
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

MARCELO CORRÊA YAMASHITA

Service Versioning and Compatibility at
Feature Level

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Profa. Dra. Renata Galante
Advisor

Profa. Dra. Karin Becker
Co-advisor

Porto Alegre, June 2013

CIP – CATALOGING-IN-PUBLICATION

Yamashita, Marcelo Corrêa

Service Versioning and Compatibility at Feature Level /
Marcelo Corrêa Yamashita. – Porto Alegre: PPGC da UFRGS,
2013.

72 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2013. Advisor: Renata Galante; Co-advisor: Karin Becker.

1. Service versioning. 2. Service compatibility. 3. Service
evolution management. I. Galante, Renata. II. Becker, Karin.
III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Prof. Aldo Bolten Lucion
Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb
Coordenador do PPGC: Prof. Álvaro Freitas Moreira
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“Creativity is intelligence having fun.”
— ALBERT EINSTEIN

AGRADECIMENTOS

Inicialmente, gostaria de agradecer às minhas orientadoras Renata Galante e Karin
Becker pelo excelente encaminhamento durante todo o mestrado; pelo extenso trabalho
quanto ao estresse da nossa proposta; pela exigência quanto a qualidade e produtividade
e pela paciência que sempre tiveram.

Aos professores do Instituto de Informática, pela oportunidade de cursar suas disci-
plinas. Em especial, aos professores Carlos Alberto Heuser e Leandro Krug Wives pelas
contribuições durante o Seminário de Andamento que ajudaram a delimitar o escopo deste
trabalho.

Aos amigos e colegas de laboratório pela companhia em discussões e aprendizado;
pela troca de conhecimento; pelos desabafos e risos compartilhados e churrascos longa-
mente planejados e não executados.

Ao meu pai, que mesmo a mares de distância sempre esteve ao meu lado e cujo ca-
minho de trabalho, esforço e dedicação à familia tenho como exemplo de vida. À minha
mãe, que mesmo distante sempre me transmitiu segurança e paz. Às minhas irmãs, com
quem pude sempre contar. E por fim, à Deus que me guiou a seu tempo, me iluminando e
colocando pessoas maravilhosas no meu caminho.

Um sincero obrigado à todos os que contribuíram direta ou indiretamente para a con-
clusão deste trabalho.

CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS 9

LIST OF FIGURES . 11

ABSTRACT . 13

RESUMO . 15

1 INTRODUCTION . 17

2 CONCEPTS . 21
2.1 Service Versioning . 21
2.2 Service Version Compatibility . 23
2.3 Version Management Lyfecycle . 25
2.4 Concluding Remarks . 26

3 RELATED WORK . 27
3.1 Service Versioning Approaches . 27
3.2 Service Compatibility Approaches . 29
3.3 Concluding Remarks . 31

4 A VERSIONING MODEL AT FEATURE LEVEL 33
4.1 Feature-oriented Versioning Model . 33
4.2 Feature Mapping . 34
4.3 Illustration . 35
4.4 Concluding Remarks . 38

5 VERSION MANAGER . 39
5.1 Version Manager Components . 39
5.2 WSDL/Features Converter . 39
5.3 Version Evolution Repository . 41
5.4 Versioning Process Illustration . 42
5.5 Compatibility Analyzer . 46
5.6 Compatibility Assessment Illustration 49
5.7 Concluding Remarks . 51

6 EXPERIMENTAL RESULTS . 53
6.1 Experiments . 53
6.2 Experiment 1 : Quantifying Changes . 54
6.3 Experiment 2 : Qualifying Changes . 56
6.4 Concluding Remarks . 57

7 CONCLUSIONS . 59

REFERENCES . 63
APPENDIX. 67
A.1 Introdução . 67
A.2 Conceitos . 68
A.3 O Modelo de Versionamento em Nível de Feature 69
A.4 Gerenciador de Versões . 69
A.4.1 Conversor de WSDL/Features . 69
A.4.2 Analisador de Compatibilidade . 70
A.5 Conclusões . 72

LIST OF ABBREVIATIONS AND ACRONYMS

DOM Document Object Model

CVS Concurrent Version System

IaaS Infrastructure as a Service

OWL-S Ontology Web Language for Services

PaaS Platform as a Service

SaaS Software as a Service

SOA Service-Oriented Architecture

SVN Subversion

UML Unified Modeling Language

W3C World Wide Web Consortium

WSDL Web Services Description Language

WSDL-SWeb Services Semantics

WSMO Web Service Modeling Ontology

XML eXtensible Markup Language

XSD XML Schema Definition

LIST OF FIGURES

Figure 1.1: Change Management Framework based on Usage Profiles 19

Figure 2.1: WSDL 1.x model . 22
Figure 2.2: Abstract feature representation . 25

Figure 4.1: Abstract feature representation . 33
Figure 4.2: Versioning Model at Feature Level 34
Figure 4.3: WSDL 1.1 description . 36
Figure 4.4: WSDL 1.1 description and Feature description 37
Figure 4.5: Dependency graph representing StockQuote version 1 38

Figure 5.1: Version Manager components . 39
Figure 5.2: Version Evolution Repository Schema 41
Figure 5.3: Repository state through versioning 42
Figure 5.4: StockQuote version 2 description (first part) 43
Figure 5.5: StockQuote version 2 description (second part) 44
Figure 5.6: New features’ description introduced in StockQuote version 2 45
Figure 5.7: Example of description change . 45
Figure 5.8: Comparing vStockQuote,2 with the repository 46
Figure 5.9: Incompatibility verdict propagation of vStockQuote,2 regarding vStockQuote,1 50
Figure 5.10: Compatibility algorithm result . 51

Figure 6.1: Total of features changed/affected per version 55
Figure 6.2: Features changed in description . 55
Figure 6.3: Features affected by changes . 55
Figure 6.4: Trading Service Compatibility Analysis 56

ABSTRACT

Service evolution requires sound strategies to appropriately manage versions result-
ing from changes during service lifecycle. Typically, a service version is exposed as a
description document that describes the service functionality, guiding client developers
on the details for accessing the service. However, there is no standard for handling the
versioning of service descriptions, which implies on difficulties on identifying and trac-
ing changes as well as measuring their impact, particularly in a finer grain perspective.
Compatibility addresses the graceful evolution of services by considering the effects of
changes on client applications. It defines a set of permissible change cases that do not
disrupt the service external integration. However, providers cannot always guarantee that
the necessary changes yield compatible service descriptions. Moreover, the concept of
compatibility is often applied to the entire service description, which can not be repre-
sentative of the actual use of the service by a particular client application. So, it is the
client’s developers responsibility to assess the extent of the change and their impact in
their particular usage scenario, which can be hard and error-prone without proper change
identification mechanisms. This work addresses service evolution in a finer grain manner,
which we refer to as feature level. Hence, we propose a versioning model and a com-
patibility algorithm at feature level, which allows the identification and qualification of
changes impact points, their ripple effect, as well as the assessment of changes’ compati-
bility in this finer grain of features. This work also reports an experiment based on a real
service, which explores the versioning model to assess the scope of implicit and explicit
changes and their compatibility assessment.

Keywords: Service versioning, service compatibility, service evolution management.

RESUMO

Versionamento e Compatibilidade de Serviços em Nível de Feature

A evolução de serviços requer estratégicas para lidar adequadamente com a gerên-
cia de versões resultantes das alterações ocorridas durante o ciclo de vida do serviço.
Normalmente, uma versão de serviço é exposta como um documento que descreve a fun-
cionalidade do serviço, orientando desenvolvedores clientes sobre os detalhes de acesso
ao serviço. No entanto, não existe um padrão para o tratamento de versões dos documen-
tos que descrevem o serviço. Isso implica na dificuldade de identificação e localização
de alterações, bem como na medição do seu impacto, especialmente em uma perspectiva
mais granular. A compatibilidade aborda um estilo mais elegante de evolução de servi-
ços, considerando os efeitos provenientes das alterações nas aplicações cliente. Ela define
um conjunto de alterações permissivas, as quais não afetem a integração externa com o
serviço. Entretanto, provedores não conseguem garantir que as alterações necessárias ao
serviço estarão no conjunto de alterações compatíveis. Além disso, o conceito de compa-
tibilidade é muitas vezes aplicado sobre a descrição do serviço como um todo, o que pode
não ser representativo do uso real do serviço por uma aplicação cliente em particular. As-
sim, é de responsabilidade dos desenvolvedores clientes avaliar a extensão das alterações
no serviço a fim de medir o impacto no seu cenário em particular. Esse processo pode
ser difícil e propenso a erros sem o uso de mecanismos de identificação de mudanças.
Este trabalho aborda a evolução do serviço de maneira mais granular, o que chamamos
de nível de feature. Desse modo, nós propomos um modelo de controle de versões e um
algoritmo de compatibilidade a nível de feature, que permite a identificação e qualifica-
ção do impacto das alterações, assim como a avaliação da compatibilidade das mudanças
neste nível de feature. Este trabalho também apresenta um experimento com base em
um serviço real, que explora o modelo de controle de versões para avaliar a extensão das
mudanças implícitas e explícitas e sua avaliação de compatibilidade.

Palavras-chave: Versionamento de serviços, compatibilidade de serviços, gestão de evo-
lução de serviços.

17

1 INTRODUCTION

Service Oriented Architecture (SOA) denotes an architectural approach that enables
the creation of loosely coupled systems on top of autonomous components, referred to as
services. The loose coupling is based on the fact that there is a well defined interface for
the service, which exposes the characteristics relevant for its consumption. From the SOA
perspective, a service is a set of functionality exposed by a provider to which consumers
can bind their applications. In turn, consumers can expose their applications as services
performing both the roles of consumer and provider. Organizations are encouraged to
include services in their business model in order to implement new business processes
using existing or third-party resources, as well as to embrace opportunities such as the
SaaS/PaaS/IaaS (Software/Platform/Infrastructure). The lifecycle of decoupled compo-
nents in SOA encourages the development of autonomous services and allows indepen-
dence during the phases of development, deployment and maintenance. But services do
not escape the necessity of dealing with change. In order to be aligned with new business
opportunities, services are subject to constant variations, requiring appropriate strategies
to handle multiple versions throughout their lifetime.

Service evolution management encompasses the creation, maintenance and decom-
mission of different versions in a service provider environment (PAPAZOGLOU, 2008),
which often leads to the maintenance of several concurrent versions. Service versioning
is an overloaded term that may refer to the versioning of service implementation or its
interface (BECKER et al., 2008; FRANK et al., 2008). In the context of service evolu-
tion, which regards the integration between consumers and providers, the versioning of
the service interface is often addressed, particularly the service interface description.

The interface description of a service exposes the service version as a unilateral con-
tract established by the provider, which guides clients on how to access service function-
ality. However, current notations for service interface description, including the standard
WSDL/XSD, do not properly handle versioning (ANDRIKOPOULOS; BENBERNOU;
PAPAZOGLOU, 2011). Typically, despite many service features remain unchanged (e.g.
types, operations, message calls), the whole description document is versioned. This
leads to difficulties on recognizing and measuring the actual impact of a change, espe-
cially regarding each particular usage scenario. In the absence of proper support, very
often providers publish new versions using unique version numbers or timestamps, to-
gether with release notes documents that hopefully will help clients to adjust to changes
(e.g. eBay, Google, Amazon). Typically, release notes describe the explicit changes (e.g.
changes on schema types of service calls), but fail to properly identify how changes prop-
agate their effect throughout the entire service (FOKAEFS et al., 2011; ZOU et al., 2008).
For instance, if a change is applied to a type that is referenced (directly or indirectly) by
an operation, then this operation is also affected by the change. As interface description

18

versions (and corresponding release notes) are traditionally large documents, the task of
finding whether the introduced changes impact client applications is hard, labor-intensive
and error-prone (BECKER et al., 2008; ZOU et al., 2008).

Service change management requires mechanisms for the identification and classifi-
cation of changes in order to plan for compensatory actions for their side effects. Thus,
service stakeholders need to quantify the scope of changes and qualify their impact. In
other words, they need to easily identify which are the changed (or affected) features in
a new version, if compared to previous ones, and whether these features were changed
in a way clients are not broken. The need for a smaller grain of change representation is
highlighted in different works, for purposes such as client synchronization (ZOU et al.,
2008), change impact quantification (WANG; CAPRETZ, 2009), accurate recognition
of changes (FOKAEFS et al., 2011), and usage oriented compatibility assessment (YA-
MASHITA et al., 2012; YAMASHITA; BECKER; GALANTE, 2011a).

Compatibility is a central issue on service evolution, because its assessment can
provide valuable information regarding the effects of changes on client applications
(BECKER et al., 2008). For instance, providers can evaluate the trade-offs between the
costs of provisioning multiple versions of a service, and the benefits of not disrupting their
clients. However, traditional compatibility approaches (e.g. (BROWN; ELLIS, 2004))
are also document-oriented, which means that the assessment of compatibility among
different versions is focused on the worst-case of total service compatibility. Establish-
ing compatibility relationship between service versions does not necessarily capture the
(in)compatibility impact of the change, because client applications are not bound to the
whole service as described by the interface, but rather to specific features they provide. By
capturing the compatibility impact on a finer-grain, one can estimate more accurately the
impact of changes (ANDRIKOPOULOS; BENBERNOU; PAPAZOGLOU, 2008), par-
ticularly regarding usage analysis on a specific client (PONNEKANTI; FOX, 2004) or a
set of consumer applications (YAMASHITA et al., 2012).

In summary, service stakeholders lack proper mechanisms to easily recognize changes
and their impact on evolving services. In this work, we address this deficiency by propos-
ing a versioning model in a finer-grain perspective, referred to as feature level, and a
compatibility assessment algorithm to automatically qualify versioned features with a
compatibility verdict. In doing so, the objective of this work is an approach to version ser-
vice features separately, along with their relationships, and identify the features directly
or indirectly affected. This approach also permits to assess the compatibility between two
feature versions in order to verify if the change can possibly affect any external integra-
tion of the service. As result, we can quantify and qualify service changes in a finer grain
and thereby, provide invaluable information for service stakeholders with the purpose of
helping them cope with changes during service evolution.

This work is part of a framework for supporting service evolution (YAMASHITA;
BECKER; GALANTE, 2011a; YAMASHITA et al., 2012). As mentioned, incompatible
changes might affect groups of applications very differently, depending on their use of the
service. Therefore, the main goal of this framework is to measure change impact based
on usage analysis. In this way, service providers have a more reliable understanding of
change effects, and are able to develop strategies for service evolution.

The framework is composed by tree main modules, depicted in Fig. 1.1. The work
described in this dissertation addresses the Version Manager module, which provides
a finer-grained representation in order to easily locate and assess the compatibility of
changes in service descriptions. Initial results regarding the the Version Manager are pre-

19

Figure 1.1: Change Management Framework based on Usage Profiles
Source: (YAMASHITA et al., 2012)

sented in (YAMASHITA; BECKER; GALANTE, 2011b) and (YAMASHITA; BECKER;
GALANTE, 2012). The Profile Manager clusters clients applications based on similar
patterns of usage using a knowledge discovery process, and summarizes them in usage
profiles of applications enriched with relevant metrics for usage analysis. Finally, the Us-
age Manager enables to analyze the impact of changes with regard to the characteristics
of usage profiles. Further details of the framework are discussed in (YAMASHITA et al.,
2012).

Despite being part of a framework, the approach discussed in this work lays foun-
dation for a wide spectrum of applications in the context of service evolution. For in-
stance, the analysis of change impact propagation, which is a straightforward consequence
of feature-oriented versioning, allows the quantification of change impact (WANG;
CAPRETZ, 2009). It could also support the automatic creation of more detailed release
notes based on usage analysis, as in (ZOU et al., 2008). Compatibility assessment at fea-
ture level enables service evolution based on usage profiles (YAMASHITA et al., 2012),
reduction of provisioned versions based on proxy redirections (FRANK et al., 2008), and
load balance management among implemented versions, which precedes the finer grain
deployment in (TREIBER; ANDRIKOPOULOS; DUSTDAR, 2009).

The remaining of this work is structured as follows. Chapter 2 presents the main con-
cepts for understanding this work. Chapter 3 presents related work. Chapter 4 describes
the proposed feature-oriented versioning model. Chapter 5 describes the manner we pro-
pose to version and assess compatibility according to the model presented in Chapter 4.
Experimental results are presented in Chapter 6. Finally, Chapter 7 presents the conclu-
sions and future works.

20

21

2 CONCEPTS

In this chapter we present the main concepts that surround service evolution, which
are core for understanding this work. First, we present the different perspectives regard-
ing service versioning and highlight the one that focuses on the service external integra-
tion. Then, we present the most adopted notation for service version description, used
throughout this work. As changes are inherent to services as every other software system
lifecycle, we also present the concept of compatibility, which acts as a means to establish
a verdict for inter-version agreement. Finally, we present an approach to manage service
versions with regard their compatibility.

2.1 Service Versioning

Services provide an approach for developing applications as an additive layer on top
of existing components and even though they are an evolutionary step beyond compo-
nent software architecture, they do not escape the necessity of the software lifecycle and
the necessity of change (BACHMANN, 2005). Service changes may originate from the
modification of the service functionality to improve performance, regulatory constraints
that require changes on the service behavior, among others (ANDRIKOPOULOS; BEN-
BERNOU; PAPAZOGLOU, 2008). In this context, service versioning is the consequence
of a service being advanced, adapted and adjusted over time.

There are two perspectives regarding service versioning: the service implementation
and the service interface versioning (FRANK et al., 2008). Service implementation ver-
sioning concerns every single change in the service source code. These are commonly
addressed with usual version control systems (e.g. CVS 1, SVN 2, Git 3, etc). Service
interface versioning concerns the changes that can affect the external service integration,
such as changes on the service request and response formats. In the context of this work,
service versioning is addressed in the perspective of service interfaces. Therefore, we
shall use the term service version as a synonym for service interface version. We for-
mally address service version as follows:

Definition Given two services s1 and s2, of a same provider. If s1.name = s2.name
and s1.interface 6= s2.interface and s2 > s1. Then s2.interface is a version of
s1.interface. By s2 > s1, assume that s2 is most recent than s1.

Service versions are often exposed as interface description documents. An interface
description document describes the service functionality, guiding client developers on

1http://savannah.nongnu.org/projects/cvs/
2http://subversion.apache.org/
3http://git-scm.com/

22

Figure 2.1: WSDL 1.x model
Source: Based on the illustrations in (4)

the details for accessing the service and handle its response. In this work, we study
services that have their versions described using Web Service Description Language 1.x
(WSDL) (CHRISTENSEN et al., 2001).

WSDL provides a model based on an XML format to describe Web services in two
fundamental sections that encompass the abstract functionality and the concrete details
of the services. At the abstract section, the service is described in terms of the exchange
of messages a service may receive or respond to. Messages are expressed by type ele-
ments which are described using an independent type system, typically a XML Scheme
(XSD) within the WSDL document. Operations associate the parameters of its input
or output messages to the types previously described. Finally, a portType describes the
functionality of a service by defining the operations that can be performed and the mes-
sages required to perform the operations. At the concrete section, a service is defined
as collections of network ports that implement a common portType. A port associates a
network address with a binding, which describes the transport format details for one or
more portTypes (CHRISTENSEN et al., 2001).

In (FRANK et al., 2008), it is argued that partitioning the service description into
abstract and concrete description, in effect, separates the interface description from im-
plementation. Since clients are bound to services providers through service interfaces,
they form the basis for the decoupled lifecycle between service clients and providers. It
is an important consequence from the perspective of SOA concept and justifies why Web
services are widely adopted to build SOA based systems. The components of the WSDL
model are shown in Figure 2.1.

The WSDL is the most common notation for service description and a W3C specifi-
cation. Large scale providers such as eBay, Amazon and FedEx, are among the providers
that expose service versions using WSDL. However, WSDL does not provide methods
to systematically describe versions (CHRISTENSEN et al., 2001). Typically, providers

4http://en.wikipedia.org/wiki/Web_Services_Description_Language

23

make use of the documentation tag within the WSDL document to describe an identifier
for the current version, but this tag is not specifically to handle version identifiers, which
in turn has no consensus on its form. Alternative service description notations, including
semantic ones such as WSDL-S 5, WSMO 6 and OWL-S 7, do not address versioning in a
systematically manner either.

During service evolution, it is a common approach to create and expose a new service
interface document for every change on the service functionality (FANG et al., 2007;
BROWN; ELLIS, 2004; ENDREI et al., 2006). In doing so, consumers can be aware
of the change and adapt their code whenever necessary. Also, service providers should
ideally expose new service versions regarding new releases and maintain the old versions
so consumers are not disrupted (ENDREI et al., 2006). However, the maintenance can
become cumbersome as the service move through several versions (FANG et al., 2007;
BROWN; ELLIS, 2004). To alleviate the problem of maintaining multiple versions of the
same service the concept of compatibility became widely accepted.

2.2 Service Version Compatibility

Service version compatibility is a means to guarantee that, when introducing a new
service version, stakeholders are not affected (PAPAZOGLOU, 2008). Compatibility can
have different meanings depending on the context or perspective from which it is viewed.
In the context of services, there are two kinds of compatibility to be considered: backward
compatibility and forward compatibility (FANG et al., 2007).

Backward compatibility is concerned with how changes in the service versions affect
existing service consumers (BECKER et al., 2008; FANG et al., 2007; ENDREI et al.,
2006). Assuring backward compatibility means that an evolving service should continue
supporting older clients as it changes its interface over time (ENDREI et al., 2006). On
the other hand, forward compatibility concerns how service consumers are able to access
older versions of a service without been downgraded (FANG et al., 2007).

A service version is defined to be backward compatible with regard to an older ver-
sion if it delivers at least the same functionality and generates outputs that can be con-
sumed by existing clients, without the necessity for clients to adapt their applications to
the changes (ANDRIKOPOULOS; BENBERNOU; PAPAZOGLOU, 2011; FANG et al.,
2007). In other words, backward compatibility ensures that current client applications
are not affected by the changes (ENDREI et al., 2006). Forward compatibility aims at
applying the same constraints on the opposite direction of versions relationship, i.e. from
the older with regard to a newer one (FANG et al., 2007). In this work we shall use the
term compatibility as a synonym for backward compatibility.

Compatibility is defined by the agreement of the changes occured between two service
versions with regard a set of permissible or prohibited change cases, such as Table 2.1.
We formally address compatibility as follows:

Definition Given two service versions s1.interface and s2.interface, in which s2 > s1.
Let C = {c1, c2, ..., cn} be the set of changes occurred to s2.interface with regard
to s1.interface and P = {p1, p2, ..., pn} a set of incompatible change cases. Then,
s2.interface is compatible with regard s1.interface ⇐⇒ ∀ci ∈ C, ci /∈ P .

5http://www.w3.org/Submission/WSDL-S/
6http://www.wsmo.org/
7http://www.daml.org/services/owl-s/1.1/

24

By the compatibility definition it is derived the following proposition, which regards
the affects of changes on client applications.

Proposition Given two service versions s1.interface and s2.interface and a set of
client applications C = {c1, c2, ..., cn}, which represents all the client applications that
consume s1.interface. Let ci.sj be a client application i that consumes a service version
j. Then, s2.interface is compatible with regard s1.interface⇒ ∀ci ∈ C, ci.s1 ≡ ci.s2.

Table 2.1 summarizes the change core cases along with their correspondent back-
ward compatibility verdict. For instance, adding an operation to a new version does not
represent incompatibility with regard to the external integration of the service, whereas
removing an operation can disrupt consumer applications. Notice that in Table 2.1, only
a very restricted set of changes are compatible. In fact, only the addition of an operation
or the addition of an independent complex data type are compatible (ANDRIKOPOU-
LOS; BENBERNOU; PAPAZOGLOU, 2011). By complex data type it is assumed the
WSDL message element and the types defined within the XSD description. Some change
can be compatible or not depending on the approach that discuss this particular change.

Table 2.1: Change core cases for interface compatibility assessment

Cases Change Interface
Element

Description Verdict

1 Add Operation Add new operation Yes

2 Add Type Add new independent complex data type Yes

3 Add Type Add optional type as an operation input parameter Yes/No

4 Add Type Add optional type as an operation output parame-
ter

Yes/No

5 Add Type Add mandatory type as an operation parameter No

6 Update Operation Rename operation No

7 Update Type Rename complex data type No

8 Update Type Change input parameter (type) from mandatory to
optional

Yes/No

9 Update Type Change output parameter (type) from optional to
mandatory

Yes/No

10 Update Type Change type from optional to mandatory No

11 Update Type Change primitive type with guarantee of not loos-
ing information (e.g. Integer to Float, etc)

Yes/No

12 Update Type Change primitive type without any guarantee of
not loosing information (e.g. Float to Integer, etc)

No

13 Update Type Change the structure of a complex data type re-
garding the order of its subtypes

No

14 Remove Operation Remove operation No

15 Remove Type Remove type (dependent of another element) No

25

Table 2.2: Works addressing compatibility cases

Works Compatible Cases

(BROWN; ELLIS, 2004) 1, 2

(PONNEKANTI; FOX, 2004) 1, 2, 3

(ENDREI et al., 2006) 1, 2, 3, 8

(FANG et al., 2007) 1, 2, 3, 4

(BECKER et al., 2008) 1, 2, 3, 8

(ANDRIKOPOULOS; BENBERNOU; PAPAZOGLOU, 2011) 1, 2, 3, 8, 9, 11

In general, an approach considers an incompatible case as compatible by having the ser-
vice stakeholders in accordance with predefined requirements, which relax compatibility.
Table 2.2 relates the works that address compatibility with the change cases in Table 2.1.

Nevertheless, the assessment of compatibility is important in the context of service
evolution because it can support providers on the decisions involving service version
management (SILVA et al., 2012). The compatibility core cases are also discussed in
Section 3.2 and further stressed by our algorithm in Section 5.5.

2.3 Version Management Lyfecycle

The evolution of a service is expressed through the creation and decommission of its
different versions during its lifetime (PAPAZOGLOU, 2008). Thus, as services evolve,
providers need mechanisms for managing the the different versions of a service.

To introduce change management, (ENDREI et al., 2006) specify a flow script for
managing concurrently versions of a service, as shown in Figure 2.2. The first step on
introducing a new version is to assess its compatibility with regard to the current one.
The result can lead to the decommission of a version or the need to concurrently maintain
different versions of the same service. In both cases, the older version should be set

Figure 2.2: Abstract feature representation

26

as deprecated and it should be determined a grace period for the clients to adapt their
applications to the new version before the older one is decommissioned (ENDREI et al.,
2006). Alternatively, the provider can choose to support only one version at a time, but
taking the risk of breaking clients applications when changes are incompatible.

2.4 Concluding Remarks

In this chapter, we presented the perspectives for versioning services and the most
adopted notation for describing service versions. Also, we presented the concept of com-
patibility, which also acts as a mechanism to help service providers on measuring the
impact of changes among versions. Together with the concept of compatibility, we pre-
sented a summary of compatibility change operations addressed in related works. Finally,
we presented an approach that address the service versioning lifecycle.

The above concepts are inherent to this work, since we propose an approach for ver-
sioning services and assess their compatibility on a finer-grain level.

27

3 RELATED WORK

In this chapter we present the main works regarding service evolution, which are re-
lated with this work. As this work proposes a versioning and compatibility approach in a
finer-grain, we begin by presenting the main works regarding service versioning and then,
we present the main works that address compatibility. We also present a brief comparison
of the approaches.

3.1 Service Versioning Approaches

Current approaches on service evolution address service versioning and service com-
patibility, in order to achieve some degree of conformance and/or transparency during
evolution. The main difficulty is that there is no standard for handling service versioning,
i.e., current interface description notation do not handle versioning.

In order to overcome this deficiency, best practices were proposed as a manner to
guide service providers on how to version their services. Common best practices in-
clude the use of different XML namespaces for every version that potentially disrupts
client applications; version identifiers for unambiguously naming versions; or a combina-
tion of these (BROWN; ELLIS, 2004; ENDREI et al., 2006; ANDRIKOPOULOS; BEN-
BERNOU; PAPAZOGLOU, 2011). These techniques can be used to version a service, as
well as its information type container, which is commonly an XML Schema Document
(XSD) within the WSDL document1.

The work of (BROWN; ELLIS, 2004) summarizes the best practices for dealing with
service versioning. It is presented a set of solutions and basic definitions in order to ver-
sion services, such as maintaining service descriptions as documentation for compatible
versions and using different namespaces for every incompatible one, which are identified
by a date or version stamp in accordance with W3C schema naming. As for incompatible
versions, it is suggested the implementation of intermediate routers in order to redirect
client requests to older implemented versions.

The work in (ENDREI et al., 2006) provides techniques and guidelines for service
versioning and change management. It is presented different versioning techniques for
service versioning based on the service name, endpoint and operation. An important con-
tribution is the change management flow, which was previously illustrated in section 2.3.

The work in (FANG et al., 2007) addresses the necessity of supporting version rep-
resentation within existing service standards by proposing the insertion of a version ele-
ment into the service version description, specifically in the WSDL description document.
Then, it is proposed a version-aware model within a service registry directory, which is

1http://www.w3.org/XML/2005/xsd-versioning-use-cases/#p871

28

Table 3.1: Related works characteristics regarding versioning

Approaches Best
practices

Versioning
Model

Finer-grain
perspective

Cope with W3C
standards

(BROWN; ELLIS, 2004) guidelines – – Yes

(ENDREI et al., 2006) guidelines – – Yes

(FANG et al., 2007) – adapt current
standards

– Yes

(BECKER et al., 2008) – framework type level –

(LEITNER et al., 2008) – framework – Yes

Note: We use hyphen (–) for works that does not address the topic in each column

able to handle the relationships of different versions. Additionally, by the use of noti-
fication components, the approach in (FANG et al., 2007) provides a means for service
consumers to be aware of new or deprecated service versions.

Alternatively, (LEITNER et al., 2008) proposes a version-graph model within a cus-
tom registry framework, which is able to store and maintain the relationships between
service versions. In doing so, this approach provides a degree of transparency for ser-
vice costumers, which can freely choose among the existing versions the one to bind their
applications to. However, it is left to the service provider the responsibility to identify
and specify the degree of changes between versions, which can be hard, error-prone and
costly if performed manually (BECKER et al., 2008).

The above approaches address the versioning of the entire interface description docu-
ment, which represent the service version. However, even if these approaches are suf-
ficient for the recording and communicating the different versions of a service (AN-
DRIKOPOULOS; BENBERNOU; PAPAZOGLOU, 2011), the focus on the entire de-
scription document leads to difficulties on locating and tracking changes and thereby,
measuring the actual impact of a change between versions, particularly regarding com-
patibility (ZOU et al., 2008; FOKAEFS et al., 2011).

(BECKER et al., 2008) addresses this difficulty by proposing a framework to automat-
ically detect the differences among service versions, which compares the representation
of versions description on object-oriented SOA schemes. The proposed framework allows
service descriptions to evolve in different granularity levels, by considering a loose depen-
dency between the services and the elements used to describe them. Hence, the framework
also considers the possibility of reusing elements across several services. However, the
proposed approach is based on the object-oriented paradigm and does not fit W3C current
standards.

We summarize in Table 3.1 the approaches strictly regarding the topic of versioning.
As highlighted in Table 3.1, early works were targeted in specifying guidelines on how to
version services, whereas latter ones proposed alternatives for handling service versions
in custom frameworks. Almost all of them, are focused on coping with current service
description standards. Also, (BECKER et al., 2008) started pointing out the necessity
of a finer-grained representation as a manner to leverage the reuse of unaltered elements
across versions. In fact, the lack of a finer-grain perspective also leads to difficulties on
managing versions, which has no mechanisms for tracing what have been altered during
evolution. With regard to service versioning, we propose in this work a versioning model

29

that enables a finer grained perspective of services, and which is aligned with W3C current
standards.

3.2 Service Compatibility Approaches

As we previously mentioned, compatibility defines a set of change cases that can
(or can not) be applied to the service versions in order to maintain the service external
integration. Compatibility is discussed in different aspects such as non-disruptive change
cases and their verdict assessment.

With respect to compatibility guidelines, many works have discussed change cases as
a means to establish or summarize empirical findings and common sense rules (BROWN;
ELLIS, 2004; ENDREI et al., 2006; FANG et al., 2007; BECKER et al., 2008; AN-
DRIKOPOULOS; BENBERNOU; PAPAZOGLOU, 2011). Nevertheless, the change
cases that comply with compatibility are very restricted (see Table 2.1), which limits
service providers to few types of changes if they look forward to maintaining service ver-
sions compatible. Thus, in order to enable a wider range of compatible changes, many
works propose means to relax compatibility rules but requiring preconditions to the ser-
vice provider or other stakeholders.

For instance, providers can relax the format of operation inputs by the addition of op-
tional types and maintain version compatibility if their systems are conditioned to handle
the new format of messages. Similarly, providers can change some primitive types (AN-
DRIKOPOULOS; BENBERNOU; PAPAZOGLOU, 2011), such as changing their types
from integer to float in order to receive a more detailed value as input.

The above examples represent a degree of flexibility on the service request messages,
since the provider can state and ensure the continuity of operation. However, the use of
relaxing cases on response messages is not compatible, because there is no guarantee that
consumers can adjust their applications to handle the relaxing cases. Even not ensuring
compatibility, some providers (e.g. Ebay) make use of relaxed cases on response mes-
sages, which can impact on consumers applications. As a manner to soften the impact,
the provider establishes a service evolution policy that informs to consumers guidelines
on how to build their applications, for instance, expecting and handling unrecognized
data. In practice, it is no more than an unilateral contract that does not guarantee com-
patibility. As alternative, stakeholders can make use of bilateral contracts, as the contract
compliant approach proposed in (ANDRIKOPOULOS; BENBERNOU; PAPAZOGLOU,
2009), which delineates a set of permissible changes, but can restrict the evolution of a
service.

With respect to compatibility assessment, many works have stated the need for
mechanisms to formally of automatically identifying and assessing the compatibility of
changes (ANDRIKOPOULOS; BENBERNOU; PAPAZOGLOU, 2011; YAMASHITA;
BECKER; GALANTE, 2011a; BECKER et al., 2008; PONNEKANTI; FOX, 2004). For
instance, the work of (ANDRIKOPOULOS; BENBERNOU; PAPAZOGLOU, 2011) ad-
dresses service compatibility by proposing a service evolution framework based on an
abstract model for the description of services, which details all its components such as
structural, behavioral and QoS-related. The proposed framework basis a T-shaped com-
patibility model that address either the compatibility of service versions and the inter-
relationship of different services. Then, it is described a compatibility check algorithm
in order to formally assess the compatibility verdict of service versions regarding the T-
shape model. With regard to the structural components of the abstract model, an operation

30

Table 3.2: Related works characteristics regarding compatibility

Approaches Change cases Assessment
framework

Finer-grain
perspective

Cope with
W3C

standards

(PONNEKANTI;
FOX, 2004)

guidelines usage-oriented identification Yes

(BROWN; ELLIS,
2004)

guidelines – – Yes

(ENDREI et al., 2006) guidelines – – Yes

(FANG et al., 2007) summarization – – Yes

(BECKER et al., 2008) relaxing cases automatic assessment –

(ANDRIKOPOULOS;
BENBERNOU;

PAPAZOGLOU, 2011)

relaxing cases formal identification Yes

(YAMASHITA;
BECKER; GALANTE,

2011a)

– automatic/
usage-oriented

identification/
assessment

Yes

Note: We use hyphen (–) for works that does not address the topic in each column

is composed by messages that in turn are aggregation of information types. In this model,
operations, messages and information types are elements of the service evolution frame-
work.

A compatibility checking algorithm is proposed in (BECKER et al., 2008), which
automatically assesses the compatibility verdict of service versions along with the set
of elements that describe the service data types. This approach also assumes flexibility
on request messages by verifying input parameters formats. It represents a very useful
mechanism that enables the service provider to understand the impact of changes during
evolution. However, it targets on classes that represent service descriptions and does not
directly cope with W3C current standards.

Another important approach is the work of (PONNEKANTI; FOX, 2004). It addresses
service interoperability, which is the ability to replace one service with another one (from
the consumers perspective) in terms of client usage. Although not directly related with
service evolution, which regards the compatibility of different versions of a same service,
the work of (PONNEKANTI; FOX, 2004) contributes to the current works by providing
a first perspective of compatibility in a finer-grain, together with the perspective of usage.
It also presents important results regarding usage, which reveals that consumers appli-
cations usually only access a fraction of the set of service functionality. This statement
implies that the compatibility assessment of the entire service version is not represen-
tative of the actual service usage from a set of consumers applications or an individual
usage scenario. The work of (YAMASHITA; BECKER; GALANTE, 2011a) makes use
of this statement on suggesting the benefits of compatibility assessment in a finer-grain
by considering compatibility against specific usage profiles, which preliminary results are
presented in (YAMASHITA et al., 2012).

We summarize in Table 3.2 the approaches regarding service version compatibility.

31

In Table 3.2, early works were focused on identifying and summarizing change cases
and their compatibility verdict, whereas latter ones proposed mechanisms to formally or
automatically assess compatibility. Many works discussed flexibility by relaxing com-
patibility rules, although every relaxed case require a precondition that depending on the
affected stakeholder can not be achieved. Almost all of the presented works were fo-
cused on coping with current service description standards. Also, many works address a
finer grain of change identification in order to identify the nature of the change (structural
or behavioral) (ANDRIKOPOULOS; BENBERNOU; PAPAZOGLOU, 2011), verify and
reuse the assessment of independent service data types (BECKER et al., 2008) and verify
the actual impact of changes based on a particular usage scenario (PONNEKANTI; FOX,
2004) or usage profiles (YAMASHITA; BECKER; GALANTE, 2011a). With regard to
service compatibility, we propose an automatic compatibility assessment on a finer grain
based on the algorithm of (BECKER et al., 2008), but aligned with W3C standards. As
result, we aim to enable the compatibility assessment based on usage profiles proposed
in (YAMASHITA; BECKER; GALANTE, 2011a).

3.3 Concluding Remarks

In the above sections, we presented the main works regarding service versioning and
compatibility assessment. We compared the related works considering service versioning
and compatibility separately. We commented our approach regarding both topics, which
in summary, proposes a versioning model and compatibility algorithm in a finer grain that
is aligned with current W3C standards and enables the automatic assessment of compati-
bility on this finer grain of service representation.

32

33

4 A VERSIONING MODEL AT FEATURE LEVEL

In this chapter, we propose a versioning model that aims to version the features of a
service interface separately. Our final goal is to support the analysis of compatibility on
a finer grain. In doing so, it is possible to analyze changes in a finer grain perspective
and pinpoint the affected features ripple effect. As result, we can estimate the consumer
disruption more accurately.

4.1 Feature-oriented Versioning Model

In order to understand service evolution on a finer grain, we need to emphasize that
client applications are not bound to the entire set of functionality exposed by a service,
as pointed in (PONNEKANTI; FOX, 2004). In fact, clients are bound to a subset of
functionality (e.g. operations) along with their expected and delivered data type struc-
ture. For this purpose, we characterize a service as a composition of operations, through
which data is exchanged according to recursively predefined types (e.g. messages, schema
elements). Because services, operations and types represent the relevant aspects that de-
scribe service functionality (FANG et al., 2007), these three concepts are referred to as
service features (LEE; KANG; LEE, 2002), which is characterized as a versionable ele-
ment. From an abstract perspective, those elements are addressed in a similar manner in
(ANDRIKOPOULOS; BENBERNOU; PAPAZOGLOU, 2011). The abstract representa-
tion of features and their relationship is depicted in Figure 4.1.

We propose to version features separately while maintaining their relationships
through their versions, which is represented by a graph of features. As mentioned, ver-
sioning features separately provides a means to identify affected features during version-
ing, whereas maintaining their dependency relationships enables the consistency with the
interface and further analysis to the change propagation effects.

The idea of feature-oriented versioning relies on providing the abstract management
of the different parts of the interface description in order to version only changed features,
rather than the entire service interface. Hence, when a new service interface document is
exposed, we convert it to an abstract internal representation, compare the textual descrip-
tions of the features with regard to previously existing ones, as well as their relationship

Figure 4.1: Abstract feature representation

34

Figure 4.2: Versioning Model at Feature Level

with other features, and create new versions only when changes occurred. Notice that this
conceptual view of a service is relatively independent of service description notation.

The versioning model is depicted in Figure 4.2 using a UML class diagram. A Feature
is generalization of Service, Operation and Type. Each Feature is identified by a Name
and has at least one Version, which in turn can have many dependency relationships of
versions of another features. In order to comply with the abstract feature representation,
a constraint is set on the dependency relationship to assure a) that a feature version does
not depend on another version of the same feature and b) the representation hierarchy of
feature types (Figure 4.1). Notice that as we propose to version the operations and types
of a service separately, the feature service in the version model represents a shell of the
former service, which holds the dependencies for its operations and types.

Versions are uniquely identified by a pair <Feature.name, Version.number>, refer-
enced throughout the remaining of this work as vfeatureName,versionNumber. The Ver-
sion.Description attribute corresponds to the textual description of the WSDL document,
according to the feature type (service, operation or type). The mapping in Section 4.2
defines the fragment of description within the WSDL document that is related to each
type of feature. The compatibility relationship between two versions of a same feature is
also maintained and assessed, as described in more details in section 5.5. In order to be
aligned with the concept of compatibility, a constraint is set on the compatibility relation-
ship to impose the relationship only between versions of a same feature. Notice that while
the dependency relationship regards the versions of different features, the compatibility
relationship addresses different versions of a same feature.

4.2 Feature Mapping

In order to extract the textual description of WSDL/XSD to the proposed feature-
oriented version model, we have established the following correspondence for feature
mapping:

• Operation: related to the content of the tag <operation> within both <portType>
and <binding> tags;

35

• Type: related to the content of tags <element>, <complexType> or <simpleType>
within <schema> tag or the content of <message> tag. When addressing types, we
only consider for versioning the ones defined outside the context of XSD complex
elements, which means that we version only types meant for reuse. Consequently,
we do not version neither primitive types (e.g. string, double, etc), nor complex
types that cannot be referenced elsewhere.

• Service: related to all the remaining content of the interface description document,
such as the <service> tag and the remaining content of <schema>, <portType>
and <binding> tags.

This mapping was developed considering WSDL 1.x because of its high extensive
adoption. For instance, services such as eBay Services 1, Amazon EC2 2, Google Search 3,
FedEx Services 4, PayPal Services 5 among others, use WSDL version 1.x to expose their
service versions. Although WSDL 1.x do not represent the latest version of the WSDL
specification, our mechanism can be adapted to the more recent WSDL 2.0 with small
changes.

4.3 Illustration

We illustrate in Figure 4.3 and Figure 4.4 the manner we map the fragments of a
WSDL 1.6 description to the proposed representation, using the StockQuote service 6.
Figure 4.3 presents the entire interface description for the StockQuote service, which
has an operation (GetLastTradePrice), two complex data types (TradePriceRequest and
TradePrice) and two exchange messages (GetLastTradePriceInput and GetLastTrade-
PriceOutput) used as a bridge to bind the operations to their types. Hence, we propose to
separate the StockQuote description into fragments to represent the service, its operation
and types separately. The result of this fragmentation is depicted in Figure 4.4, in which
every fragment of description is associated with a feature. For instance, GetLastTrade-
Price feature is associated with the description fragment of Figure 4.4b.

Moreover, we identify in the description fragments the dependency of each feature,
which in case of GetLastTradePrice for instance, are GetLastTradePriceInput and Get-
LastTradePriceOutput. We maintain the dependency relationships on a graph contain-
ing the features versions, which is rooted in the feature that represents the service. The
features graph that represents the StockQuote service in a finer-grain is illustrated in Fig-
ure 4.5.

1https://www.x.com/developers/ebay
2http://aws.amazon.com/pt/ec2/
3https://developers.google.com/soap-search/ (until 2011)
4http://www.fedex.com/us/fcl/pckgenvlp/developer-resources/index.html
5https://www.paypalobjects.com/wsdl/PayPalSvc.wsdl
6The StockQuote service is the default example in the WSDL documentation page (CHRISTENSEN

et al., 2001).

36

Figure 4.3: WSDL 1.1 description

37

(a) Description associated with StockQuote service

(b) Description associated with GetLastTradePrice operation

(c) Description associated with GetLastTradePriceInput type

(d) Description associated with GetLastTradePriceOutput type

(e) Description associated with LastTradeRequest type

(f) Description associated with TradePrice type

Figure 4.4: WSDL 1.1 description and Feature description

38

Figure 4.5: Dependency graph representing StockQuote version 1

4.4 Concluding Remarks

In this chapter we presented a feature-oriented versioning model, which aims to enable
the versioning of the entire service in a finer-grained manner. We presented the model
and explained the manner we propose to map the elements of a service interface to the
proposed feature level representation. Also, we illustrated the resulting of the service
fragmentation as a rooted graph composed by feature versions, which aims to maintain
the dependency relationships of features. In summary, this chapter presents the theoretical
foundation that basis the WSDL-to-features Converter and the Compatibility Assessment
of versions, which are detailed in the next chapter.

39

5 VERSION MANAGER

In this chapter we present the Version Manager, which is part of the Change Manage-
ment Framework (Figure 1.1). Hence, we introduce in this chapter the Version Manager
components and explain our approach in order to version features and assess their com-
patibility in a finer grain perspective.

5.1 Version Manager Components

The objective of the Version Manager is to implement the concepts of the feature-
oriented model presented in Chapter 4, and thus, the versioning of a service at feature
level, as well as the assessment of compatibility for versions in this finer-grain model
of features. In summary, the contribution of the Version Manager is twofold: a) the
quantification of features affected by the changes between two service versions, and b)
the qualification of the change regarding each feature.

The Version Manager, depicted in Figure 5.1, is composed by three components: the
WSDL/Features Converter that is responsible for extracting the features from the service
versions with regard to the feature-oriented model ; the Compatibility Analyzer that aims
to assess the compatibility of changes between features versions; and the Version Evolu-
tionary Repository, which stores features versions, together with their dependencies. The
Version Manager components are following described in this chapter.

5.2 WSDL/Features Converter

As mentioned, a service is represented by an interface description document (WSDL).
In turn, a feature version corresponds to a fragment of the interface description document
together with a reference to its dependencies. Hence, in order to version the features of
a service version separately, we need to identify the features within the service interface
description document, relate them to the appropriate feature versions, which includes the
possibility of creating new versions in this process, and store this abstract representation

Figure 5.1: Version Manager components

40

in the Version Evolution Repository. This requires two phases: a) the extraction of the
features from the interface description document, and b) the analysis of the features in
order to discover whether they have changed regarding all their previous representation in
the repository.

In versioning features, we intend to version only explicitly changed ones, or features
that are indirectly affected by the changes. We refer to changed as a feature that either
has its description fragment changed somehow, depends on feature it did not previously
depended on, or, conversely, no longer depends on a feature it previously depended on.
Also, we refer to affected as a feature that did not explicitly changed, but depends on a
feature that has changed directly or indirectly.

The first phase on versioning features is the extraction of the feature representation
from the interface description document. The extraction of features encompasses the
following steps:

1. the parsing of the interface description document (e.g. Figure 4.3) in order to iden-
tify the features and their relationships;

2. the generation of a graph of features’ versions (e.g. Figure 4.5) with regard to the
abstract feature representation (e.g. Figure 4.1); and

3. the process of relating the fragments of description to their correspondent feature
version (e.g. Figure 4.4), following the mapping presented in section 4.2.

The resulting graph encompasses all the content of the interface description docu-
ment, but the ability to represented the service as a set of features and their relationships
allows us to analyze them separately. Once the graph of features’ versions is assembled,
the second phase on versioning features is to analyze each feature in the graph in order
to discover whether it has changed or affected, and create a new version in the reposi-
tory when that occur. Thus, for each feature, the WSDL/Features Converter analyzes the
features’ versions with the same name in the Version Evolution Repository in order to
compare its textual description to existent versions. The analysis is done in a bottom-up
manner regarding the graph of features in order to properly verify dependencies changes.
The analysis leads to four possibilities, which we refer to as versioning cases:

1. If the feature does not exist in the Version Evolution Repository, then the feature is
created together with its first version.

2. If the feature already exists (i.e. it was previously versioned) and its description
differs from the last version of this particular feature, then it is marked as changed
in the graph and a new version for this feature is created.

3. If the feature already exists and its description is equal to an existing version, then:

(a) If it depends on another feature that has been already marked as changed, then
a new version is created due propagation effects (i.e. the feature was affected
by a change).

(b) If it does not depend on any changed feature, then every other feature that
depends on this one is referenced to an already existing (equal) version in the
Version Evolution Repository.

41

5.3 Version Evolution Repository

As mentioned, the WSDL/Features Converter needs to compare the new feature ver-
sions with the existing ones in order to version only the changed/affected ones. Existing
features’ versions are maintained within the Version Evolution Repository, which is re-
sponsible for storing the features’ versions along with their dependency relationships.
Features’ versions are stored following the schema presented in Figure 5.2, which is
aligned with the versioning model of Figure 4.2. Relationship constraints are not ad-
dressed in the Version Evolution Repository schema.

Figure 5.2: Version Evolution Repository Schema

42

5.4 Versioning Process Illustration

To illustrate the process of feature versioning, suppose a provider exposes the interface
description for the first version of StockQuote service, depicted in Figure 4.3. So, in order
to incorporate the first version of StrockQuote into the Version Evolution Repository, the
WSDL/Features Converter parses the WSDL document that represents the StrockQuote
version for the purpose of identifying the features and their relationships.

After parsing the StrockQuote version, the WSDL/Features Converter generates a
graph of features, in which the vertices of the graph represent the StrockQuote features
and the edges represent the relationship among features with regard the abstract features
representation. Next, the WSDL/Features Converter relates every feature in the graph
with its correspondent description fragment from the WSDL document resulting in the
graph depicted in Figure 5.3a, of which the features are associated with the fragments

(a) Repository state after adding vStockQuote,1

(b) Repository state after adding vStockQuote,2

Figure 5.3: Repository state through versioning

43

in Figure 4.4. As none of the features exists in the Version Evolution Repository, they
are created together with their first version (versioning case 1). The state of the Ver-
sion Evolution Repository after the addition of first StockQuote version is as depicted in
Figure 5.3a.

Suppose now that the provider exposes a new version of the StockQuote service, which
has two major changes:

1. a new operation together with its related types exchanged in messages, and;

2. changes in the description fragment of an existing feature.

These changes are depicted by the underlined text in Figures 5.4 and 5.5, which illus-
trate the new StockQuote version.

Figure 5.4: StockQuote version 2 description (first part)

44

Figure 5.5: StockQuote version 2 description (second part)

The first change introduces the operation vGetBestOffer,1 along with its associated types
vGetBestOfferOutput,1, vGetBestOfferInput,1, vBestOffer,1 and vStatusType,1, which have their
description depicted separately in Figure 5.6. The second change modifies the primitive
type associated with TradePrice, which is changed from float to double as illustrated in
Figure 5.7.

Thus, in order to incorporate the second version of the StockQuote service, the WSDL/
Features Converter transforms this new version to the feature representation, which re-
sults in the graph of Figure 5.8. In this process, the change in TradePrice description is
identified together with all the new features and the affected ones.

So a new version of TradePrice type (vTradePrice,2) is created in the Version Evolution
Repository (versioning case 2), and associated with this feature. Because of the ripple
effect, the features GetLastTradePriceOutput, GetLastTradePrice and StockQuote are af-
fected, and hence equally versioned (versioning case 3(a)). In addition, features, together
with the respective versions, are created for the new operation GetBestOffer, which in turn
depends on the newly created features GetBestOfferInput and GetBestOfferOutput. These
in turn depend on other features, which either previously existed (TradePrice) or need to
be created (BestOffer, StatusType).

Notice that the features vGetLastTradePriceInput,1 and vTradePriceRequest,1 are not ver-
sioned with vTradePrice,2, but rather have their versions reused (versioning case 3(b)). As
these features are unchanged (Figure 5.8), i.e. neither changed nor affected, the features
that depend on these have their dependency relationships updated, in order to reference
to the ones already existent in the Version Evolution Repository, for instance the feature
GetLastTradePrice, 2. The resulting state of the repository after adding vStockQuote,2 is
depicted in Figure 5.3b.

45

(a) Description associated with GetBestOffer operation

(a) Description associated with BestOfferInput type

(a) Description associated with BestOfferOutput type

(a) Description associated with BestOffer type

(a) Description associated with StatusType type

Figure 5.6: New features’ description introduced in StockQuote version 2

Figure 5.7: Example of description change

46

Figure 5.8: Comparing vStockQuote,2 with the repository

5.5 Compatibility Analyzer

The process described in the previous section extracts from an existing standard
WSDL/ XSD service description an internal representation of features, in which only
the portions of the service explicitly changed or affected by the change are related to new
versions. Otherwise, previously existing versions are associated to the features that con-
stitute the service. In this way, any service description corresponds internally to a rooted
graph of versions, where each version is related to a feature. The graph also defines the
dependencies between features’ versions for instance, a service with regard to its opera-
tions or an operation with regard to the types that describe its messages. In addition to
identifying which aspects of a service interface have changed, it is necessary to assess if
each change is backward compatible with regard to previous versions.

The algorithm proposed in this work aims to assess compatibility between any two
versions of a service, which implies examining recursively the compatibility of all the
features that describe the service. The assessment of compatibility at feature level is an
adaptation of the algorithm proposed in (BECKER et al., 2008), which assesses compati-
bility on object-oriented service descriptions. We have adapted this algorithm to address
the compatibility checking on smaller fragments of the WSDL interface description, as
represented by our feature-oriented versioning model.

As mentioned in Chapter 3, most work considers a very restricted set of compatible
change operations (BROWN; ELLIS, 2004; FANG et al., 2007; ANDRIKOPOULOS;
BENBERNOU; PAPAZOGLOU, 2011), which is summarized in a) addition of new op-
erations, and b) addition of new types that are not contained within previously existing
types. These are also the only compatible changes considered in this work. Table 5.1
describes the cases addressed by the algorithm, in terms of change operations that can
be applied over the versioning model. Any other change not mentioned in Table 5.1 is
considered incompatible.

47

Table 5.1: Change cases for compatibility assessment

Cases Change Feature Type Description Compatibility
Verdict

1 Add Operation Add new operation to a service Compatible

2 Add Type Add new type as dependency of a
new operation/type

Compatible

3 Add Type Add new type as dependency of an
existent operation/type

Incompatible

4 Update Operation Change in description Incompatible

5 Update Service Change in description Incompatible

6 Update Type Change in description due to or-
der, cardinality or type

Incompatible

7 Remove Operation Remove operation dependency Incompatible

8 Remove Type Remove type dependency Incompatible

The algorithm aims to recursively evaluate the compatibility relationship between two
feature versions according to the rules of Table 5.1, and to establish the compatibility
verdict between them, such as the relation between versions depicted in Figure 4.2. The
algorithm receives two feature versions as input, vfeature,p and vfeature,q. We assume that both
versions relate to the same feature (i.e. have the same name).

Then, the algorithm assesses the compatibility of the latter with regard to the former
as the following procedure:

1. the algorithm verifies if dependencies of features present in vfeature,p have not been
removed from vfeature,q (cases 7 and 8 of Table 5.1);

2. compares the description fragment associated with the compared versions (cases 4,
5 and 6);

3. recursively evaluates the compatibility of all corresponding dependent feature ver-
sions (cases 1, 2 and 3) , and then;

4. sets the compatibility relationship together with the respective verdict.

The version graph rooted in vfeature,q, is traversed in a depth-first manner, which en-
ables the propagation of detected incompatibilities to dependent versions. The pseudo-
algorithm is presented in Listing 1.

Initially, the algorithm (line 2) evaluates whether feature dependencies were removed
from vfeature,q compared to vfeature,p. Function evaluateRemovedDependencies verifies if
all features in the set of dependencies of vfeature,p still exist in the set of dependencies of
vfeature,q. In line 3, the algorithm analyzes the textual description associated with versions
vfeature,q and vfeature,p, as described in Listing 2.

48

Listing 1 : compatibilityAssessment(vfeature,p, vfeature,q)
1: boolean compat← true;
2: compat← evaluateRemovedDependencies(vfeature,p, vfeature,q);
3: compat← compat ∧ evaluateDescription(vfeature,p, vfeature,q);
4: for all vdep,Qj ∈ setOfDependencies(vfeature,q) do
5: // If there is a dependency feature version with the same name but different version
6: if exists vdep,Pi ∈ setOfDependencies(vfeature,p)∧ (depP = depQ)∧ (i 6= j) then
7: // Verify recursively if these two versions of a same feature are in turn compatible
8: compat← compat ∧ compatibilityAssessment(vdepP,i, vdepQ,j);
9: end if

10: end for
11: setV erdict(vfeature,q, vfeature,p, compat);
12: return compat;

Then, the algorithm traverses all features upon which vfeature,q depends on in order to
assess their compatibility against the corresponding ones in the dependency set of vfeature,p.
Hence, for all dependencies of vfeature,q (line 4), if there is a dependency in vfeature,p with
the same feature name and different version number (line 6), then the algorithm is called
recursively to assess the compatibility of these two versions (line 8). Thus, if vfeature,q

depends on a feature that vfeature,p also depends on but not on the same version of that
feature, the algorithm is called in order to assess the compatibility between these versions.

If any dependency is incompatible, then the algorithm updates the verdict to incom-
patible due to the ripple effect. Also, if there is a dependent version of vfeature,q that does
not exist in the set of dependencies of vfeature,p, then this situation is related to the compati-
ble cases 1 and 2 of Table 5.1. Finally, the algorithm returns the compatibility assessment
result of vfeature,q regarding vfeature,p.

Notice that the algorithm could stop at any point where an incompatibility is detected,
but we have opted by continuing the assessment as a placeholder for later documenting
all incompatible changes found, as well as for ensuring that each feature will be assessed.
We are aware that stopping the algorithm at the point where an incompatibility is found
can improve its performance. However, we plan for studying less restrictive compatibility
in immediately future work, in which the verdict of every feature can be analyzed against
usage.

Function evaluateDescription (line 3 in Listing 1), detailed in Listing 2, aims at verify-
ing the cases of Table 5.1 that concerns the analysis of the description fragments, namely
cases 4, 5 and 6. It receives as input the versions of a same feature vfeature,p and vfeature,q

and check if their descriptions are different (line 1), assuming incompatibility, except in
the case of type features, when a more detailed examination of the description field is per-
formed (lines 2-15). In the future we plan for studying less restrictive compatibility. For
instance, adding a new optional type at the end of a complex type sequence can be compat-
ible if it is an input message, as proposed in (BECKER et al., 2008; ANDRIKOPOULOS;
BENBERNOU; PAPAZOGLOU, 2011).

In order to extract the description elements and their properties from the WSDL frag-
ments of features’ versions, we use the function setOfElements that parses the excerpt of
WSDL corresponding to the description field. The algorithm verifies if there is any added
element in vfeature,q regarding vfeature,p (line 4), which leads to the verification of case 3 of
Table 5.1. Next, if the element exists within the two versions we compare their prop-

49

Listing 2 : evaluateDescription(vfeature,p,vfeature,q)
1: if vfeature,p(description) 6= vfeature,q(description) then
2: if vfeature,p(Feature.Type) = type then
3: for all ej ∈ setOfElements(vfeature,q) do
4: if not exists ei ∈ setOfElements(vfeature,p) ∧ ei(name) = ej(name) then
5: return false
6: else if (ei(order) 6= ej(order) ∨ ei(type) 6= ej(type) ∨ ei(cardinality) 6=

ej(cardinality)) then
7: return false
8: end if
9: end for

10: for all ei ∈ setOfElements(vfeature,p) do
11: if not exists ej ∈ setOfElements(vfeature,q) ∧ ei(name) = ej(name) then
12: return false
13: end if
14: end for
15: else
16: return false
17: end if
18: end if
19: return true

erties (line 6) in order to verify if they have changed in order, type or cardinality. The
comparison of element properties refers to case 4 of Table 5.1. Removed description ele-
ments are verified in lines 10 to 14. Finally, the evaluateDescription function returns the
compatibility verdict for vfeature,q regarding vfeature,p.

5.6 Compatibility Assessment Illustration

To illustrate our algorithm procedure, suppose StockQuote versions vStockQuote,1 and
vStockQuote,2 as the algorithm input parameters. In doing so, the algorithm verifies the
compatibility of the latter regarding the former by analyzing the dependency graphs
of each version. We outline the compatibility assessment of versions vStockQuote,1 and
vStockQuote,2 in Table 5.2, along with the sequence of recursive algorithm calls. As a
means of reference, the graph of vStockQuote,2 is represented by Figure 5.8, whereas the
graph of vStockQuote,1 is represented by Figure 5.3a.

The algorithm starts by assessing compatibility of version vStockQuote,2 regarding
vStockQuote,1 (sequence 1 in Table 5.2). Following the compatibility algorithm, the first
step (Listing1: line 2) aims to verify if version vStockQuote,2 have any removed depen-
dency regarding vStockQuote,1. As shown in the comparison of Figure 5.8, vStockQuote,2

has no removed dependency. So, the algorithm continues by evaluating the versions de-
scription (Listing1: line 3), which has not changed. Therefore, the algorithm continues
and recursively assesses compatibility on the features’ versions that constitute the set
of dependencies of vStockQuote,2 (Listing1: lines 4-10), namely vGetLastTradePrice,2 and
vGetBestOffer,1.

50

Table 5.2: Compatibility assessment outline for vStockQuote,2 regarding vStockQuote,1

Sequence Feature
Version

Removed
Dependency
Evaluation

Description
Evaluation

Affected by
Propagation

Compatibility
Verdict

1 vStockQuote,2 Compatible Compatible Yes Incompatible
2 vGetLastTrade

Price,2

Compatible Compatible Yes Incompatible

3 vGetLastTrade

PriceOutput,2

Compatible Compatible Yes Incompatible

4 vTradePrice,2 Compatible Incompatible No Incompatible

The versions to consider for compatibility are those that exist in vStockQuote,1

with different version number from those in vStockQuote,2 (Listing1: Line 6). Thus,
vGetLastTradePrice,2 is recursively assessed by the algorithm, whereas vGetBestOffer,1 is not
because it has no early version to compare with. The same occurs to vGetBestOffer,1 de-
pendencies, which are both not assessed.

Thus, we apply the same procedure of compatibility assessment over
vGetLastTradePrice,2 with regard to vGetLastTradePrice,1 (sequence 2 in Table 5.2). As
presented in Figure 5.8, the version vGetLastTradePrice,2 has no removed dependencies
and maintains the same description as its previous version. So, the algorithm contin-
ues in order to verify vGetLastTradePrice,2 dependencies, which led to the assessment
of vGetLastTradePriceOutput,2 (sequence 3 in Table 5.2). Thus, the same procedure
occurs to vGetLastTradePriceOutput,2 with regard to vGetLastTradePriceOutput,1. Feature
vGetLastTradePriceInput,1 is not compared because it maintains the same version.

Next feature version to be analyzed is vTradePrice,2 (sequence 4 in Table 5.2), which
has no dependencies and thereby no removed ones. However its description is evalu-
ated following Listing 2. The function evaluateDescription verifies that vTradePrice,2 has
its description changed from vTradePrice,1 (Listing 2: line 2). Although vTradePrice,2 has
no addition of elements (Listing 2: line 5), the element price has its datatype changed

Figure 5.9: Incompatibility verdict propagation of vStockQuote,2 regarding vStockQuote,1

51

Figure 5.10: Compatibility algorithm result

from float to double (Listing 2 line 7), as presented in Figure 5.7. Therefore, the feature
version vTradePrice,2 is assessed incompatible by the evaluateDescription function (List-
ing 2: line 8) and has thereby its verdict set in line 11 of Listing 1. The verdict is then,
propagated (Listing 1: line 8) through the features’ versions vGetLastTradePriceOutput,2,
vGetLastTradePrice,2 and vStockQuote,2. The propagation effect caused by the incompatibility
in vTradePrice,2 version is depicted in Figure 5.9.

Finally, the resulting verdict of vStockQuote,2 regarding vStockQuote,1 is incompatible
and all the versions in the graph are annotated with its correspondent verdict, as shown
in Figure 5.10. We summarize the compatibility assessment procedure of vStockQuote,2

regarding vStockQuote,1 and the sequence of the recursively algorithm calls in Table 5.2.

5.7 Concluding Remarks

In this chapter, we presented the Version Manager, a component of the Change Man-
agement Framework that aims to version services and assess their compatibility in a finer
grain perspective. We presented the procedure for building the dependency graph of fea-
tures with regard a service version. Then we presented the manner we use for version only
the features that have changed and the ones affected by a change. The graphs are stored
in the Version Evolution Repository, which maintains the features versions, together with
their dependencies. We also presented the algorithm for assessing compatibility of fea-
tures versions, which enables the analysis of compatibility on different points of a service
with regard its dependencies.

52

53

6 EXPERIMENTAL RESULTS

In this chapter, we present an experiment with regard the versioning model and the
compatibility assessment algorithm. The main objective is to present the usefulness of
our approach by identifying and qualifying the changes occurred on a real case scenario.
Hence, we start the chapter by presenting the chosen scenario. Then, we present the
experiment by the perspectives of change identification and change qualification. Finally,
we present the conclusion for the experiment.

6.1 Experiments

To develop experiments with the versioning model and the compatibility assessment
algorithm, we built a prototype that follows the architecture displayed at Figure 5.1. As
we mentioned, the WSDL/Feature Converter module extracts from a new service version
(WSDL description) the internal versioning model as described in Section 5.2, and the
Compatibility Analyzer module implements the compatibility assessment algorithm de-
tailed in Section 5.5. The Version Evolution Repository persists the resulting features
and versions in an XML file, according to schema presented in in Figure 5.2. The pro-
totype was developed using Java 1, DOM Parser and JGraphT 2 library for handling the
versions graph. The prototype generates a report listing the versioned features and their
compatibility according to the rules of Table 5.1.

For this experiment we chose eBay Trading service 3, because of the great number
of available versions and the frequency on introducing new ones. eBay introduces a new
version of this service every two weeks and supports each version for at least 18 months.
For each version, there is a release notes entry on eBay website 4 that reports explicit
points of changes with regard to the previous version. However, there is barely any in-
formation on how these changes affect other parts of the service. The manual analysis of
the propagation effects of a change is a hard task since the interface document is huge,
for instance, the most recent versions of Trading service have almost 130.000 lines of de-
scription. Thus, client developers are responsible for detecting whether and how changes
affect their applications in order to stay in sync with service evolution.

In order to reduce the impact of changes on clients, eBay establishes an evolution
policy that assumes as compatible the case 3 of Table 5.1. To comply with this policy,
developers need to build client applications that handle unrecognized data (e.g. non ex-
pected additional output arguments), a widely adopted practice of which the advantages

1http://www.java.com/
2http://jgrapht.org/
3https://www.x.com/developers/ebay/products/trading-api
4http://developer.ebay.com/devzone/xml/docs/WebHelp/ReleaseNotes.html

54

are not a consensus (e.g. it prevents benefiting from strong type checking). In order to
adjust to this policy, we adapted our algorithm for considering both the core rules of Table
5.1, and eBay compatibility rules.

We have developed two experiments examining 45 versions of eBay Trading service,
which correspond to almost two years of the eBay Trading versions. We use version
653 as baseline. The first experiment compares the advertised changes in respective the
release notes with the actual changes detected by the WSDL/Feature Converter module.
The second experiment assesses the compatibility of each feature changed with regard
to the corresponding ones in the immediately previous version. Our goal is to analyze
structural changes and thereby we removed all semantic information (e.g. documentation
tags) from the service interface documents.

We were not able to compare our approach with existing works that automatically
detects changes and assess compatibility due to the following reasons: a) the algorithm
we extended (BECKER et al., 2008) assumes an object-oriented description of service,
which is incompatible with WDSL descriptions; b) results reported in (FOKAEFS et al.,
2011) do not allow comparison, because these results are limited to the presentation of
percentages of changes categorized as inclusion, deletion and update; c) (ZOU et al.,
2008; PONNEKANTI; FOX, 2004) focus on detecting changes between a specific client
and a service, and do not report results that compare the changes on service versions and
their compatibility; and d) code is unavailable for reproducing the results of all aforemen-
tioned works.

6.2 Experiment 1 : Quantifying Changes

The goal of this experiment is to compare the updates reported in the provider’s release
notes and the ones detected by our prototype. For this purpose, we quantified all the
explicit and cascaded changes of each new service version with regard to the previous
one by counting the newly created versions, and classifying them as changed and affected.
eBay identifies versions using odd numbers, and because version 653 is the baseline, the
graph starts at version 655.

The result of this experiment is presented in Figures 6.1, 6.2, and 6.3. Figure 6.1
shows the relation between the changed and affected features for each version. Figure 6.2
depicts for each version the number of changed features regarding their type. Figure 6.3
presents the number of the affected features per version and their type.

We verified that all changed features made explicit due to our versioning model are
described in the release notes, but almost none of the affected features are mentioned.
Explicitly changed features (Figure 6.1) correspond in total to less than 5% of the detected
changes, which means that more than 95% of changes are not addressed in the release
notes. For instance, version 659 has introduced a single explicit change on a type feature,
which is reported in the release notes 5. However, this change affects 36 operations and
100 types that depend on it directly or indirectly, and which are not covered by the release
notes.

We also observed that 99% of explicit changes are done to types (Figure 6.2), whereas
the propagation effect reaches an average of 26% for operations and 74% for types (Fig-
ure 6.3). Hence, typically a change is done to a type, and in most cases it does not directly
affect an operation. Instead, its effects cascade through several types until it affects an

5http://developer.ebay.com/Devzone/XML/docs/WebHelp/
ReleaseNotesArchive.html#659

55

operation. As expected, the service is always affected except for the case of a version
that has no feature changed. Note that for each version in Figure 6.2 that has at least one
changed feature, there is an affected feature of type service in Figure 6.3. Versions that
have no changed, thus no affected, features are justified by having changes on seman-
tic information, which as mentioned is out of the scope of this work but can be further
addressed.

This experiment confirms that current information provided by release notes is in-
sufficient for client developers to detect which changes affect them. On the other hand,
our approach enabled the identification of the affected features not addressed in the re-
lease notes, which correspond to 95% of the overall changed/affected features. Thus, we
conclude that the proposed versioning model supported the efficient identification and
quantification of changes impact.

Figure 6.1: Total of features changed/affected per version

Figure 6.2: Features changed in description

Figure 6.3: Features affected by changes

56

6.3 Experiment 2 : Qualifying Changes

In this experiment, we analyzed at feature level the compatibility of each service ver-
sion with regard the preceding one using our compatibility assessment algorithm. We
used both the core rules of Table 5.1 and eBay policy compatibility. The results are pre-
sented in Figure 6.4, which is divided into two graphs due to improve visualization. The
second graph in Figure 6.4 continues the first by comparing version 711 to 709. Ac-
cording to the compatibility rules we adopt (Table 5.1), none of the service versions are
backward compatible with regard to the previous one. This result differs from the in-
formation available in the release notes for these versions that report only 6 out of the
45 as backward incompatible, namely versions 685, 689, 717, 719, 739 and 757. This
discrepancy is explained by eBay evolution policy, which requires that developers build
client applications that handle unrecognized data (e.g. non expected additional output
arguments). In other words, it assumes as compatible the case 3 of Table 5.1, which is
reported as incompatible in related literature (BROWN; ELLIS, 2004; FANG et al., 2007;
ANDRIKOPOULOS; BENBERNOU; PAPAZOGLOU, 2011; BECKER et al., 2008).

We observe in Fig. 6.4 that eBay minimizes the impact of changes on their clients
based on their evolution policy. Nevertheless, it is possible to observe that Trading service
undergoes disruptive changes from time to time (6 versions out of 45). According to more
strict compatibility rules, clients that do not comply with their evolution policy may be
affected in every change, depending whether or not they use the incompatibly changed
features.

Figure 6.4: Trading Service Compatibility Analysis

57

6.4 Concluding Remarks

We conclude that the proposed versioning model and compatible assessment algo-
rithm supported the efficient identification and qualification of changes and their impact.
Our algorithm was flexible enough for the easy implementation of different compatibility
rules. This experiment indicates the usefulness of a finer grain of versioning for locat-
ing and assessing compatibility, and of automatic compatibility assessment algorithms,
consistent with compatibility rules adopted by providers. In such a way, providers can
easily understand the effects of their intended changes and even of the compatibility rules
assumed, and develop mechanisms that support clients to understand how changes affect
them, and cope with them.

58

59

7 CONCLUSIONS

In this work, we presented a service versioning approach and a compatibility assess-
ment algorithm in a finer-grain, i.e. at feature level, which enabled the scope, quantifica-
tion and assessment of changes in a finer-grained perspective. The feature-oriented model
allowed the representation of an entire service description in a dependency graph of fea-
tures. By the proposed feature mapping, every feature could be related with a fragment of
the service description and incorporated to the feature representation without loosing any
information, despite the semantic documentation not addressed in this work. This map-
ping is compatible with the W3C current standard for service description and although
been developed regarding the WSDL versions 1.x, it can be easily adapted to more recent
specifications.

With the feature-oriented versioning approach, we presented a manner to version only
the features that have changed or been affected by a change, which has as straightforward
consequence the easy identification of changes. With regard versioning, the contribu-
tion of this work is a version model that covers the lack of a finer-grain perspective as
well as providing a mechanism to trace changes during evolution. As depicted in Ta-
ble 7.1, our versioning model addresses a finer-grain perspective, which is also addressed
in (BECKER et al., 2008), but in this work it is aligned with W3C current standards.

With regard to compatibility, this work presents an assessment framework to auto-
matically assess the compatibility verdict of changes. The compatibility assessment al-
gorithm enabled the analysis of change impact on different points of a service, as well

Table 7.1: Comparison between this work and the related ones with regard versioning

Approaches Best
practices

Versioning
Model

Finer-grain
perspective

Cope with W3C
standards

(BROWN; ELLIS, 2004) guidelines – – Yes

(ENDREI et al., 2006) guidelines – – Yes

(FANG et al., 2007) – adapt
current

standards

– Yes

(BECKER et al., 2008) – framework type level No

(LEITNER et al., 2008) – framework – Yes

This work – framework feature level Yes
Note: We use hyphen (–) for works that does not address the topic in each column

60

Table 7.2: Comparison between this work and the related ones with regard compatibility

Approaches Change cases Assessment
framework

Finer-grain
perspective

Cope with
W3C

standards

(PONNEKANTI;
FOX, 2004)

guidelines usage-oriented identification Yes

(BROWN; ELLIS,
2004)

guidelines – – Yes

(ENDREI et al., 2006) guidelines – – Yes

(FANG et al., 2007) summarization – – Yes

(BECKER et al., 2008) relaxing cases automatic assessment No

(ANDRIKOPOULOS;
BENBERNOU;

PAPAZOGLOU, 2011)

relaxing cases formal identification Yes

(YAMASHITA;
BECKER; GALANTE,

2011a)

– automatic/
usage-oriented

identification/
assessment

Yes

This work – assessment identification/
assessment

Yes

Note: We use hyphen (–) for works that does not address the topic in each column

as the incompatibility ripple effect within the feature level proposal. We adopted very
conservative rules for compatibility assessment, but have shown that the algorithm can be
extended for different rules. The proposed compatibility algorithm enabled the automatic
assessment of changes in a finer-grain, which is also proposed in other works, such as the
ones depicted in Table 7.2. However, this work differs from those by fitting W3C speci-
fications in case of (BECKER et al., 2008), automatically assessing compatibility in case
of (ANDRIKOPOULOS; BENBERNOU; PAPAZOGLOU, 2011), considering relaxed
compatibility cases that can address different profiles of clients rather than a particular
client in (PONNEKANTI; FOX, 2004) and finally, enabling the usage-oriented approach
sketched in (YAMASHITA; BECKER; GALANTE, 2011a).

With regard the usefulness of our approach, we have experimented the versioning and
compatibility assessment using a real service. In this experiment, we verified that our
approach supported the efficient identification and qualification of changes together with
their impact and concluded that our algorithm can be easily adapted to support compat-
ibility relaxed cases, such as eBay evolution policy or relaxed cases found in literature.
As commented, service stakeholders lack proper mechanisms to easily recognize changes
and their impact on evolving services. Hence, by identifying and qualifying changes at
feature level, the approach in this work can provide invaluable information for service
stakeholders in order to help them cope with changes during service evolution.

As future work, we plain to improve the compatibility assessment algorithm for the
purpose of documenting the detected incompatibile changes. In doing so, the algo-
rithm can provide information on how the feature changed rather than only what have
changed, resulting in a more detailed tracing mechanism. We also plan to aggregate

61

less restrictive cases of compatibility to the algorithm, such as the T-shaped changes in
(ANDRIKOPOULOS; BENBERNOU; PAPAZOGLOU, 2011) and the in/output restric-
tion in (BECKER et al., 2008). Finally, we plan for studying change cases involving the
semantics information present in the service interface description, such as the documen-
tation tags that we opted not to address in this work.

The result of this work supports various applications. As mentioned, this work is
a component of a framework for measuring change impact according to usage. Hence,
this work provides the fundamentals for achieving the usage-oriented compatibility pro-
posed in (YAMASHITA; BECKER; GALANTE, 2011a). Moreover, our approach can
contribute to applications, such as SOA ripple effect quantification (WANG; CAPRETZ,
2009), customized release notes (ZOU et al., 2008), the reduction of provisioned versions
(FRANK et al., 2008), and enables load balance management among implemented ver-
sions, which precedes the finer-grain deployment in (TREIBER; ANDRIKOPOULOS;
DUSTDAR, 2009).

62

63

REFERENCES

ANDRIKOPOULOS, V.; BENBERNOU, S.; PAPAZOGLOU, M. P. Managing the Evo-
lution of Service Specifications. In: ADVANCED INFORMATION SYSTEMS ENGI-
NEERING, 20., Berlin, Heidelberg. Proceedings. . . Springer-Verlag, 2008. p.359–374.
(CAiSE ’08).

ANDRIKOPOULOS, V.; BENBERNOU, S.; PAPAZOGLOU, M. P. Evolving Ser-
vices from a Contractual Perspective. In: INTERNATIONAL CONFERENCE ON AD-
VANCED INFORMATION SYSTEMS ENGINEERING, 21., Berlin, Heidelberg. Pro-
ceedings. . . Springer-Verlag, 2009. p.290–304. (CAiSE ’09).

ANDRIKOPOULOS, V.; BENBERNOU, S.; PAPAZOGLOU, M. P. On the Evolution of
Services. IEEE Transactions on Software Engineering, Los Alamitos, USA, 2011. in
press - early access articles.

BACHMANN, R. Challenges of web service change management. Available at:
<http://www.sdn.sap.com/irj/scn/index?rid=/library/uuid/4e1d4d29-0801-0010-159b-
f8d51a04bbbd/>. Access in: May 2012.

BECKER, K. et al. Automatically Determining Compatibility of Evolving Services. In:
IEEE INTERNATIONAL CONFERENCE ON WEB SERVICES, 2008., Washington,
DC, USA. Proceedings. . . IEEE Computer Society, 2008. p.161–168. (ICWS ’08).

BROWN, K.; ELLIS, M. Best Practices for Web services Versioning. Available
at: <http://www.ibm.com/developerworks/webservices/library/ws-version/>. Access in:
May 2012.

CHRISTENSEN, E. et al. Web Services Description Language (WSDL) 1.1. Available
at: <http://www.w3.org/TR/wsdl>. Access in: Jun 2012.

ENDREI, M. et al. Moving forward with web services backward compatibility. Avail-
able at: <http://www.ibm.com/developerworks/java/library/ws-soa-backcomp/>. Access
in: May 2012.

FANG, R. et al. A Version-aware Approach for Web Service Directory. In: IEEE IN-
TERNATIONAL CONFERENCE ON WEB SERVICES, Salt Lake City, USA. Proceed-
ings. . . IEEE Computer Society, 2007. p.406–413.

FOKAEFS, M. et al. An Empirical Study on Web Service Evolution. In: IEEE INTER-
NATIONAL CONFERENCE ON WEB SERVICES, 2011., Washington, DC, USA. Pro-
ceedings. . . IEEE Computer Society, 2011. p.49–56. (ICWS ’11).

64

FRANK, D. et al. Using an Interface Proxy to Host Versioned Web Services. In: IEEE IN-
TERNATIONAL CONFERENCE ON SERVICES COMPUTING - VOLUME 2, 2008.,
Washington, DC, USA. Proceedings. . . IEEE Computer Society, 2008. p.325–332. (SCC
’08).

LEE, K.; KANG, K. C.; LEE, J. Concepts and Guidelines of Feature Modeling for Prod-
uct Line Software Engineering. In: SOFTWARE REUSE: METHODS, TECHNIQUES,
AND TOOLS: PROCEEDINGS OF THE SEVENTH REUSE CONFERENCE (ICSR7.
Anais. . . Springer-Verlag, 2002. p.62–77.

LEITNER, P. et al. End-to-End Versioning Support for Web Services. In: IEEE IN-
TERNATIONAL CONFERENCE ON SERVICES COMPUTING - VOLUME 1, 2008.,
Washington, DC, USA. Proceedings. . . IEEE Computer Society, 2008. p.59–66. (SCC
’08).

PAPAZOGLOU, M. P. The Challenges of Service Evolution. In: ADVANCED IN-
FORMATION SYSTEMS ENGINEERING, 20., Berlin, Heidelberg. Proceedings. . .
Springer-Verlag, 2008. p.1–15. (CAiSE ’08).

PONNEKANTI, S. R.; FOX, A. Interoperability among independently evolving web
services. In: ACM/IFIP/USENIX INTERNATIONAL CONFERENCE ON MIDDLE-
WARE, 5., New York, NY, USA. Proceedings. . . Springer-Verlag New York: Inc., 2004.
p.331–351. (Middleware ’04).

SILVA, E. et al. A Business Intelligence Approach to Support Decision Making in Service
Evolution Management. In: IEEE NINTH INTERNATIONAL CONFERENCE ON SER-
VICES COMPUTING, 2012., Washington, DC, USA. Proceedings. . . IEEE Computer
Society, 2012. p.41–48. (SCC ’12).

TREIBER, M.; ANDRIKOPOULOS, V.; DUSTDAR, S. Calculating service fitness in
service networks. In: SERVICE-ORIENTED COMPUTING, 2009., Berlin, Heidelberg.
Proceedings. . . Springer-Verlag, 2009. p.283–292. (ICSOC/ServiceWave’09).

WANG, S.; CAPRETZ, M. A. M. A Dependency Impact Analysis Model for Web Ser-
vices Evolution. In: IEEE INTERNATIONAL CONFERENCE ON WEB SERVICES,
2009., Washington, DC, USA. Proceedings. . . IEEE Computer Society, 2009. p.359–
365. (ICWS ’09).

YAMASHITA, M.; BECKER, K.; GALANTE, R. Service Evolution Management Based
on Usage Profile. In: IEEE INTERNATIONAL CONFERENCE ON WEB SERVICES,
2011., Washington, DC, USA. Proceedings. . . IEEE Computer Society, 2011. p.746–
747. (ICWS ’11).

YAMASHITA, M.; BECKER, K.; GALANTE, R. A Flexible Approach for Assess-
ing Service Compatibility at Element Level. In: BRAZILIAN SYMPOSIUM ON
DATABASES (SBBD)), Florianópolis - SC, Brazil. Anais. . . Porto Alegre: Sociedade
Brasileira de Computação (SBC), 2011. p.8.

YAMASHITA, M.; BECKER, K.; GALANTE, R. A Feature-based Versioning Approach
for Assessing Service Compatibility. JIDM, Porto Alegre, Brasil, v.3, n.2, p.120–131,
2012.

65

YAMASHITA, M. et al. Measuring Change Impact based on Usage Profiles. In: IEEE
INTERNATIONAL CONFERENCE ON WEB SERVICES, Honolulu, Hawaii. Proceed-
ings. . . IEEE, 2012. p.226 – 233.

ZOU, Z. L. et al. On Synchronizing with Web Service Evolution. In: IEEE INTERNA-
TIONAL CONFERENCE ON WEB SERVICES, 2008., Washington, DC, USA. Pro-
ceedings. . . IEEE Computer Society, 2008. p.329–336. (ICWS ’08).

66

67

APPENDIX A VERSIONAMENTO E COMPATIBILIDADE
DE SERVIÇO EM NÍVEL DE FEATURE

A.1 Introdução

A Arquitetura Orientada a Serviço (SOA) denota uma abordagem arquitetural que per-
mite a criação de sistemas de baixo acoplamento apoiado sobre componentes autônomos,
chamados serviços. O baixo acoplamento é suportado pela existência de uma interface
bem definida, que expõe as características do serviço relevantes ao consumo. Da perspec-
tiva do SOA, um serviço é um conjunto de funcionalidades expostas por um provedor as
quais consumidores podem vincular suas aplicações. O ciclo de vida dos componentes em
SOA encoraja o desenvolvimento de serviços autônomos e permite independência durante
as fases de desenvolvimento, implantação e manutenção. Porém, serviços não escapam
da necessidade de lidar com mudanças. Para se alinhar à novas oportunidades de negó-
cio, serviços estão sujeitos a constantes variações, o que requer estratégias para lidar com
múltiplas versões durante seu ciclo de vida.

A gerência da evolução de serviços engloba a criação, manutenção e desativação de
diferentes versões de serviços no ambiente provedor (PAPAZOGLOU, 2008), o que fre-
quentemente leva à manutenção de inúmeras versões concorrentes. No âmbito deste tra-
balho, entendemos uma versão de serviço por uma versão da descrição da interface que o
serviço expõe.

A descrição da interface de um serviço é um contrato unilateral estabelecido pelo
provedor, que guia os consumidores no modo como acessar as funcionalidades do serviço.
Porém, as atuais notações para descrição de interface de serviço, incluindo o padrão
WSDL/XSD, não trata adequadamente o versionamento (ANDRIKOPOULOS; BEN-
BERNOU; PAPAZOGLOU, 2011). Usualmente, apesar de muitas características do
serviço permanecerem inalteradas (ex. tipos, operações, mensagens), a descrição in-
teira do serviço é versionada. Este procedimento gera dificuldades no reconhecimento
e medição to real impacto da mudança. Na ausência de um suporte adequado, provedores
de serviço (ex. eBay, Google, Amazon) publicam novas versões em conjunto com no-
tas de lançamento na esperança de ajudar os consumidores a se ajustarem às mudanças.
As notas de lançamento descrevem as mudanças explícitas, ou seja, mudanças pontuais
em determinadas características do serviço, mas falham em descrever o impacto dessas
mudanças em suas dependências (outras características do serviço) e por fim, a retrocom-
patibilidade de características específicas.

Em suma, às partes envolvidas na evolução do serviço, faltam mecanismos adequados
para o fácil reconhecimento de mudanças e do impacto dessas na evolução de serviços.
Neste trabalho, abordamos essa deficiência propondo o versionamento em uma perspec-

68

tiva mais granular, ao qual nos referimos como nível de feature, e o algoritmo de avali-
ação de compatibilidade para qualificar automaticamente as features versionadas com um
veredito de compatibilidade.

Assim, o objetivo deste trabalho é uma abordagem para versionar features separada-
mente, manter seus relacionamentos e identificar as features afetadas direta ou indire-
tamente. Essa abordagem também permite a avaliação de compatibilidade entre duas
versões de feature de maneira que se possa verificar se a mudança pode afetar qualquer
integração externa do serviço. Como resultado, este trabalho permite a quantificação e a
qualificação de mudanças no serviço de modo mais granular e assim, provê informações
de grande valor às partes que lidam com serviços com o propósito de ajudá-los a lidar
com as mudanças decorrentes da evolução de serviços.

A.2 Conceitos

Existem dois conceitos de suma importância para o entendimento deste trabalho: a
versão de serviços e sua compatibilidade. Neste trabalho, utilizamos o termo versão de
serviço como um sinônimo de versão de interface de serviço. Uma interface de serviço
é um documento que descreve as funcionalidades de um serviço, sendo sua interface a
representação de um de seus estados ao longo do seu ciclo de vida. Neste trabalho, nós
estudamos serviços e suas versões descritas na linguagem WSDL.

WSDL fornece um modelo, com base no formato XML, que descreve serviços em
duas seções fundamentais que englobam as funcionalidades abstratas e os detalhes con-
cretos de serviços. Na seção abstrata, o serviço é descrito em termos das trocas de men-
sagens que o serviço pode receber ou responder. Mensagens são expressas por elementos
tipo, que são descritos usando um sistema de tipagem independente, tipicamente o XML
Schema. Operações associam os parâmetros de suas mensagens de entrada e saída, pre-
viamente descritas. Por fim, um portType descreve a funcionalidade do serviço definindo
as operações que podem ser realizadas, bem como as mensagens necessárias para realizar
as operações. Na seção concreta, um serviço é definido como uma coleção de portas de
rede que implementam um portType. Uma porta associa um endereço de rede através de
um vínculo, que descreve os detalhes de formato de transporte para um ou mais portTypes
(CHRISTENSEN et al., 2001). Os componentes do modelo WSDL são apresentados na
Figura 2.1.

A compatibilidade de versões de serviços é uma garantia tal que, ao se introduzir
uma nova versão de serviço, as partes envolvidas na evolução não sejam afetadas (PAPA-
ZOGLOU, 2008). A compatibilidade pode assumir diferentes significados dependendo
do contexto ou perspectiva pela qual é vista. Neste trabalho, abordamos a retrocompati-
bilidade.

A retrocompatibilidade diz respeito à como mudanças nas versões do serviço afetam
seus consumidores (BECKER et al., 2008; FANG et al., 2007; ENDREI et al., 2006).
Assim, assegurar a retrocompatibilidade significa que um serviço em evolução deve con-
tinuar suportando clientes antigos a medida em que haja mudanças ao longo do tempo.
Em outras palavras, a retrocompatibilidade deve garantir que aplicações clientes atuais
não sejam afetadas por mudanças no serviço (ENDREI et al., 2006). A tabela 2.1 suma-
riza os casos de mudanças de acordo com o seu veredito de compatibilidade.

69

A.3 O Modelo de Versionamento em Nível de Feature

Para entender evolução de serviços de uma maneira mais granular, precisamos enfa-
tizar que aplicações clientes não são vinculadas ao conjunto de funcionalidades de um
serviço como um todo, como também entendido em (PONNEKANTI; FOX, 2004). Na
verdade, clientes são vinculados a um subconjunto de funcionalidades (por ex. operações)
bem como seus tipos de dados para requisição e consumo. Dessa forma, caracterizamos
um serviço como uma composição de operações, pelos quais dados são requisitados e
consumidos de acordo com tipos pré-definidos (ex. mensagens, elementos do esquema).
Como serviços, operações e tipos representam os aspectos relevantes que descrevem as
funcionalidades dos serviços (FANG et al., 2007), esses três conceitos são referenciados
como features de serviço (LEE; KANG; LEE, 2002), que são caracterizados como ele-
mentos versionáveis. A representação abstrata das features e seus relacionamentos são
apresentados na Figura 4.1.

Neste trabalho, propomos o versionamento separado de features enquanto mantemos
seus relacionamentos pelas suas versões, representadas por um grafo de features. Como
mencionado, versionar features separadamente fornece uma maneira de identificar fea-
tures afetadas durante o versionamento, ao passo que manter seus relacionamentos de
dependência permite a consistência com a interface e a posterior análise de propagação
de efeitos das mudanças.

A ideia do versionamento orientado a feature implica em prover um gerenciamento
abstrato das diferentes partes da interface com o objetivo de versionar somente as features
alteradas, ao invés de toda a interface. Assim, quando um novo documento de interface
é exposto, nosso mecanismo a converte para uma representação abstrata interna, com-
para a descrição textual das features em relação às features existentes, assim como seus
relacionamentos com outras features, e cria novas versões somente quando necessário. O
modelo de versionamento proposto é apresentado na Figura 4.2.

A.4 Gerenciador de Versões

Este trabalho resulta em um Gerenciador de Versões que implementa os conceitos do
modelo de orientação à features e, portanto, o versionamento de serviços em nível de
feature, bem como a compatibilidade de versões nesse modelo mais granular. Em suma,
a contribuição do Gerenciador de Versões é dividida em: a) a quantificação de features
afetadas pelas mudanças entre duas versões de serviço, e b) a qualificação das features
da mudança com relação a cada feature. O Gerenciador de Versões, ilustrado na Figura
5.1, é composto por três componentes: o Conversor de WSDL/Features responsável pela
extração das features da versão do serviço de acordo com o modelo orientado à feature; o
Analisador de Compatibilidade cujo objetivo é verificar a compatibilidade das mudanças
entre versões de features; e o Repositório de Evolução de Versões, que armazena as ver-
sões das features, bem como suas dependências.

A.4.1 Conversor de WSDL/Features

Como mencionado, um serviço é representado por um documento de descrição de
interface (WSDL). Desse modo, uma versão de feature corresponde a um fragmento desse
documento, juntamente com suas dependências. Assim, para versionarmos as features do
serviço separadamente, precisamos identificar as features dentro do WSDL, relacioná-las
à versões de features, o que inclui a possibilidade de criar novas versões, e armazenar sua

70

representação abstrata no Repositório de Evolução de Versões. Esse processo requer duas
fases: a) a extração de features do WSDL, e b) a análise das features para descobrir se
sofreram mudanças em relação à todas suas representações prévias no repositório.

A nossa intenção é versionar somente as features que sofreram mudanças, ou aquelas
que indiretamente são afetadas pelas mudanças. Nos referimos às features que sofreram
mudanças como aquelas que tiveram seu fragmento de descrição alterado, aquelas que de-
pendem de uma feature que não dependiam anteriormente, ou aquelas que não dependem
de uma feature que antes dependiam. Nos referimos às features afetadas, aquelas que não
sofreram mudanças, mas dependem direta ou indiretamente de features que sofreram.

A primeira fase no versionamento de features é a extração de representação das fea-
tures que engloba os seguintes passos:

1. a análise do documento WSDL (ex. Figura 4.3) para identificação das features e
seus relacionamentos;

2. a geração do grafo de versões de features (ex. Figura 4.5) em relação à represen-
tação abstrata da feature (ex. Figura 4.1); e

3. o processo de relacionar os fragmentos de descrição com sua versão de feature
correspondente (ex. Figura 4.4).

O grafo resultante engloba todo conteúdo do WSDL e uma vez estruturado, deve-
se analisar cada feature de maneira a descobrir se essa sofreu mudanças ou foi afetada,
criando-se uma nova versão no repositório se ocorrer. Assim, para cada feature, o con-
versor analisa as versões de feature com o mesmo nome no repositório comparando seu
conteúdo textual. A análise é feita de baixo para cima com relação ao grafo de features
de maneira a verificar as mudanças e dependências corretamente. A análise é composta
de quatro possibilidades, referidas como casos de versionamento:

1. Se a feature não existe no repositório, então a essa é criada com sua primeira versão.

2. Se a feature já existe e sua descrição é diferente à sua ultima versão, então essa é
marcada como alterada e uma nova versão é criada.

3. Se a feature já existe e sua descrição é igual a uma versão já existente, então:

(a) Se essa depende de uma outra feature marcada como alterada, então uma nova
versão é criada para lidar com efeitos de propagação, ou seja, a feature foi
afetada pela mudança.

(b) Se essa não depende de nenhuma feature modificada, então todas as features
que dependem dessa terão sua referência apontada para a versão de feature
existente (igual) no repositório.

A.4.2 Analisador de Compatibilidade

O processo descrito nas seções anteriores extrai de um documento WSDL uma repre-
sentação interna de features, na qual somente as partes do serviço explicitamente alteradas
ou afetadas são relacionadas à novas versões. Caso contrário, versões existentes de fea-
tures são associadas ao serviço. Dessa forma, qualquer serviço corresponde internamente
a um grafo de versões no qual cada versão é relacionada a uma feature. O grafo também
define as dependências entre versões de features, por exemplo, um serviço em relação

71

às suas operações ou as operações em relação aos seus tipos de dados. Porém, além de
identificar quais os aspectos do serviço sofreram alterações, é necessário verificar se cada
mudança é retrocompratível em relação a sua versão anterior.

O algoritmo proposto neste trabalho tem o objetivo de verificar a compatibilidade en-
tre quaisquer duas versões de um serviço, o que implica em examinar recursivamente a
compatibilidade de todas as features que descrevem o serviço. A análise de compatibili-
dade é feita de acordo com os casos da Tabela A.1.

O algoritmo recebe como entrada duas versões da mesma feature, vfeature,p e vfeature,q.
Então, o algoritmo verifica a compatibilidade da última com relação à primeira de acordo
com o seguinte procedimento:

1. o algoritmo verifica se dependências de features presentes em vfeature,p não foram
removidas de vfeature,q (casos 7 e 8 da Tabela A.1);

2. compara a descrição dos fragmentos associados com as versões (casos 4, 5 e 6);

3. avalia recursivamente a compatibilidade de todas as versões de features depen-
dentes (casos 1, 2 e 3), e então:

4. define o relacionamento de compatibilidade, bem como o respectivo veredito.

O grafo de versão com raiz em vfeature,q é examinado no modo profundidade-primeiro,
que permite a detecção da propagação de incompatibilidades para as versões dependentes.
O pseudo-algoritmo é apresentado na Listagem 1.

Table A.1: Casos de mudanças para avaliação de compatibilidade.

Casos Mudanças Tipo de Feature Descrição Veredito de
Compatibili-

dade

1 Adicionar Operação Adicionar nova operação ao
serviço

Compatível

2 Adicionar Tipo Adicionar novo tipo como de-
pendência de uma operação/tipo

Compatível

3 Adicionar Tipo Adicionar novo tipo como de-
pendência de uma operação/tipo
existente

Incompatível

4 Atualizar Operação Alteração de descrição Incompatível

5 Atualizar Serviço Alteração de descrição Incompatível

6 Atualizar Tipo Alteração de descrição com re-
lação a ordem, cardinalidade ou
tipo

Incompatível

7 Remover Operação Remover uma dependência de op-
eração

Incompatível

8 Remover Tipo Remover uma dependência de tipo Incompatível

72

A.5 Conclusões

Neste trabalho, apresentamos uma abordagem para o versionamento de serviços e a
verificação de compatibilidade em uma maneira mais granular, em nível de feature, o qual
permite delinear, quantificar e verificar as mudanças em uma perspectiva mais granular. O
modelo orientado a feature permitiu representar a descrição do serviço como um todo em
um grafo de dependência de features. Com a abordagem de versionamento de features,
apresentamos uma maneira de versionar somente as features que foram modificadas ou
afetadas pela mudança, que tem consequência direta na facilitação da identificação de
mudanças.

Com relação ao versionamento, a contribuição deste trabalho é um modelo de ver-
sionamento que cobre a falta de uma perspectiva mais granular, bem como provê um
mecanismo para registrar mudanças durante a evolução.

Com relação à compatibilidade, este trabalho apresenta um framework para avaliação
automática de compatibilidade das mudanças. A avaliação de compatibilidade permitiu a
analise do impacto da mudança em diferentes pontos do serviço, bem como a propagação
da incompatibilidade em nível de feature.

Com relação à utilidade da nossa abordagem, realizamos experimentos de version-
amento e avaliação compatibilidade sobre um serviço real onde conseguimos verificar
que nossa abordagem suportou a eficiente quantificação e qualificação de mudanças, bem
como o impacto. Dessa forma, nossa abordagem provê um mecanismo para geração de
importantes informações acerca da evolução de serviços, ajudando provedores e consum-
idores durante a evolução dos mesmos.

