

Produção de Vidros:

Sua Aplicação e Importância na Petrologia Experimental Sob Altas Pressões e Temperaturas

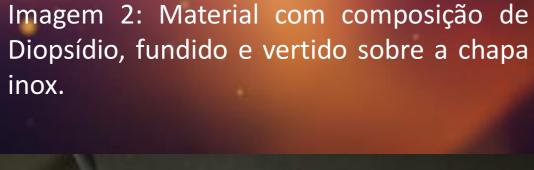
MÁRCIO R. W. DE SOUZA, ROMMULO V. CONCEIÇÃO¹

1- Instituto de Geociências (UFRGS)

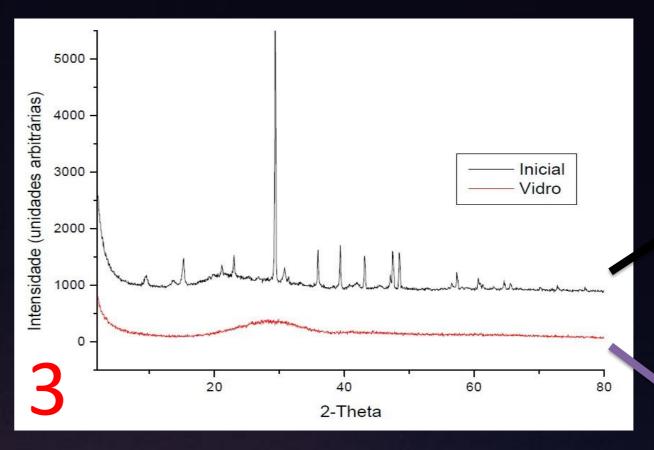
INTRODUÇÃO

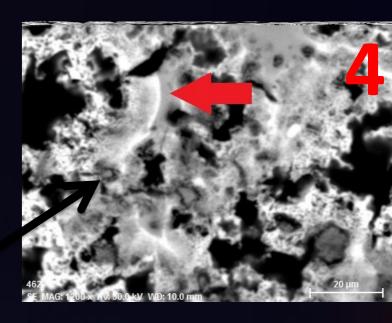
Estudos de petrologia experimental sob altas pressões e temperaturas vem se tornando cada vez mais comuns no mundo, embora sua prática seja relativamente nova em instituições de pesquisa brasileiras. São experimentos que buscam compreender o comportamento de assembleias minerais (ou elementos químicos) em ambientes profundos do planeta, e a materialização dos dados obtidos nesses estudos pode ser representada na forma de Diagramas de Fase Ternários. Porém, se o que se busca é simular sistemas terrestres, deve-se contrapor obstáculos impostos por estes sistemas, sendo um destes o *tempo geológico*, do qual a Terra dispõe, mas não o cientista. Para tanto, utilizam-se vidros como amostras iniciais nos experimentos, baseando-se no princípio de que estes, como materiais amorfos, apresentam seus íons constituintes dispostos desordenadamente, num estado de desequilíbrio, e que rapidamente buscam sua estabilização (formam cristais) quando submetidos a determinadas condições de pressão e temperatura.

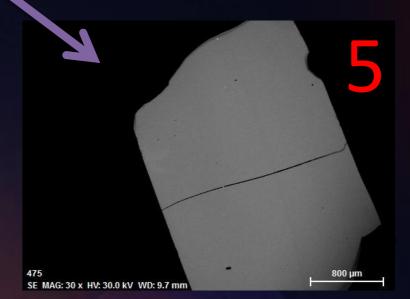
OBJETIVO


Testar a efetividade da utilização de vidros como amostras em experimentos sob altas pressões e temperaturas a fim de acelerar o processo de formação de minerais durante os experimentos, produzindo cristais euédricos em condições de equilíbrioem processamentos de aproximadamente 8 horas.

METODOLOGIA


Os vidros são produzidos a partir de misturas estequiometricamente calculadas (tabela 1) para reproduzir a composição de determinados minerais, que serão os vértices dos diagramas de fase ternários em estudo. Para este trabalho foram produzidos vidros com composição de Diopsídio (CaMgSi2O6), Leucita (KAlSi2O6) e Nefelina (NaAlSiO4). Os reagentes (óxidos de Silício e Alumínio, e carbonatos de Magnésio, Cálcio, Potássio e Sódio) foram secos em estufa a 110°C, misturados e moídos em almofariz de ágata para garantir homogeneidade das misturas. As misturas passaram então por um processo de decarbonatação e sinterização com duração de 24 horas, para então serem novamente moídas e posteriormente fundidas em um forno Carbolite BLF 18/3/3216P1 (imagem 1), em cadinho de alumina, a temperaturas entre 1400 e 1700°C, dependendo do ponto de fusão de cada mineral, e vertidos sobre uma chapa inox, para resfriamento brusco (imagem 2). No controle de qualidade dos vidros, foram realizadas analises de DRX para verificar se o material ficou amorfo (imagem 3) e MEV-EDS (tabela 1 e imagens 4 e 5) como analise semiquantitativa para verificar se estequiometria e homogeneidade foram mantida após a fusão.


Imagem 1: Forno Carbolite BLF 18/3/3216P1, utilizado para fundir as misturas de óxidos e carbonatos



Imagens: (3) Difratograma do pó sinterizado e do vidro já fundido, mostrando o desaparecimento dos picos no último; (4) Imagem BSE do pó sinterizado apresentando textura de difusão iônica (seta vermelha); (5) Imagem BSE de uma sessão polida do vidro pronto, mostrando homogeneidade do material.

Óxido	Massa Teórica	Pó	Vidro
SiO2	55,49501	56,09919	56,25138
CaO	25,89583	25,92016	26,75061
MgO	18,60916	17,98065	16,99801

Tabela 1: acima estão representados os valores (em % peso) calculados para a composição do vidro de diopsídio, assim como os valores obtidos na analise semiquantitativa via MEV-EDS para o pó sinterizado e o material fundido (vidro acabado).

RESULTADOS

Depois de prontos, os vidros podem finalmente ser utilizados como amostras em processamentos. Para tanto são moídos em gral de ágata, armazenados em dessecadores, e misturados nas composições pertinentes aos experimentos. Foram realizados processamentos sob temperaturas entre 1200 e 1400°C, a 4GPa durante 8 horas, na construção de um diagrama ternário "Leucita-Nefelina-Diopsídio". Fases euédricas cristalizaram, sob a forma de clinopiroxênios com altos teores de potássio e Nefelina, mostrando a efetividade de materiais vitreos como componentes das amostras (imagem 6).

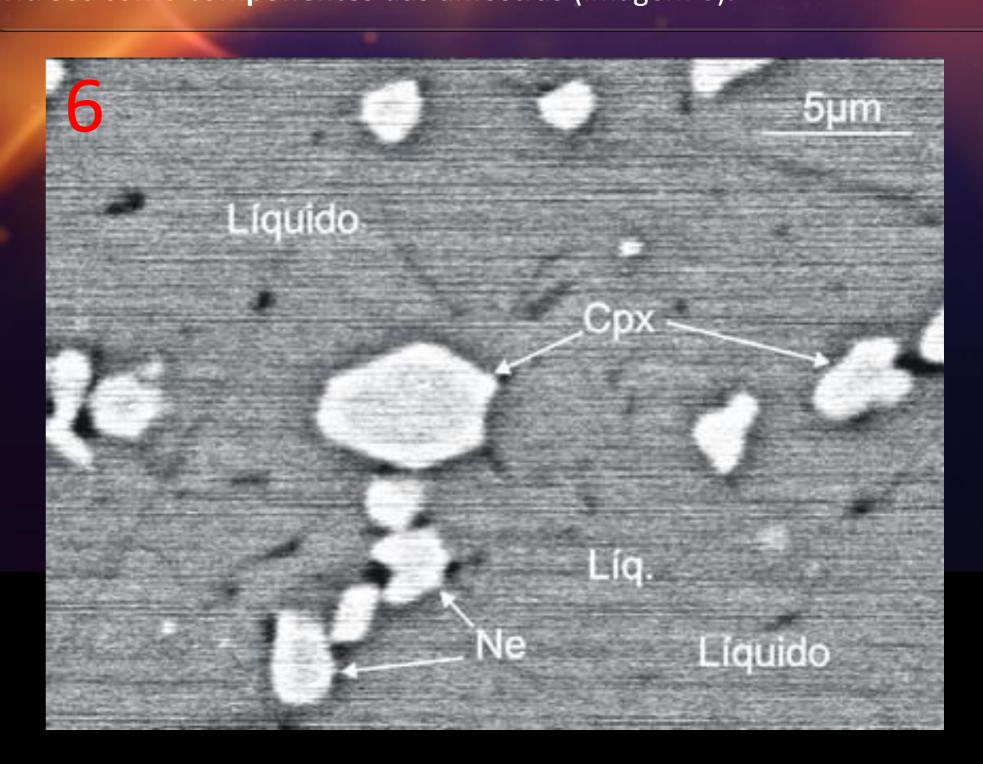


Imagem 6: No detalhe, imagem BSE mostrando experimento realizado a 1400 °C, 4GPa e 8 horas de duração, onde formaram-se cristais euédricos de Clinopiroxênio e Nefelina em equilíbrio com líquido.