

TESTE DE CORROSÃO EM AÇO INOXIDÁVEL 304 NA PRESENÇA DO LÍQUIDO IÔNICO TEA-PS.BF₄

Orientadora: Profa Michele Oberson de Souza **Estudante: Rafael Marques Schneider**

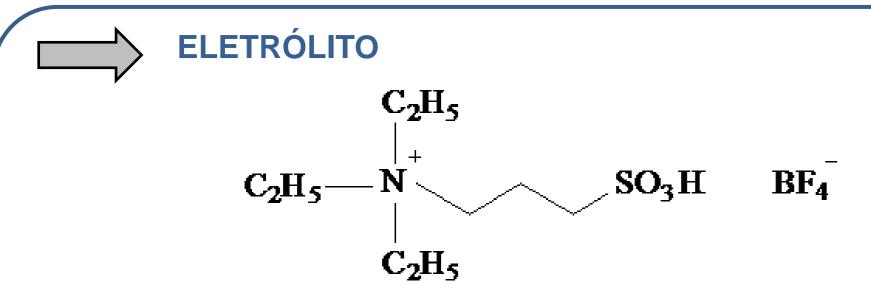
Laboratório de Reatividade e Catálise, Instituto de Química, Universidade Federal do Rio Grande do Sul

Introdução

O Laboratório de Reatividade e Catálise desenvolve projetos na área de energias renováveis. Uma das linhas de pesquisa é a produção de hidrogênio através da eletrólise da água:

$$2H_20 \rightarrow 2H_2 + 0_2$$
.

Neste processo, Líquidos lônicos (LIs) são utilizados como eletrólitos, pois, possuem boa condutividade iônica, estabilidade térmica a baixas temperaturas e ampla janela eletroquímica.


O estudo da resistência à corrosão dos materiais empregados para a construção dos reatores eletroquímicos que estão em contato com os Lis, se tornam portanto um aspecto fundamental para a viabilidade do uso dos Lls.

Objetivos

Estudar se o aço austenítico 304 na presença do líquido iônico TEA-PS.BF₄, sofre um processo de corrosão, visto que esse aço é utilizado como material dos eletrolisadores no sistema de produção de hidrogênio via a eletrólise da água.

Experimental

Materiais

tetrafluoroborato de ácido 3-trietilamônio-propanosulfônico (TEA-PS.BF₄)

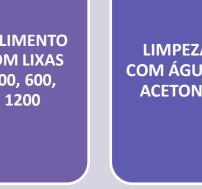
C = 0.08%

Cr = 18,3%

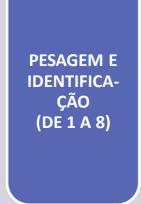
Ni=8,5%

Resistência à corrosão a T_{amb}

- Resiste ao ataque da maioria dos ácidos orgânicos, álcalis, oxi-sais
- Ligeiramente atacado pelo ácido sulfúrico concentrado.
- Não resiste ao ácido clorídrico, ao ácido sulfúrico diluído e haletos em geral.


Metodologia


Aplicação de uma norma da American Society for Testing and Materials (ASTM) 2


ASTM G31



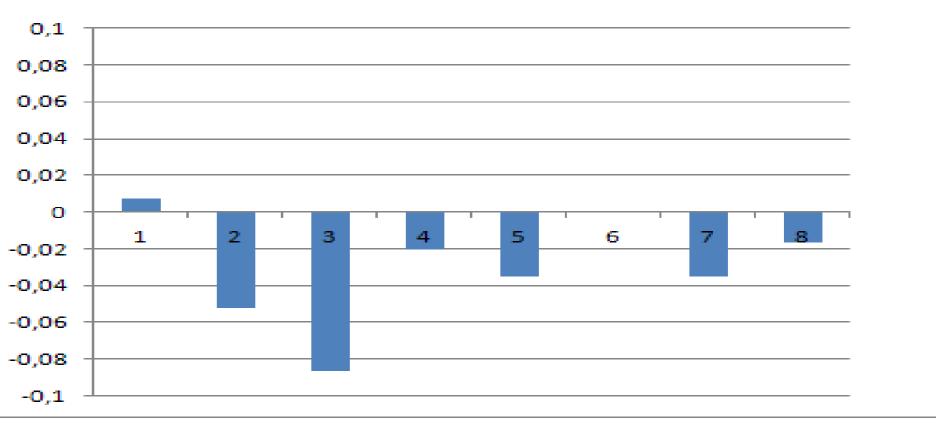
SEGUNDA PESAGEM e VERIFICAÇÃO DA **VARIAÇÃO DA MASSA**

LIMPEZA COM HNO₃

0,1M

a 60°C

20min

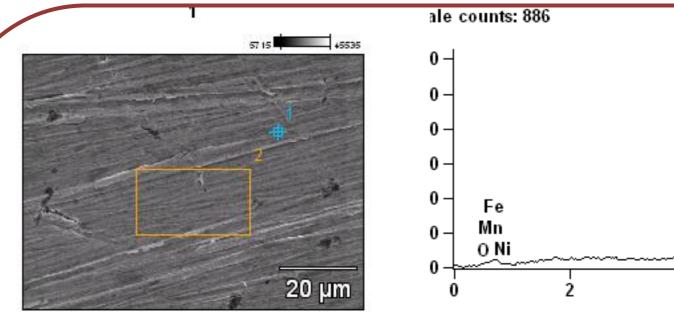

ÁGUA E **ACETONA**

MEV / EDS

Após a avaliação da variação da massa os corpos de prova são analisados por microscopia eletrônica de varredura (MEV) associada a uma análise por espectroscopia de energia dispersiva (EDS) visando observar a modificação da superfície e detectar se houve formação de óxidos na superfície da amostra.

Resultados e Discussão

Amostra	Massa inicial (g)	Massa final (g)	Variação da Massa (mg)
1	1,3709	1,3710	0,1
2	1,3440	1,3433	-0,7
3	1,1542	1,1532	-1
4	1,4722	1,4719	-0,3
5	1,4299	1,4294	-0,5
6	1,3606	1,3606	0,0
7	1,1422	1,1418	-0,4
8	1,2245	1,2243	-0,2



Variação da massa [%] em cada amostra

1_pt1

Cr Mn

> Não houve variação significativa das massas

		Ke V		
Elemento / % mássico	О	Cr	Fe	Ni
Ponto 1	0,45	19,0	71,6	7,4
Ponto 2	0,78	18,9	70,1	8,6
¹ Referência		18,3	73,1	8,5

- > Não houve alteração aparente na superfície dos corpos de prova
- > A análise de MEV EDS não indicou presença de óxidos na superfície

Conclusões

Nas condições experimentais testadas o Aço 304 não sofreu processo de corrosão ao contato do líquido iônico TEA-PS.BF₄

Referências

- 1 Aços Inoxidáveis Villares, Aços Villares Indústria de Base SA
- 2 ASTM G31/72 Pratice for Laboratory Immersion Corrosion Testing of Metals).

Agradecimentos

