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Treatment of the semiclassical Boltzmann equation
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We present an analytical treatment of the Camley—Bathasry of the giant magnetoresistance
(GMR) in magnetic layered structures and obtain an exact and general expression for the resistivity.
We used this expression to evaluate the resistivity and GMR numerically, comparing the results
with experimental observations. ®000 American Institute of Physid§0021-89780)08619-9

I. INTRODUCTION follows. This article is divided in the following manner: in

. . . . . _the next section, we formulate the problem to be solved.
This report describes an extension of the semlclasswe]\rl] P

- . ext, we present the central aspects of the calculation of the
approz_ach originally m_troduce_d by C_amley ".md Baines conductivity in a thin-film metallic multilayer. In the fourth
modeling magnetoresistance in thin-film multilayers. The ba-

sis for the model is an evaluation of the electrical resistivitySectlon we mcorpora’Fe the effect Of. t.hermal qut:_tanon; on
in a multilayer by means of the Boltzmann transport equa_free mean path and interface coe_fflments_. We finish Wlth. a
. . - . comparison between results obtained using our calculation
tion, with recognition given to the asymmetry between the .
. A . . _—and experimental data.

conduction by carriers in the various channels. Another im-
portant consideration is that similarly asymmetfir spin-
dependent scattering also takes place at the interface bell: GENERAL CONSIDERATIONS
tween magnetic and nonmagnetic metals. This approach has \ye define the magnetoresistar@®4R) by
been used and improved by various authors in recent
years!=® MR(%) =100~ 2% &)

The Camley—Barnas approach has proven to be very ef- OapP
fective in providing theoretical predictions of the magnetore-where op and o5p correspond, respectively, to conductivity
sistive behavior in magnetic multilayers. However, up untilin parallel and antiparallel configurations of the magnetiza-
now the treatment given has usually been numerical since thgon of the magnetic layers. This definition, written in terms
large number of interfaces that exist in a multilayer compli-of the conductivities for the two magnetic configurations, is
cate the introduction of boundary conditions for the systemeasily shown to be equivalent to the more commonly used
as a whole. A common approach is to use an approximatiogxpression containing the corresponding resistivities. We can
known as the “infinite multilayer,” in which the difficulty find o by the relation
with boundary conditions at outer interfaces is avoided by — ;_ . E, )
determining the conductivity of an idealized multilayer with
an infinite number of periods.

In this article we present a detailed development of
calculation in which we obtain a compact analytical form for m)3
the conductivity in a thin-film multilayer composed of v:_e(_> JVfﬂ(r'V)d”deydvzdz' )

whereE is the applied electrical field andl, is the current
adensity and is given by

h
layers, wherd\ is an arbit.rary integer. The contribution from where thef (r,v) is the distribution function of the conduc-
each layer can be examined independently, but of course thon electronns, the index corresponds to spin directio,

electronic conduction in such a system is characterized by 4 - ihe charge and the mass of an electron, respec-
the influence that physical processes within one layer havS '

h duction in other | We al ider. i vely, and# is Planck’s constant. We have taken the layers
?nbl' ﬁ.cor:hucsol? in other ayt(?rs.f etha SO ctonS| tﬁr’ n esfbarallel to the X,y) plane, as shown in Fig. 1.
avlishing the bollzmann equation for the system, th€ possi g gjactron distribution function fopth spin is written

bility of spin-mixing effects(and therefore thermal effegts .
: . ) . : in the form
are included in the calculations that we will present in what 0
f(zv)=f,(V)+g,(zV), 4

0 . oy . . . . .
dAuthor to whom correspondence should be addressed; electronic maiWherefn('V) 'S_the equilibrium Filstrlbutlon n the absence_ of
lgp@if.ufrgs.bv an electrical field, and,(z,v) is a correction to the distri-
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z which is actually a system of two coupled equations, one for
L N spin up, and the other for spin down.
ayer The general solution of this system is
E 0 —0,iZ
gni(Z,V): Ee&vf (V) B”i(l_A”ie %), (9)
Layer (i+1)
-— Interface (i+1) where
Layer i
<— Interface i N'=vyTin,
Layer (i-1)
<— Interface (i-1) 111 1 2
RIS AN
~— |nterface 1 — \/ i_i + i ,
Layer 1 AN )\i“
Substrate X 1 2
FIG. 1. Schematic diagram of arbitrary multilayers. F ﬁ
B — I I ,
| 1 1
. . . . + +
bution function due to scattering. Hegg,(r,v) was substi- NN )\iﬂ)\i” A n)\iTl

tuted byg,(z,v), because the system is isotropic in respect

to x andy coordinates. The linear-response Boltzmann transwhereA, (v) is a constant resulting from the integration and
port equation, for an electric field in thedirection, is given is a characteristic of any layer (See the Appendix for a
by more detailed discussion of this result.

From Egs.(4) and(9) we obtain

F
m 07vf9,(V)+V3rgn(Z,V):5tgn(Z,V)co|- 5

2
m
. . . — a2 0
Now, it will be necessary to determine the boundary 9,=€ #3 EI Bn,if vxdy F7(V)
conditions at surfaces and interfaces

g_(ZZOV):O ><[1—A,]i(V)efqﬂiz]dvxdvydvzdz. (10)
7] i) i)

By changing from Cartesian velocity components

n
z=total,v)=0, ) ) .
9 ) (vx,vy,v;) to spherical “coordinates” for the velocities,

9,(z=2,,v)=Q/g, (z=2_1,V), ©) (v,¢,6) and then integrating ovep, 6, z we obtain
9,(z=2,v)=Q/9,(2=2,1,V), 4
T e . 0, =KX B, 3870, | duF(w)
where theQ;” are the transmission coefficients and the sign [
+ and — stands for the direction of the electron velocities
with respect to the axis. We suppress this symbol because XA”‘i(M)(e_qrjiZiM—e_qniZjM) , (1)
we consider the multilayer symmetric in velocity with re-
spect to thez axis. wherev¢ is the Fermi velocity and
I1l. CALCULATING THE CONDUCTIVITY K 62,2 2
=17 UF_’

The collision term for the system with spin mixing can h

be written as in Ref. 3 PN
v 92w ) Flu)=(1-p ?)u3
g,(zv) 9,(zv)—g_,(z,Vv 12
09,2 V)go= — 20 ITEDTIAEN gy, 12
T T
Herer, is the relaxation time for electrons of spinand Tl j=i+1,
describes the contribution of the spin-flip processes. Com-
bining expressior7) with Eq. (5) yields _ 1 (13)
K= Coso

E
—ed,fo(v) +vd,9,(z,v) . . . .
m The expression(1ll) cannot be integrated immediately,

because the dependenceAof, in v is not explicit. To find a
_ 9,2V g,,(z,v)—g,,,(z,v), (8  general form ofA,; as a function ofv, we will use the
Tn 7l boundary conditions given if6)
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9771(2: O!UZ) = 0:>Bnl[1_ Ar]l(vz)] =0,
Aﬂlzciileaillvza
where
cri=1, a;,=0, (14)
and

gr]j(Z:Zi !vz):Qingni(Z:Zi rvz).

Bj(1- A e ") = QVB (1~ A, W3, (19

Aﬂj = Xy etz BnijAni e{8yj ~dyi) (Zi/vz).
where
_ _ B77i
@yi=1=Bri, Brij=Qug - (16)
B

Beginning with Eq.(15) it is possible to write expres-

sions forA,;,A,3,A. ... .
For A,

A=y @20zt B oA, el ) (loa),

_ Ll qat 2 qal)
A, o= p€%2 2+ Cl etn2 Ve, 17

2
A=, clyetnlvs,
n=1
where
Ci,zz A p12,
C22= Byl
a}72: Q221, 18
afﬁ: a}71+ (A2—0dy1)Z1-
For A,z
Aﬂ3: a,]23eq’7322/vz+ anaA,]Qe(quqﬂZ) (Zz/vz),
A= 772Vt B, oo C},zeb(ai’zlvz) + Cizeaizlvz)
X @ldy3=y2) (22/v7)
b(aj /v (19

—ol )4 02 @doglvs o3 adlalv
A,;3=C)3€ 7+ 3€%n3 2+ C se%nslz,

3

A= cr,‘]3ea':/3’”2,

n=1

where

C%,sz A 23,

nysz 187723(3102’

0?73: ,37723(3372’

a1,3= q,3Z2, 0
af,e,: ai,z"‘ (d,3—0,2)22,

3 _,2
a773_a772+(q773_q7;2)22-

And finally for A, 4

Pereira, Duvail, and Lottis

A= a7734eqn4z3/”2+ [3”34A”36(q174—%3) (Zalvg),

_ z3/v 1 abal, v 2 al v
A774—C¥,’34eq774 3 ZBﬁ34(C7]39( 73 Z)+C7]3e 7372

3
+ C?Isean?,/vz) e84 dy4) (23lv7) ’

1 2 3 4 (21)
A, 4= ChyeP@nalvd + 2 e@nalvzt 3 eVt ¢ eV,

4

A774: nzl Cg4ea?]4/vz’

where
0374: 34,
C24=B,3Cra
C34=BaCra,
Cra=BraCoa,
a}]4= 0,423, 22

af;4= a}73+ (04— 043) 23,

ai4: af;g"' (Apa—0dy2)Z3,

4 _.3
= a3t (08— 0,2)Z3.

From the results foA,ﬂ., A2, A,z andA,,, one may
deduce a general expression foy; :

]
Ayi(vy)= nzl cr,‘,jeagzj’”z, 29
where
a%;l:O,
8y, =20,
al=al +z(d,—q,), (24)
C}n: 1,
Cj = @ij .

-1
CI;J:'BiJ'nCinn :
Expression23) for the A,; are now in the desired form,
that is, with an explicit dependence on. This result will
allow the analytical integration a#).

Using the earlier mentioned relation for the constaits
Eqg. (11) can be rewritten as

4 i
O'n:% Bni{gAzi_nZl q,,icr,‘“-f duF(u)

x(erilé;j"—erf%/n”) , (25)
whereT'}" is given by

Fil;,n:ar:;i =04z, (26)

Fiz;,”=a?ﬂ —0yiZ - (27

We can integrate this equation
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N 4 i ues, once the resistivity of the materials as a function of the
n in 2n -
(77,22 B, §Azi_qni2 Chi(Li, — Ly temperature is known. In other words, once the fundamental
n . . .
' parameters of the simulation have been defined at 0 K, the
i - system will evolve on its own, without the need of external
+Mi = M) | interference in the program.
(28)
—_rmn
Li"=15— ST A2+ &[N le ",
(rpmz 1 e Tiyn
M= 1= 5 (IT)? f du, V. EXAMPLES
2 1207 o :
x=i—1. (29 In order to illustrate the results found in the previous

e ion(28) i i o th b sections, we apply the results obtained via Eds.and(28)
quation(28) is an analytic expression that can be usedto reproduce some experimental results already known in the

alpng with Eq.(1) to (_jetermme the magnetoresistance. InIiterature. The parameters farand Q used in this example
this manner we can simultaneously obtain values for the re-

sistivity, conductance, and magnetoresistance of the systerﬁ.re in perfect agreement with those reported in the literature
(for an example, see Ref).7

The first example to be presented shows the variation of
V. TEMPERATURE DEPENDENCE OF THE the mallggetore&s;tance Wltkll thebr;.u?bderbof ::?yr%s]]éThhe experi-
PARAMETERS O AND A mental data are from work publis 1ed by Parkin; where
_ _ the author presents a set of experimental data for the varia-
In order to apply the formalism developed in the preced+ign of the magnetoresistance in the Sil@rA) [Fe (18 A)/

ing section to temperature-dependent systems, it is necessary (9 A)]/Cr (9 A) system with the number of layers. Here

to examine the thermal evolution of the parameters that aRye shall take as basis for comparison the empirical equation

pear in thg calculation. For the nonmagnetic layer, the resis - ihe magnetoresistance obtained by the author
tivity is written as

p(T)=p(4.2 K)+3p(T), (30

where 6p(T) is related to the phonon scattering and is a  \r=168 2N-2

characteristic of each metallic element. Tn— 15N’
For the magnetic layers, the resistivity is also written in

the form given by Eq(30) and the dependence of the free-

mean path on temperature is giverrby

(33

whereN is the number of bilayers anfl is the total thick-
plpt+pli(pl+ph ness of the multilayer. To reproduce Parkin’s experimental
= ; results, we use the following set of parameters:

pT + pl + 4pTl
(31
pl=ap,
. Npe=7.6 nm,
wherep and a are experimental data, see Refs. 12 and 13.
We have related the resistivity and mean-free-path using
Q cm) (A)=1940,
pols ol Ae=4.5 nm,
see Ref. 1.
We suppose the mechanism of the dependence on tem-
perature for transmission coefficients through the interfaces
has the form Q'=1,
Q(T)=Q(0)+ wT?, (32)
where Q(0) is the diffusion term at 0 K and and y are Q'=0.1.

deduced from the fit&:
The use of these two functional forms fa(T) and
Q(T) in the temperature will preserve the thermal evolution

of the simulations and allow to work with experimental val- ~ Figure 2 shows the experimental curjeplid line ob-
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---+--- Simulation Results e
40 — 1 - - r - r - rtr ' Tt ' T 7
0 40 80 120 160 200 240 280 320

-------- Simulation Results

O 10 20 30 4 5 60 70 80 Temperature (K)
Thickness Cu (A) FIG. 5. Calculated thermal variation of GMR in[@o (15 A)/Cu (9 A)],5

FIG. 3. Magnetoresistance vs Cu spacer layer thickness at 4.2 K for severgliaShed ling Dots correspond to the experimental results.

series of multilayers of the forniCo (15 A)/Cu (tc, A)]s. Inset: the
dependence of resistivity \g,,.

Ne=120 A,
Ne,=10 A,
tained from Parkin’s phenomenological expressi@3)], N =210 A
along with the results obtained using E@8). Note that cu '
there is good agreement between the results. Q'=0.98,
In what follows, we present a comparative set of experi- Q=02

mental and computational results f@o (15 A)/Cu (9 A)] 5
system(see Ref. 14 We start by showing the variation of
the resistivity and magnetoresistance for the copper layer
thickness evolutiorit,=6-60 A) for two different tempera- v/, CONCLUSIONS

tures, 4.2 and 300 K: Figs. 3 and 4, respectively.

Finally, in Fig. 5, the dependence of the magnetoresis-  Using the semiclassical formalism for the electrical con-
tance in a large range of temperaturds=@4.2—-300 K), ductivity o in multilayered thin films, we have developed a
was shown. calculation that resulted in an analytical expression dor

The parameters used in these three last cases are The greatest difficulty in obtaining this expression was find-

FIG. 4. Magnetoresistance vs Cu spacer layer thickness at room temperat
for several series of multilayers of the fofi@o (15 A)/Cu(tc, A)] 5. Inset:

(C°15/CU1CL|)25

Thickness Cu (A)

the dependence of resistivity g, .

ing a form for A(v) that could be integrated, that is, that
explicitly showed the velocity dependence. The quantity
A(v) is obtained from the boundary conditions and depends
on the interface under consideration. Since drayer

70 — multilayer hasN— 1 interfaces, the functioA(v) will have
| T=300K o] N—1 different forms. By means of a mathematical manipu-
604 ° 2] lation of the bou.ndary conditions we were lee to find a
1 E . o compact expression that represefA{®) at any interface in
50 s \ N / the multilayer and that explicitly shows its velocity depen-
l . =" \/\\,)4 dence, thus allowing a general expression for the conductiv-
< 4°'_ 0] ' ity to be obtained by integration.
ff 30 o 20 0 @ S 8 70 In order to encompass the greatest number of situations
= . Thickness Cu(A) possible, we have included the temperature dependence. This
20 4 . —e— Experimental Results was done directly at the initial formulation, that is, the spin-
] Trel e Simulation Results mixing term was included in the Boltzmann equation. The
104 \ system’s thermal evolution is incorporated in the simulations
) /\""'\. * by using experimental results obtained from resistivity stud-
0 r . r . r ies of bulk metals and alloys.
0 30 40 50 60 70 80

The simulations were developed using parameters that
are well known in the literature and showed good agreement
Jith experimental data. In addition to allowing for numerical
studies, the general expression for the electrical conductivity
can be explored in its analytical form.
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30 1/ alaptz 201 _ p2.p22
Cr,(Cr/Fe ).Cr, 9,=D5(1 =AM ") + D5 (1 - ALePn™™). (AB)
25 - To determine which expression correspondsytoand
g,, we examine the limit' | — o0, which is just the nonspin-
20 flip problem
T H = 0 —zl7 v
% 154 T||lm :gni(z,v):aeﬂvxf (V) 7,i(1=A,(v)e” “Tniv),
E T!v—00
104 (A7)
@ Simulation Results In this limit we have
5 —— Parkin's Fitting
_E 0
Do—aeﬁuxf (V) 7,
0 T T T T T T T T T T T T T
0 5 10 15 20 25 30 35 1 2
Number of Layers (N) 4
| Tl
T T
FIG. 2. Dependence of magnetoresistance on number of bilayers for Si/Cr DT:—eaU fo(v) ,
(9 A) [Fe (18 A)/Cr (9 A)]\/Cr (9 A). Full line corresponds to Parkin’s m 1 1
results and dots are the calculated bilayers variation. Tl + T 11 + L1l
T T T T TT
1 2
The model that has been developed here is limited but AL
can be improved by taking certain physical processes into Dl=ae(9vxf°(v) :
account, such as reflections at the interfaces. 1 + 1 + 1
s o A 1
1 (A8)
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