Evaluation Results - Random Learning, 𝐾 = 10 - Generations on horizontal
axis, Normalized Payoff on vertical axis





69

ANNEX A – TG1



Bayesian language change models and a general framework

Matheus Proença1, Aline Villavicencio1, Marco Idiart2, Rodrigo Wilkens1
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Abstract. Language change consists on the variation of linguistic features
through time. Previous work was able to account the influences of language
acquisition on those changes, establishing the dynamical system grounds be-
hind language change. This work is the first of two parts composing a Bache-
lor Thesis that has the objective of finding similarities and an overall structure
within the models proposed by the literature, providing a proposal of theoretical
unifying of them.

Resumo. A mudança de linguagem consiste na variação das caracterı́sticas
linguı́sticas através do tempo. Trabalhos anteriores puderam quantificar as in-
fluências da aquisição de linguagem nessa mudança, estabelecendo o sistema
dinâmico fundamentando a mudança de linguagem. Esse trabalho é a primeira
de duas partes compondo um Trabalho de Graduação que tem como objetivo
encontrar similaridades e uma estrutura geral entre os modelos propostos pela
literatura, mostrando uma proposta de unificação destes.

1. Introduction

The study of language change is a core subject on cognitive sciences. The understanding
of its fundamental principles can enlighten the comprehension of how human cognition
works. To provide support to that kind of study, computational evaluations have been
used for a long time to assess mathematical models of different linguistic features.

In that matter, a well accepted hypothesis is that language acquisition plays a
major role in language change. To account those influences, several mathematical models
have been developed, proposing different approaches to the subject. Some of those models
present common modelling features, suggesting that a general framework can nest several
of those models under a single abstraction.

Those facts will be explored in the rest of the document. Section 2 presents the
overall objectives of this Bachelor Thesis and of this paper specifically, while section 3
displays the method employed to reach those objectives. Sections 4, 5, 6 and 7 present
a short description of some models selected from the literature. Section 8 presents a
proposed framework to allow a single general abstraction of the presented work. Section
9 provides the final statements of the paper, presenting the points to be developed in
following work.



2. Objectives
As the fist of two parts composing the Bachelor Thesis on Computer Engineering, this pa-
per provides an overall aspect of the phenomena being studied, covering a first theoretical
analysis of the literature and a general specification to the second part of this work.

The main objective of this Bachelor Thesis is to provide means to compare some
of the models suggested by the literature, verifying its common features and enabling the
construction of hybrid approaches, composed by parts of different models.

To allow those assessments to be made, a literature review will be provided in this
paper, covering a theoretical basis to the following steps and a initial general framework
will be provided to unify the study of the different models. In the second part of this
Bachelor Thesis, a computer application will be developed as a tool to perform empirical
assessments of the models. That tool will allow the selection of the multiple parts com-
posing a language change mathematical modelling approach, enabling the assessment of
the scenarios created by the different models and the comparison of those scenarios with
acquired empirical data.

3. Method
The preparation of this work, in order to achieve its objective of providing theoretical basis
in language change, and basic specification of a tool to perform empirical comparisons
of different language change models, was performed through the following steps, in that
order:

1. Gathering of different language change models;
2. Studying the working basis of those models;
3. Studying the results generated by those models;
4. Studying the relationship between the models;
5. Suggest a framework unifying the study of the different models;
6. Building a specification to the second part of this work, based on the models

above.

The following sections contain the results of the work performed following those
steps.

4. Population versus individual behaviours
The work described in [?] describes how the language acquisition mechanism has influ-
ences on the distribution of different grammars on the population, inferring that language
acquisition is a major driver of the language change phenomena.

4.1. Modelling method

To model those dynamics, the method proposed in [?] and [?] is used. That model de-
scribes a chain of learning individuals, where at each generation, one single individual
teaches other individual of the following generation. To formally describe that model, let
be defined:

• A class of grammars G;
• A set of expressions Lg ∈ Σ∗ generated by g ∈ G;



• A probability distribution Pg over Lg, given that a speaker of g produces an ex-
pression s with probability Pg(s);
• A propability distribution P (t) over G, given that in the generation t, a speaker of
g ∈ G can be found with the probability P (t)(g);
• A learning algorithm, given that an individual exposed to a n-tuple of expressions
Sn = (s1, . . . , sn) ∈ (Σ∗)n will acquire the grammar g = A(Sn), defined by the
map:

A :
∞⋃

i=1

(Σ∗)i → G (1)

4.2. Case Study

The work then applies the method to the case of clitic placement change in portuguese,
described in [?]. During 200 years, starting in 1800, the Portuguese language went to a
change in its usual clitic placement. Their work explains that affirmative proclitic con-
structions ceased to occur on European Portuguese.

To apply the model to this specific case, the paper describes three stress contours,
each referring to a type of production:

• c1, to affirmative proclitic productions;
• c2, to affirmative enclitic productions; and
• c3, to proclitic productions with quantified or wh-subjects.

Also, two grammars are defined:

• Classical Portuguese, GCP , where all three stress contours happen; and
• European Portuguese, GEP , c1 does not occur.

Afterwards, the work further defines the production distributions:

• Classical Portuguese:
– c1 is produced with probability p;
– c2 is produced with probability 1− 2p;
– c3 is produced with probability p.

• European Portuguese:
– c1 is not produced;
– c2 is produced with probability 1− q;
– c3 is produced with probability q.

To study the evolution of the dynamical system, the population distribution of the
grammars is as follows:

• The proportion of GCP speakers in a generation i is given by αi;
• The proportion of GEP speakers in a generation i is given by 1− αi.

Finally, the studies defines the learning algorithm as the Maximum Likelihood
Method: One chooses between GCP and GEP by selecting the grammar that maximizes
the probability of generating the given data.

Therefore, all the modelling pattern is defined:

• The class of grammars G = {GCP , GEP};
• The set of expressions, represented by the stress contours, Lg = {c1, c2, c3};



• The probability distribution over LGCP
, PGCP

= [p, 1− 2p, p];
• The probability distribution over LGEP

, PGEP
= [0, 1− q, q];

• The probability distribution over G, P (i) = [αi, 1− αi];
• The learning algorithm defined as the Maximum Likelihood Method.

The following step is to analyse the individual learning algorithm to infer popula-
tion dynamics. The first step to do so is to, given a set of linguistic data Sn = {s1, . . . , sn},
calculate the likelihoods P (Sn|GCP ) and P (Sn|GEP ). Assuming that the linguistic data
set was drawn in i.i.d. fashion, one can assume that:

P (Sn|Gk) =
n∏

i=1

P (si|Gk) (2)

The likelihoods are, therefore, defined by the equations 3 and 4, given that the
linguistic data set has a draws of c1, b draws of c3 and n− a− b draws of c2:

P (Sn|GCP ) =
n∏

i=1

P (si|GCP ) = pa(1− 2p)(n−a−b)pb (3)

P (Sn|GEP ) =
n∏

i=1

P (si|GEP ) = 0a(1− q)(n−a−b)qb (4)

The learning algorithms define that a learner chooses GEP if, and only if there is
no occurrence of c1, and equation 5 verifies:

P (Sn|GEP ) > P (Sn|GCP )⇔ (1− q)(n−b)qb > (1− 2p)(n−b)pb (5)

The work then proceeds analysing the outcomes of the conditions above, verifying
the evolutionary dynamics of the system. The conclusions are that, using the Maximum
Likelihood Method, the system tends to a population of European Portuguese speakers.
Furthermore it is shown that language change behaviours in the individual level need not
to be the same in population level. Also, it is shown that language learning has some
accountability in language change overtime.

5. On cultural exposure of learners
The phenomenon modelled by the work of [?] describes a different approach to the way
agents relate, using the same abstraction presented in the section 4.1, where language
change is described as an effect of iterating language learning through several generations.

This work discusses the hypothesis that at each generation each learner acquires
linguistic data from one sole individual, suggesting that the learner would obtain linguistic
data from its whole community, rather than only one person.

5.1. Iterated Learning Modelling

According to the modelling described in the section 4.1, the learner is exposed to linguistic
data coming from a single source. The learner then applies the method and chooses its



grammar, generating linguistic data to a next learner. This approach yields a sequence
of grammars chosen by the learners and later used as linguistic data sources. This chain
corresponds to a Markov chain with G as state space. The transition operator of this chain
can be defined: For any g ∈ G and h ∈ G, the probability of mapping from g to h is given
by the equation 6,

T [g, h] = prob[g → h] = prob[A(D) = h|D generated by Pg] (6)

with T [g, h] being the probability the learner would acquire h through a learning
algorithm A using the linguistic data D generated according to Pg.

Considering a population whose initial state is given by P (0), the distribution will
evolve according the Markov chain dynamics above:

P (t+1)(h) =
∑

g∈G
P (t)T [g, h] (7)

The equation 7 states that, disregarding the learning algorithm employed, the
points below can be drawn:

1. The probability distribution over the grammars spoken in the population must
evolve according to a linear rule;

2. This linear dynamics converges to a single stable equilibrium, given Markov chain
theory characterization [?];

3. This linear dynamics makes it impossible to any bifurcations to happen. Bifurca-
tions are accepted as a empirical need of language change, making Iterated Learn-
ing a dynamically insufficient model;

4. Also, the Iterated Learning approach cannot model a frequent language change
situation, language stability.

5.2. Social Learning Modelling

This approach suggest an improvement of the model described in the section 5.1, in-
cluding the fact that learners are exposed to linguistic data from multiple sources. This
improved approach is called Social Learning, or SL, and its dynamics are described below.

Unlike Iterated Learning, a learner as described in SL is exposed to a set of lin-
guistic data providing from more than one individual. To formalize this amelioration, one
can state that a learner is exposed from data drawn from a distribution µt given by the
equation1 8.

µt =
∑

g∈G
P (t)(g)Pg (8)

A learner exposed to linguistic data drawn from that distribution will learn a gram-
mar h with a probability given by the equation 9.

1This approach assumes that the population is perfectly distributed, with no network effects, i.e., differ-
ente levels of exposure to speakers.



prob[A(D) = h|D drawn according to µt] (9)

The proportion of speakers of h in the next generation is also given by that proba-
bility. The update rule to the generation is, therefore:

P (t+1)(h) = prob[A(D) = h|D drawn according to µt] (10)

which yields the map

fA : S → S, (11)

being S the state of possible distributions linguistic populations2.

The SL model, as described above, infers some substantial differences from IL:

1. Social Learning’s iterated map st+1 = f(st) is generically nonlinear;
2. As an outcome of that condition, and as parameters change continuously, bifurca-

tions are made possible;
3. For the same reasons, multiple stable states are possible, allowing a more wide

range of behaviours concerning multiple grammar systems;
4. Also, every learning algorithm A yields a corresponding evolutionary dynamics

map fA. Hence, different learning algorithm can yield potentially different evolu-
tionary outcomes.

6. Bayesian learning and cultural exposure hypothesis checking

The work of [?] investigates some of the hypothesis commonly used in language change
modelling. Namely it consider the influences generated by the idealization of language
change as a chain of single learners (as described in the Iterated Learning, section 5.1);
and also verifies some aspects of Bayesian learning, as the differences between Bayesian
sampling and a posteriori maximising.

To perform that task, the author uses the Bayesian learning as described in [?] to
check the differences between the sampling learner (SAM) and the maximum a posteri-
ori (MAP), and investigates the outcomes of three cultural scenarios: A chain of single
agents, a chain of pair of agents and complex3 populations.

To better explain the checking method, firstly the Bayesian learning modelling
pattern will be described, including its conclusions about the behaviours of the learning
algorithms under Iterated Learning. Afterwards, the case proposed by [?] is described,
exploring its outcomes.

2Each s ∈ S refers to a P (t).
3Complex refers to populations with learners beign exposed to multiple linguistic data sources, geo-

graphical influences and generation overlapping.



6.1. Bayesian learning modelling

The approach to model language change through a Bayesian learner fits in the same kind
of approach as the Iterated Learning (as described in the section 5.1). The theory relies in
describing the agents4 using the Bayes’ theorem, as described below.

The approach defines a set of linguistic hypothesis H. Each hypothesis h ∈ H
describes the inner unterstanding of the agent about the properties of the language the
hypothesis refers to. Therefore, each hypothesis correspond to a language (or a grammar).
Also, it is defined a set D of linguistic data. Each instance d of this set defines the
linguistic data at which the agent has been exposed.

Each agent has a prior distribution over H, P(h), representing the prior beliefs
of the learner, or better, the amount of evidence the agent has to be exposed to in order
to adopt a hypothesis. These prior distributions are updated using the linguistic data d at
which the agent is exposed to, resulting in a posterior distribution P(h|d). The Bayes’
theorem states that:

P(h|d) =
P(d|h)P(h)

P(d)
(12)

In the equation 12, P(h) is the prior, as described above, P(d) =
∑

hP(d|h)P(h),
and P(d|h) is the probability of the agent producing the linguistic data d in the linguis-
tic hypothesis h. This last probability can be calculated if the agent has access to the
linguistic data production algorithm.

To select a target linguistic hypothesis, the agent has to make a choice using the
updated information about the hypothesis, P(h|d). Three methods are proposed:

The first, named sampling learner (or SAM), consists in sampling the target lin-
guistic hypothesis hw according to its posterior probability (P(hw|d)). It is shown in [?]
that a chain of agents using SAM as the learning algorithm behaves like a Gibbs sampler
[?], and therefore converges to the prior when the number of agents in the chain increases.

The second, maximum a posteriori learner (or MAP), consists on selecting the
linguistic hypothesis that has the maximum posterior probability:

hw = arg max
h

P(h|d) (13)

The work of [?] successfully interprets a chain of agents using MAP as learning al-
gorithm as a expectation-maximisation algorithm [?]. The outcomes of that formalisation
is a more complex5 one, but still dependent on the prior.

The third, proposed by [?], uses the two extremes above to build a continuous
spectrum of learning algorithms. In its scheme the linguistic hypothesis is randomly cho-

4i.e. describing the part concerning the learning algorithm and the generation of utterances. Namely,
in the formality described in the section 4.1 these components refer to the learning algorithm A and the
probability distribution Pg .

5The hypothesis distribution of a chain of single identical agents, using MAP as their learning algorithm,
is, when the number of agents increase, centered at the maximum of the prior.[?]



sen with probability (P(d|h)P(h))r, in a way that with r = 1 the learner corresponds to
a sampling learner, and with r =∞ the learner is a maximum a posteriori.

6.2. Case Study

The work describes a language with two linguistic features, F1 and F2, each with two
possible values, denoted by Fi and F ∗i . To ease the notation, this linguistic features are
mapped as utterances of the form u = f1f2, where fi corresponds to the linguistic fea-
ture Fi. Hence, four possible utterances are possible (where 1 means that * is present
on the feature): 00, 01, 10 and 11. This language can be described by a vector of prob-
abilities of the four possible utterances p = [p00, p01, p10, p11]. Also, the agents will
be exposed to linguistic data represented by the vector of occurences of the utterances
n = [n00, n01, n10, n11].

The agent’s produces linguistic data following a multinomial distribution n ∼
Multinom(p) with the probability mass function given in the equation 14.

f(n;p) =
(n00 + n01 + n10 + n11)!

n00! · n01! · n10! · n11!
pn00

00 p
n01
01 p

n10
10 p

n11
11 (14)

Also, assuming that the agent has full access to its own learning algorithms and
that it assumes that the best model for language production is its own, its prior distribution
is defined using the conjugate Dirichlet, p ∼ Dirichlet(α), with the probability density
function given in the equation 15.

f(p;α) =
1

B(α)
pα00−1

00 pα01−1
01 pα10−1

10 pα11−1
11 (15)

where α = (α00, α01, α10, α11) > 0 are parameters and B(α) is the beta function.

From equations 12, 14 and 15, it can be derived that the posterior follows a Dirich-
let distribution, p|n ∼ Dirichlet(α + n).

With those definitions, the author proceeds to compare the sampling learner and
the maximum a posteriori learning algorithms across three different cultural configura-
tions.

The first configuration consists on the standard model of the literature, featuring
discrete, non-overlapping generations. Each of these generations contain only one agent
learning from the agent on the directly precedent generation. These assumptions fit in the
description of Iterated Learning, as described in the section 5.1. Also, it is the cultural
model used in the work of [?] to produce the conclusions about MAP and SAM laid on
the section 6.1. The outcomes of the author’s analysis are similar to other works: chain of
agents using SAM converge on the prior, and those using MAP are able to amplify weak
biases, but evolve with a more complex dynamics.

The second approach represents a modification of the Iterated Learning, consid-
ering that each generation has two agents. Those agents are exposed to a mixed primary
linguistic data, using as source both the agents from the previous generation. The results
of this approach when two agents of the same type are paired (SAM-SAM and MAP-



MAP) are similar to as if there were only one agent6 However, chains of SAM-MAP
agents behave like the corresponding single SAM chains. This result suggests that, re-
moving the idealisation of having a sole agent per generation, MAP learning algorithm
has the same properties of SAM one.

The third approach uses the model of complex populations described in [?], where
the cultural space is defined as a square grid of 10x10 regions, where each region can hold
a different population. The model supports generation overlapping, and it includes several
learning patterns. The results obtained by applying the model to Bayesian leaners is that
the language finds a asymptotic stability, and MAP and SAM models are indistinguish-
able.

7. Bayesian Decision Theory based agents
The work described in [?] proposes a novel approach to model the language acquisition
accounts on the language change patterns described in the section 4.2 (i.e. clitic change
on Portuguese). This novel approach has the objective of overcoming some drawbacks of
the frequentist approach to the subject7.

The paper suggests the Bayesian decision theory [?] as a candidate to solve the
problem. The approach aims in selecting a grammar that will maximize its expected utility
to communication, while accounting prior information in the decision. This method has
as advantage the fact that it assumes a more subjective perspective to the matter, taking
into account issues of communicability, processing and production of language.

7.1. Modelling Method
A Bayesian decision consists in choosing an action â from a decision set Θ given an
unknown paramater θ for which there is some observed data y. Bayesian Decision Theory
defines that one should take the action the maximizes its expected utility given the possible
value of the parameters. That can be expressed as:

â = arg max
a

E[U(a, θ)|y] = arg max
a

∫

Θ

U(a, θ)P(θ|y)dθ (16)

In the case of Portuguese clitic change, the action a can be regarded as choosing
between the grammar GEP or GCP . The parameter θ assumes the form of two distinct
parameters to model: α, the proportion of GEP speakers in the population; and p, the
rate at which GCP speakers produce enclitic constructions. Finally, the observed data y is
correspondent to the linguistic data at which the learner has been exposed, Sn.

The Bayesian decision rule to the portuguese clitic change case is reduced, hence,
to the equation below.

â = arg max
a

E[U(a, α, p)|Sn] = arg max
a

∫

[0,1]2
U(a, α, p)dP(α, p|Sn) (17)

6MAP-MAP chains behave identically to a chain of single MAP agents, while SAM-SAM have the
same final outcomes, reaching the asymptotic tendencies faster.

7Here, frequentist is used to described the practice of some methods of using as a learning algorithm a
method that selects the grammar seeking to match observed frequencies to grammar intrinsic probabilities,
e.g. the Maximum Likelihood Estimation.



To solve the equation 17, the utility function U(a, α, p) needs to be defined. The
author then proceeds to define a function that captures the facts that the learner wants
to acquire the same grammar as the rest of its community, and also that she wants to be
able to play both the roles of speaker and hearer. The basis to construct this function
is that, since GEP is regarded as a subset of GCP , a speaker of Classic Portuguese will
be able to understand both grammars. However, a speaker of European Portuguese will
experience some difficulty understanding GCP speakers. Conversely, EP speakers can
talk with no penalty with CP speakers, but not vice-versa. An utility function satisfying
those premisses is given on the equation 18.

U(a, α, p) =

{
−1

2
α if a = GCP

−1
2
(1− α) if a = GEP

(18)

Also in equation 17, to define dP(α, p|Sn), the author proceeds to calculate
P(α, p|Sn)d(α, p). To do so, she uses the Bayes’ theorem:

P(α, p|Sn) =
P(α, p)P(Sn|α, p)

P(Sn)
(19)

To calculate the elements on the equation 12, one must define the probability
density of the prior function, f(α, p), and the likelihood function, P(Sn|α, p).

The prior function should reproduce prior beliefs of the learner concerning the
possible combinations of α and p. In the case of Portuguese clitic change, two points
have to be addressed. First, if α = 1, all the population is composed of GEP speakers.
In that case, the value of p is irrelevant8. The hypothesis assumed is that p = 1 when
α = 19. Secondly, if α = 0 the population is entirely composed by GCP speakers. The
rate of enclisis should, therefore, reflect stable rates observed for Classical Portuguese.
The exact figures for that scenario are p = 0.05, according to [?]. According to those
definitions, the author assumes a probability density to the prior with the distribution of a
Gaussian with mean 0.95α + 0.05:

f(α, p) =
1

c
e−[p−(0.95α+0.05)]2 (20)

being c a normalizing constant, as defined below.

c =

∫

[0,1]2
e−[p−(0.95α+0.05)]2d(α, p) (21)

The likelihood function, in the other hand, is a direct consequence of the parame-
ters. It evaluates the probability of having Sn given the parameters α and p10. The function

8As it only applies to GCP speakers.
9This hypothesis assumes that, before disappearing, the speakers of GCP would use a higher proportion

of enclitic constructions, in order to fit the rest of the population.
10i.e. the probability of being exposed to the linguistic data set Sn, given that the population is composed

of a proportion ofGEP speakers defined byα and that the rate at whichGCP produces enclitic constructions
is defined by p



can be defined as n Bernoulli trials. Let k be the number of c2 constructions observed, the
likelihood is defined as below:

P(Sn|α, p) =

(
N

k

)
P(c2)kP(c1)N−k

=

(
N

k

)
[P(GCP )P(c2|GCP ) + P(GEP )]k × [P(GCP )P(c1|GCP )]N−k

=

(
N

k

)
[(1− α)p+ (1− α)]k × [(1− α)(1− p)]N−k (22)

With the equations 18, 12, 20 and 22, one can solve the decision criterion on the
equation 17. Actually, since the action parameter space is discrete and contain only two
possibilities (i.e. GCP and GEP ), the criterion can be reduced to:

E[U(GCP , α, p)|Sn] > E[U(GEP , α)|Sn] (23)

The equation 23 can be written, disregarding constants, as:

∫

[0,1]2
αP(Sn|α, p)f(α, p)P(α, p)d(α, p) >

∫

[0,1]2
(1−α)P(Sn|α, p)f(α, p)P(α, p)d(α, p)

(24)

That is reduced to the following criterion, that if true, will tell the learner to choose
GCP over GEP :

∫

[0,1]2
(2α− 1)P(Sn|α, p)f(α, p)P(α, p)d(α, p) < 0 (25)

Furthermore, the paper describes the rules to update the production rates at each
new generation. The rules are constructed in way that they are dependent on the frequen-
cies observed during learning:

P(c1|GCP ) =
N − k
N

(26)

P(c2|GCP ) =
k

N
(27)

P(c2|GEP ) = 1 (28)

8. A framework
The work presented in the previous sections, as well as other related work not presented
in this selection, can be fashioned as two distinct but intrinsically dependant phenomena,
defining two problems to be solved in order to understand acquisitionist language change.
Namely, one corresponds to the behaviours intrinsic to the agent while the other represents
the environment defining the cultural relationship between agents.



8.1. The agent

An agent can be regarded as a subject who speaks and listens to linguistic data. Regarding
language acquisition theories, it is expected that the agent produces linguistic data in a
language somewhat similar to the one it has been exposed to.

In that context, a Bayesian agent learns its language, and extract linguistic data
from it, using Bayesian constructions. To model that behaviour, the entities below can be
used:

Production Method The agent uses a probability distribution over the grammar to ex-
tract samples that will form its output linguistic data;

Linguistic Hypothesis The agent’s language is represented by the parameters of the
probability distribution used to produce linguistic data, defining its internal repre-
sentation of the language;

Learning Method The agents employs the method to, given a set of sample sentences11,
estimate its linguistic hypothesis.

8.2. The environment

The environment defines the relationships between agents, i.e. to whom they produce
linguistic data, and from whom they receive it. To allow more complex scenarios, weights
to those relationships are also interesting.

To correctly model those setups, a graph is proposed. Its vertices represent agents,
and its edges represent speak to relationships, with a parameter representing how many
sentences are produced per iteration. For instance, the graph on the figure 1 represents the
following relationship: Agent A speaks n sentences to agent B.

Figure 1. Example environment graph

9. Conclusion and future work

This work selected some of the existant literature about models of language change. While
this selection is not exhaustive, it can provide general concepts in the subject. The overall
review of these selected works yields a strong basis of reasoning about objectives and
paths to be accomplished in the second part of this work.

11The agent’s input linguistic data



With that structure presented in the section 8 defined, the several atomic concepts
presented in the literature can compose several different hybrid models, with various as-
sumptions, or even several levels of idealization. To allow assessments to be performed
with those hybrid models, a computational tool has to be developed.

Finally, the language change scenarios generated by those models have to be
checked against documented facts, verifying or disproving its effectiveness to model the
different phenomena of language change.

To accomplish those tasks, a schedule is proposed in the table 1. To specify and
develop a tool to empirical assessment of the models consists on the construction of a
tool that allow empirical tests to be performed over the unified structure. To gather well
documented language change data is to review the literature searching for expected be-
haviours on language change. Performing empirical assessments of the hybrid models
consists in using the tool developed to test the unified models. Finally, produce Bachelor
Thesis document represents the task of writing the work’s final text.

Table 1. Schedule to the second part of the work
Activity Dec Jan Feb Mar Apr May Jun

Specify a tool to empirical assessment of
the models

x

Develop the tool according to the specifi-
cation

x x x x

Gather well documented language change
data

x x x x

Perform empirical assessments of the hy-
brid models

x x

Produce Bachelor Thesis final document x x x x
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