

Evento	Salão UFRGS 2013: SIC - XXV SALÃO DE INICIAÇÃO CIENTÍFICA DA UFRGS
Ano	2013
Local	Porto Alegre - RS
Título	Fatoração de polinômios no anel de séries formais de potências com coeficientes inteiros
Autor	Thayner Gomes de Bona
Orientador	ALVERI ALVES SANT ANA

Uma das estruturas estudadas em Álgebra é o Domínio de Fatoração Única. Como próprio nome diz, é um Domínio onde todo elemento não invertível ou é irredutível ou pode ser escrito como um produto de elementos irredutíveis. Além disso, essa fatoração é única, a menos de associados.

Nosso objetivo é analisar a fatoração de polinômios no anel das séries formais de potências, denotado por $\mathbb{Z}[[X]]$, que acaba por ser um domínio de fatoração única. Séries formais de potências são, de certa forma, uma generalização de polinômios, onde o grau pode ser tomado infinito e não estamos preocupados com a convergência.

Inicialmente, observamos que a fatoração no anel das séries formais de potências e no anel dos polinômios são independentes. Por exemplo, o polinômio $2+7x+3x^2$ tem a fatoração (2+x)(1+3x) em $\mathbb{Z}[X]$, mas esta não é própria em $\mathbb{Z}[[X]]$, visto que 1+3x é invertível em $\mathbb{Z}[[X]]$. Por outro lado, o polinômio $6+x+x^2$ é redutível em $\mathbb{Z}[[X]]$, mas não em $\mathbb{Z}[X]$, pois tem grau 2, conteúdo 1 e não possui raízes em \mathbb{Z} .

É possível, porém, encontrar relações entre a redutibilidade de um polinômio em $\mathbb{Z}[[X]]$ e em $\mathbb{Z}_p[X]$, onde \mathbb{Z}_p é o conjunto dos números p-ádicos. Vamos apresentar tais relações, encontrando condições necessárias e suficientes para redutibilidade de polinômios de graus 2 e 3 sobre $\mathbb{Z}[[X]]$, utilizando o fato de terem (ou não) raízes em \mathbb{Z}_p .