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1 Introduction

The O(N) o-model is an asymptotically free quantum field theory which has been attract-
ing high interest, since it exhibits some common features with Quantum Chromodynamics
(QCD), the theory of strong interactions. Although very powerful, the 4-dimensional QCD
still requires an adequate machinery to handle with the confinement problem. From this
point of view, 2-dimensional integrable models are very useful since they serve as labo-
ratories for investigations of those properties of quantum field theories which can not be
described via standard methods, such as perturbation theory. We should also note that
exact results and methods which have been developed last decades are now flourishing and
finding applications in the AdS5 &) S theory [1]. It has also been proposed a set of con-
sistency conditions for the worldsheet form factors for the set of off-shell operators in the
AdSs @ S® [2]. The most important result on the AdS/CFT correspondence is the remark-
able conjecture of Maldacena [3], which establishes that 10-dimensional string theory on
AdSs ® S° could be equivalent to a 4-dimensional Super Yang Mills (SYM) theory. In or-
der to establish this conjecture there are ongoing developments on this topic [1] employing
exact methods such as the Bethe ansatz. Clearly, such new developments, among others,
place to a higher level the status of the approaches employed in 2-dimensional integrable
Quantum Field Theories (QFT). Consequently, integrable models in 2-dimensions are now
being considered not only isolated mathematical objects; in opposite, they are universal
and also coming out in higher dimensions, where enough integrals of motion necessary for
integrability are being found. The nonlinear O(N) o-model is defined by the Lagrangian
and the constraint

N N
1 .
L= 3 E ((%gpa)2 with ¢ E 02 =1 (1.1)
a=1 a=1

where @, (z) is an isovector N-plet set of bosonic fields and ¢ the coupling constant. This
model is integrable, there exist an infinite set of conservation laws [4]. In the quantum
model the infrared charge singularity leads to the disintegration of the Goldstone vacuum
and to mass transmutation of particles, which form an O(N) multiplet (see [5]).

In this article we construct the form factors of the model by using the solution of
the O(N) difference equation, derived previously [6] by generalizing Tarasov’s methods [7]
(see also [8]) of the algebraic Bethe ansatz. Exact form factors for the energy-momentum,
the spin-field and the current are computed and compared with the 1/N expansion of the
O(N) o- model. We should note that the form factors in O(3) and O(4) sigma models first
were calculated by Smirnov [9, 10] (see also [11-14]). In the framework of 2-dimensional
integrable QFTs the central problem is still the computation of the correlation functions or
Weightman functions and the form factor program is exactly devoted to this purpose. The
concept of a generalized form factor was introduced in [15, 16], where several consistency
equations were formulated. Subsequently this approach was developed further and investi-
gated in different models by Smirnov [9]. Generalized form factors are matrix elements of
fields with many particle states. To construct these objects explicitly one has to solve gen-
eralized Watson’s equations which are matrix difference equations. To solve these equations
the so called “off-shell Bethe ansatz” is applied [6, 17-19]. The conventional Bethe ansatz



introduced by Bethe [20] is used to solve eigenvalue problems and its algebraic formulation
was developed by Faddeev and coworkers (see e.g. [21]). The off-shell Bethe ansatz has
been introduced in [22] to solve the Knizhnik-Zamolodchikov equations which are differ-
ential equations. For other approches to form factors in integrable quantum field theories
see also [23-31]. The main result of this paper is the general form factor formula, written
as an integral representation, which provides the solution of all form factors equations and
whose main idea is briefly explained below. In the O(N) o-model the particles form an
isovector N-plet of O(N). For a state of n particles of kind «; with rapidities #; and a local
operator O(z) the matrix element

(0]10(x)]61,...,0,)" = e~wPrt+p) O (p)

o3

defines a form factor which we write as (see [15])

F{.0) =KD ,.0) ] Fos) (1.2)

1<i<j<n

where F'(0) is the minimal form factor function. We propose the following ansatz for
the K-function in terms of a nested ‘off-shell’ Bethe ansatz written as a multiple contour
integral

K90 = NS [

dz - / o (6, 2) p° (6, 2) Ty, (0, 2) . (1.3)
c; ey

Here h(6, z) is a scalar function which depends only on the S-matrix. The dependence on
the specific operator O(x) is encoded in the scalar p-function p© (0, z) which is in general
a simple function of ¢ and e%. The state \i/g in (1.3) is a linear combination of the basic
Bethe ansatz co-vectors (see (2.17))

Ba(0,2) = Ly(2) B2(0, 2) (1.4)

8
where summation over all é = (501, ce ﬁm) is assumed. The ,8 form an (N — 2)-plet of
O(N —2). For Lj(z) we make again an ansatz like (1.3). The nested off-shell Bethe ansatz
is obtained by iterating this procedure.

The article is organized as follows. In section 2 we recall some results and fix the
notation concerning the O(NN) S-matrix, the monodromy matrix, etc. In section 3 we discuss
the generalized form factors formula for the O(/V) o-model. In section 4 we apply the nested
off-shell Bethe ansatz to solve the O(NN) form factor equations. Section 5 is devoted to the
computation of some examples. The appendices provide the more complicated proofs of
the results we have obtained and further explicit calculations.

2 General settings

2.1 The O(N) S-matrix
The 2-particle O(N) S-matrix is of the form [5]

S =b(0)1 + ()P + d(O)K (2.1)



or in terms of the components
o
Sob(0) = b(0)6305 + c(0)53,6% + d(0)5” 60
where 6 is the rapidity difference of the particles. Crossing means

S0

05(0) = Caar SE2(im — 0)C77 (2.2)

or in terms of the amplitudes
b(0) = b(ir — 0), d(0) = c(ir — 0)

if we define the “charge conjugation matrices” as

Cop = 0ap and C*P = 57, (2.3)
The Yang-Baxter relation
S12(012)513(013)S23(023) = S23(023)S13(613)S12(612) (2.4)
implies [5]
o(6) = —”7”19(9), d(0) = —Z,:T_” S00) (2.5)

where v = 2/(N — 2). The minimal solution is b(0) = Q(0)Q(im — ) with
D+ LT+ L0)
L3+ 50+ 5m0) T (39)

271

QY) =

(2.6)

This minimal solution was first constructed by Zamolodchikov and Zamolodchikov [5] and
they gave arguments that it provides the O(N) o-model S-matrix
Sa—model(g) — Smin(e) )

The three S-matrix eigenvalues are Sy = b+ c and Sy = b+ ¢+ Nd with

0+im 0 —imv
(S0.5,.5.) = (Mml) - (2.7)
For later convenience we introduce
S(0) = 5(6)/S,(0) =b(0)1 + ()P + d(O)K
with
~ 0
bo) = 0 — iy
1Ty
&(0) = — 2.
&0 0 —imv (28)
~ 0 iy
() O —imvir—0°
We will also need S(z) the S-matrix for O(N — 2)
S(0) = $(0)/5.4(0) = b(0)1 + &O)P + d(O)K (2.9)

where v is replaced by v = 2/(N — 4).



2.1.1 Complex basis

For the Bethe ansatz it is convenient to use instead of the real basis |a),, (a =1,2,...,N)
the complex basis

) =

@) =

(I2a = L)y +i[20),)
(1200 = 1), —i|200),)

an

}, a=12,...,[N/2

and in addition |0) = |0) = |N), for N odd. Below we will use the notation
0)a = |a(0)), 10)a = [a(6))
for one particle and one antiparticle states with rapidity 6. The weight vectors
w = (wl, e ,w[N/Q])
of the one-particle states are given by

wg = Ok for |a)
wg = —0kq for |@)
wp = 0  for |0).

Remark 1 For even N this means that we consider O(N) as a subgroup of U(N/2). For
N = 3 we may identify the particles 1,1,0 with the pions m+, 7.

The highest weight S-matrix eigenvalue is a(f) = S{i(0) = S, (0) with

I'(3+550)0 (3 %V—LH)F(l——G)F(VJrgmG)

1
a(a) — 2 27 271 (2‘10)
r (% B }me) ( + 2 271r7,9) (1 + 271rz9) ( v %)
Cdte W fet | 0

We order the states as: 1,2,...,0,...,2,1. Then the charge conjugation matrix in the
complex basis is of the form

C =37, Cup = 0,5 (2.12)

The annihilation-creation matrix in (2.1) may be written as

aﬂ - C5’Ycaﬁ



2.2 Nested “off-shell” Bethe ansatz

The “off-shell” Bethe ansatz is used to construct vector valued functions which have sym-
metry properties according to a representation of the permutation group generated by a
factorizing S-matrix. In addition they satisfy matrix differential [32] or difference [17] equa-
tions. For the application to form factors we use the co-vector version K, , (6) € V1., =
(i, V)T , (0; €C, i=1,...,n). We write the components of the co-vector K,  as K,
where @ = (o, ..., ay) is a state of n particles. Solutions of the O(N) equations

Kzg( R Hi, Hj, .. ) = Kﬂ( .. ,9]‘,91‘, - ) SZJ(GU)
Kalaz...an (91 + 27Ti, 92, o ,Gn) = KQQ.”anal (92, ey Gn, 01)

where constructed in [6, 33] (see also [17, 19]). These equations are equivalent to the form
factor equations (i) and (ii) (see (3.2) and (3.3)). The solutions have been constructed in
terms of a nested O(N) “off-shell” Bethe ansatz in [6, 33]. Here we need special solutions
which satisfy in addition the form factor equation (iii) (see (3.4)).

Nested “off-shell” Bethe ansatz. We consider a state with n particles and write the
off-shell Bethe ansatz co-vector valued function as

Ko(0) = /C dz - /C o (0, 2) T (6, 2) (2.13)

where a = (a1,...,a,), 0 = (01,...,0,) and z = (21, ..., 2zn,). This ansatz transforms the
complicated matrix equations (3.2)-(3.4) to simple equations for the scalar function k(, z)
(see [6] and below). The integration contour Cy will be specified in section 4. The state
U, in (2.13) is the linear combination (1.4) of the basic Bethe ansatz co-vectors (2.17).
For the co-vector valued function L B (z) (which lies in a tensor product of smaller spaces of
dimension N — 2) we make again an ansatz like (2.13). Tterating this procedure we obtain
the nested off-shell Bethe ansatz. This iteration ends up at the O(3) or O(4) cases which
will be discussed separately.

As usual in the context of the algebraic Bethe ansatz [21, 34] the basic Bethe ansatz

co-vectors ég are obtained from the monodromy matrix. We consider a state with n
particles and as is usual in the context of the algebraic Bethe Ansatz we define [21, 34] the
monodromy matrix by

Ti..n0(8,600) = S10(61 — 00) - - Sno (6 — 00). (2.14)

It is a matrix acting in the tensor product of the “quantum space” V" =V, ® --- @V,
and the “auxiliary space” V. All vector spaces V; are isomorphic to a space V' whose basis
vectors label all kinds of particles. Here V =2 C¥ is the space of the vector representation
of O(N).

Suppressing the indices 1...n we write the monodromy matrix in the complex basis
as (following the notation of Tarasov [7])

T = | (G (4)Y (Bs)® (2.15)



where o, o/ assume the values 1,2, ...,(0),...,2,1 corresponding to the basis vectors of the
auxiliary space V = CV and &, & assume the values 2,. (0) ,2 corresponding to the
basis vectors of V' = CN=2. We will also use the notation A = Al, B = Bl, C = C; and
D = Ay which is an (N — 2) x (N — 2) matrix in the auxiliary space. As usual the Yang-
Baxter algebra relation for the S-matrix yields the typ1cal TT S-relation which implies the
basic algebraic properties of the sub-matrices A;, B;, C.

The reference co-vector is defined as usual by

OB, =0
with the solution
Q= 51 . 5(1M ) (2.16)
It satisfies
ay(0, z) 0 0
QT (0,2) =Q x  az(0,2)1 0 ,
* * as (8, z)

n

a1(0,2) = 1, a2(8,2) = [ b(6: — =), as(0,2) = [[ (5(91- —z)+d(6; — z)) .

k=1 k=1

The basic Bethe ansatz co-vectors in (2.13) are defined as (for more details see [6])

601 Bm
1 1
=5 B, \oyibm =50 o) - |\ 1
D50, 2) = HE(g)QT1 O, zm)... TV (0,21) )] = P . (2.17)
- 1
‘91 971
a1 (079

The matrix 2 ( ) intertwines between the S-matrix S of O(N) and § of O(N — 2)

Sii (2T iy (2) = TT_ss. (2)S05 () (2.18)

This matrix IT is necessary! because for the next level Bethe ansatz the S-matrix S (9) for
O(N —2) has to be used. The co-vectors (2.17) are generalizations of vectors introduced
by Tarasov [7] for a 3-state model, the Korepin-Izergin model. The following relations for
special components of IT will be used below (for more details see [6, 33])

0 for 51 =1

: 0 for B, =1
5 = { b g :
8T o0 B for By £T

Hﬂl g: 155;: for B # 1.

!This matrix 1T is trivial for the SU(N) Bethe ansatz because the SU(N) S-matrix amplitudes do not
depend on N for a suitable normalization and parameterization.

(2.19)




In particular for n = 2

1TV

BiBa N _ PP B2 51 51 _
MWsi,(2) = 05,0, + F(212)C205, 05, f2) = =g —05 -

(2.20)
Remark 2 The [I-matrix is responsible for the fact that the Bethe state \i’g(ﬁ, z) is a sym-
metric function of the z;, if the co-vector valued function Lé(g) in (1.4) satisfies equation
(4.22) for level k = 1. -

It is well known (see [6]) that the ‘off-shell’ Bethe ansatz states are highest weight
states if they satisfy certain matrix difference equations. If there are n particles, the O(N)
weights are

(n_nl,.--,n[N/Q}_l _n[N/Q]) for N odd

Wiy .ww W =
(w [N/2]) { (n =My MNJ2—2 — M — My N — n+) for N even

where nq = m, no, ... are the numbers of T’ operators in (2.17) and the higher levels of the
nesting. In particular ng are the numbers of positive/negative chirality spinor C-operators.
For the on-shell Bethe ansatz for N even see also [35]. As is well known (see e.g. [36-38]
and references therein), the various levels of the nested Bethe ansatz correspond to the

nodes of the Dynkin diagrams of the corresponding Lie algebras Dy for N = even and
B[N/Q] for N = odd:

ny
DN/Q: O—Oi4<§ B[N/2]: o—0O— - —OC=0
ny N9 n_ ny  n2 n[N/2)

3 Generalized form factors

For a state of n particles of kind «; with rapidities ¢; and a local operator O(z) we define

the form factor functions S, (61,...,0y), or using a short hand notation FS(Q), by
(0]O(@) |01, ....0,)0 = e =Pt FPIFO Q) | for 61 > -+ > 0, (3.1)
where a = (a1,...,a,) and 0 = (01,...,0,). For all other arrangements of the rapidities

the functions F(f) are given by analytic continuation. Note that the physical value of
the form factor, i.e. the left hand side of (3.1), is given for ordered rapidities as indicated
above and the statistics of the particles. The Fg (0) are considered as the components of
a co-vector valued function FC (0) €V}, = (Vl“'”)T.

Now we formulate the main properties of form factors in terms of the functions F}° .

3.1 Form factor equations

The co-vector valued function F©  (6) defined by (3.1) is meromorphic in all variables
01, ...,0, and satisfies the following relations:



(i) The Watson’s equations describe the symmetry property under the permutation of
both, the variables 6;,0; and the spaces 4, j =i + 1 at the same time

FOo (0:,05,...) =F%, (...,05,0:,...)8S:;(0;) (3.2)

g ey Ui Uy ) = L0 0 ji...
for all possible arrangements of the 0’s.

(ii) The crossing relation implies a periodicity property under the cyclic permutation of
the rapidity variables and spaces

UL p1 [ O0) | P2, P oo™
=FC (01 +im,0s,...,0,)C 1t = FP  (6,...,0n,0, —im)C'T (3.3)

The charge conjugation matrix CM is given by (2.12).

(iii) There are poles determined by one-particle states in each sub-channel. In particular
the function FQO(Q) has a pole at 015 = i7 such that
Res Flon(el, ey Gn) =0 012 an(eg, e ,Hn) (1 — Sgn e 523) . (34)

O1o=1im
(v) Naturally, since we are dealing with relativistic quantum field theories we finally have
FP o (0r 4 gy 0n +p) = e FP L (61,...,0,) (3.5)

if the local operator transforms under Lorentz transformations as O — e*#O where
s is the “spin” of O.

As was shown in [18] the properties (i)—(iii) follow from general LSZ-assumptions and
“maximal analyticity”, which means that F©  (6) is a meromorphic function with respect
to all @’s, and in the ‘physical’ strips 0 < Im#;; < 7 (6;; = 6; — 0, i < j) there are
only poles of physical origin as for example bound state poles. In general there is also the
form factor equation (iv) referring to bound states. Since there are no bound states in the
O(N) o-model this equation is empty.

We will now provide a constructive and systematic way of how to solve the form factor
equations for the co-vector valued function F® . once the scattering matrix is given.

Minimal form factors. The solutions of Watson’s and the crossing equations (i) and
(ii) for two particles

(i) : () = S(0) F (-0)
(ii) : F (imr —0) = F (imr — )

with no poles in the physical strip 0 < Im# < 7 and at most a simple zero at § = 0 are
the minimal form factors. For the construction of the off-shell Bethe ansatz the minimal
form factor of highest weight eigenvalue of the O(N) S-matrix a(6) = Sy (0) of (2.10) is

essential p . )
o t 1—e ™
F(0)= 1—-cosht(1—— . .
(6) = cexp (/0 tsinht 14 et ( o8 ( Z7T>>> (36)




For convenience we have introduced the constant ¢, which is defined below (4.8). The
two other minimal form factors belonging to the S-matrix eigenvalues S_ (6) and Sy (0)
(see (2.7)) are [15]

i 12 (3 +3v)
F_ 9 = 2 2 F 9 37
©) sinh 30 T (1+ v — 5=0) T (v 4 50) 1 (0) (3.7)
sinh 0
Fo0) = 75"~ @) (3.8)

Py (0) = %F ().

4 Nested “off-shell” Bethe ansatz for O(INV)

4.1 The fundamental theorem

We write the general form factor FC () for n-particles following [15] as in (1.2) where
F(#) is the minimal form factor function (3.6). The K-function K  (6) contains the entire
pole structure and is determined by the form factor equations (i)—(iii). We propose the
ansatz (1.3) for the K-function in terms of a nested ‘off-shell’ Bethe ansatz (2.13)

KO0 =N [ deree [ dnh0.2)1°60.2) 10002
2] [

written as a multiple contour integral. The scalar function B(Q, z) depends only on the
S-matrix and not on the specific operator O(x)

no,2) =[1]¢0:—=z) [I m(zi—2)- (4.1)

i=1j=1 1<i<j<m

The functions éj and 7;; have to satisfy the shift equations

¢ (0 — 2mi) = b(0);(6) (4.2)
7ij (2 — 2mi) /b(2mi — 2) = 7i;(2)/b(2)

which follow from the form factor equation (ii) or (3.3) [6, 33]. Here, for the O(N) form
factors, they depend on whether i, j are even or odd

¢e(0) = 2(0)7 éo(e) = w(a) (4'4)
1 1
Tee(2) = Too(2) = TR Teo(2) = Toe(—2) = m (4.5)
where t(z) and Y(z) are
oo T(—fv45=0) = T(—350)
Vo= (12+ %Z) X0 = r(%,jf L0) (4.6)

,10,



x| 01 + dim
o| 01 +im(4—v)
x| 0p, + 4imw x| 0y + 4im
o 0, +im(4—v) ol +im(d—v) Y
x| 01 + 2imw
Y \ o 01 +im(2—v)
x| 6, + 2iw x| Oy + 2im
o 0, +im(2—v) o| Oy +im(2 —v)
)0 —imv
o 0y —irm
°) 0, —imv °) 0y — i
o f, —ir o Oy —im

Figure 1. The integration contour Cj. The bullets and the crosses refer to poles and zeroes of

the integrand resulting from 1&(02 — z;) and the small open circles refer to poles originating from
S(QZ - Zj).
In addition the equation

F(O)F (0 + in)p(—6 — im 4 imv)x(—6) = 1 (4.7)

is satisfied. It follows from the form factor equation (iii) or (3.4) as will be discussed in
appendix A.
Notice that the equations (4.6) and (4.7) also determine the normalization constant c

in (3.6) as
1 3 11 © dt1—e 1 —coshit
— r(2)\r(=+:= - 2. 4.8
o= (4) <4+2y>exp</0 e ) (4.8)

The dependence on the specific operator O(z) is encoded in the scalar p-function

p? (0, z) which is in general a simple function of e’ and e* (see below). By means of the
ansatz (1.2) and (1.3) we have transformed the complicated form factor equations (i)—(v)
(which are in general matrix equations) into much simpler scalar equations for the scalar
p-function (see (4.9)).

The integration contours (corresponding to the functions ¢.() = x(6) and ¢,(0) =
P(0)) C§ and C§ are depicted in figure 1 and figure 2.

Theorem 3 We make the following assumptions:
1. The p-function p(0, z) satisfies the equations

(i) : p(8, z) is symmetric under 6; < 0;
(it") : p(0,2) = p(61 + 27i, 02, ...,2) = p(0, 21 + 27i, 22, ...) (4.9)
(iii") : p(0,2) = p(é, Z) for 019 =im, 21 = 01 —imv and z2 = 0

where the short notations 8 = (0s,...,0,) and 2 = (z3,...,2n) are used.

— 11 —



® 0 — iy
® 0x ® 05 ° 6, —in
B 0, —irv B (g —imv —
o0, —ir 0 0y —im o 01 — 2mi
— —~ X 91—i7T(2+V)
o 0, — 2mi o Oy — 2mi
x| 0, —in(2 +v) x| 0 —in(2+v) |
A A o| On — dmi
x| 01 —im(4+v)
o| 0, —4mi o| Oy — 4mi
x| 0, —im(4+v) x| 0y —im(4+v)

Figure 2. The integration contour C§. The bullets and the crosses refer to poles and zeroes
of the integrand resulting from x(6; — z;) and the small open circles refer to poles originating
from S(0; — z;).

2. The higher level function Lg(z) in (1.4) satisfies (1)®) —(iii)*) of (4.22)-(4.24) for
E=1

3. The normalization constants in (1.3) satisfy (for N > 4)

VO 1 vF (i) >:((—i77 (1+v)) NO
" Bl ] S s

m—2

(4.10)

then the co-vector valued function F,(6) given by the ansatz (1.2) and the integral repre-
sentation (1.3) satisfies the form factor equations (i), (ii) and (iii) of (3.2)—(3.4).

The proof of this theorem can be found in appendix A. The normalization relation (4.10), of
course, depends on how the higher level K-functions are normalized. This will be discussed

in subsection 4.4.

4.2 O(3) form factors

In the complex basis the three one-particle states are 1,0, 1. The S-matrix for v = 2 is

0B3)(g) = 1—
s () 0—2ir 60— 2im 0—2imim — 0

RN

0 —1 0 27 0 21
m( i i K)

and the eigenvalues are

So(g) (0) = 0 —amr

+ O +inm
0(3) O —im 0+ 2mi
5- (9)_9+ma—2m
o(3 0 + 2mi

— 12 —



The minimal form factors for these S-matrix eigenvalues are

Fy(0) = % (6 — i) tanh %9

1 5 (0—1inm) 1
F-00) = 5™ g g =2 200 50
1 1
Fo(9) = —n* sinh? ~6

The general form factors

FRO)=KJ©) [ F©iy)

are given by (1.2) with F (0) = 2F; (9) = (6 — im)tanh 30 and the (one level) ‘off-shell’
Bethe ansatz (1.3)

KO(0) = N [

dz - / dam (6, 2) p°(8, 2) Ta (6, 2) (4.11)
; ey :

with h(0,z) given by (4.1). The functions $;(0) and 7;;(2) we get from (4.6) (up to
inessential constants) as

such that (4.7) holds. It turns out that in (4.11) we have to calculate only some residues
because for ¥ = 2 many zeroes cancel poles such that we may replace the contour integrals
fcj dz ... for even and odd j

0

dz- - — 7{—{—?{ >dz...
/C9 ;( 91 91'—271'1

where §,dz... means an integral along a small circle around 6. The state T, in (4.11) is
here proportional to Bethe ansatz co-vectors (2.17)

Uy (0,2) = L(z) a9, 2)

where the scalar function

Liz)= [ Lz), L(z) =

1<i<j<m

(z —im)
T ianh -
z (z — 2mi) anige

is the minimal solution of the equations (4.22), (4.23) and (4.24) with the scalar S-matrix

5 5 z—imz+ 2w

S(zi/v) = S(—2) =

z+imz —2im
The O(3) weight of the state is
w=n—m.

For explicit examples see section 5 and appendix E.2.
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4.3 0O(4) form factors

In the complex basis the four one-particle states are 1,2,2,1. The S-matrix for v = 1 is

SO (g) = a0 () <0 0 im0 i« 0K>

—imr 0 —ir 0 —imaim —

and the S-matrix eigenvalues are

0T (L 03)\?
=20 (F =)
i) L3~ am
o im+60 (T(1-2)T (2 +2%) ’
S_( )(9): — 2791'7, ? Q;rz (412)
im =0 \T (1+35)T (3 — 277
2
oW g (T1=32)T (5 +5m)
o (0) = 9 50
T(1+55)T (5 2m7)

The group isomorphy O(4) ~ SU(2) ® SU(2) reflects in terms of the S-matrices. The O(4)
S-matrix can be written as a tensor product of two SU(2) S-matrices [39—41]

SSUR) (g) = ¢SU) () (0 9. - im P>
— T — 1T

D= £)T (- 4+ )
0

aSU(Q) (0) _ SSU(Q) (9) - _ _
" F(145m) T - %~ o)

or more precisely

rABPGD (50(4)>°‘5 _ (+SSU(2))AC (—SSU(Q))BD OO PAB (4.13)
&y crar D'B/ 7

B C B C
A D A D
o B — _ C/ B/
) B DA
0 Y

The SU(2) S-matrices *S5U(2)(g) correspond to the spinor representations of O(4) with
positive (negative) chirality (see [42, 43]). In particular

2
r1--4r+-2 2
CLO(4) (0) _ ( 231) (? + ng) _ (aSU(2) (9)) ) (4‘14)
P+3:) T (5~ 2m)
The relative S-matrix for states of different chirality is trivial S = 1. The intertwiners I'4?
have been discussed in [6, 43]. In the complex basis of the O(4) states and the fundamental

SU(2) representations the intertwiner matrix is diagonal and

(ri Tt m e T ) = (cL L) (419)
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The minimal form factors for the S-matrix eigenvalues (4.12) are

* dt 1—et 0
FOW 9y = FOW () = / —— (1—cosht|1——
() v (0) =exw o tsinht1l+e~t o8 s

FOW (g) = 2% coth %9 FoW (g) (4.16)

N —

FOW (9) = L@ sinh 6 FO9 (g)

T —

Equation (4.14) for the highest weight S-matrix amplitudes means that the highest weight
minimal form factors F' = F, are related by

i 2
FOW (6) = — (FSU@9)) " (4.17)
2

Similarly, as for S-matrices (4.13) the group isomorphy O(4) ~ SU(2) ® SU(2) reflects
in terms of the form factors. The co-vector valued function

1 +0 -0 A
F(0) = ey zl: 1<] coth 05 Fu ™' (6) g Ho)TaE (4.18)
1<J

is a candidate for an O(4) form factor if FXO’ and FB_OZ are SU(2) form factors. The SU(2)

form factor equations (i) and (ii) for F' 1: O and Py O

(i) and (ii) for Fgo Moreover the double poles of F;ol (Q)FB_OZ (@) at 0;; = im are made to

simple poles by the coth £6;;. However, the SU(2) form factor equations (iii) for F ; O and

imply the O(4) form factor equations

F E;Ol will in general not imply the O(4) form factor equation (iii) for Fg . This problem
was discussed in [10, 14] and will discussed in this paper in appendix B and in terms of
some examples in section 5. We write formally

0=) "0, x 0. (4.19)
l

This equation is to be understood as the relation (4.18) of the form factors.

4.4 Higher level off-shell Bethe ansatz

For convenience we use the variables u and v with 0 = imvgu, z = imyv and v =

2/(N — 2k — 2). Let S*)() be the O(N — 2k) S-matrix with

S® () = §® /5% = hu)1 + &(u)P + di(u)K

~ U 5 —1 ~ U 1
blu) = —, &u) = —, k(u)——u_liu_l/yk (4.20)
We define
K(k)(g) = N,(n)/ duq / dvp,, h(u, v)p( )(y, v) \il((l)(g,y) (4.21)
a ol e a
= k = : k k
U (wv) = LY (0) (89w, v), LY () = Ky ()
with u = u1,...,uy,, v="01,...,0y, and my = nj41.

,15,



The equations (1)) —(iii)*) for k > 0 read in terms of these variables as

(1)®) The symmetry property under the permutation of both, the variables u;, u;j and the
spaces i,j = 1 + 1 at the same time

K(kz)J( ,ui,uj,...) :K(k) (,u],uz,)gz(f)(uw) (4.22)

for all possible arrangements of the w’s.

(ii)(k) The periodicity property under the cyclic permutation of the rapidity variables and
spaces

1 k
K{ )nk (u1 +2/v,ug,. .., unk)Cl1 = Ké..?nﬂ(“?? ey Uy, ul)Cll (4.23)
with the charge conjugation matrix clt.

(iii)®) The function K"

l.n

(u) has a pole at uj2 = 1/ such that

Nk

Res K\ (ur,... un) = H (uin + )X (ui2)C12KS, (us, .. ). (4.24)

ui2=1/v --

These equations are similar to the form factor equations (i)—(iii) of (3.2)—(3.4) for
O(N — 2k). However, there are two differences:

1. the shift in (i) is not the one of O(N — 2k) but that of O(N),
2. in (iii)(*) there is only one term on the right hand side.
The p-function p®*) (u,v) satisfies the equations

(i") : p¥) (u, v) is symmetric under u; < uj, v; ¢ v;
(i) : p®) (w,v) = p®) (w1 + 2/v, ug, ..., v) = p®) (w, v1 + 2/v,v9,...) (4.25)
(iii’) : pk) (u,z) = pk) (a,0) for uia = 1/vg, v1 =u; — 1 and vy = ug.

The short notations @ = (us, ..., uy, ) and © = (vs, ..., vy, ) are used. Below we will replace
p™) (u,v) by 1 which will not change the results, if the p*) satisfy the conditions (4.25).
Lemma 4 The vector valued function Kék) (w) of (4.21) for 0 < k < [5 (N —3)] satisfies
the equations (1)) —(iii)(®), if the corresponding relations are satisfied for K*+t1) and the
normalizations satisfy

% 1 [ (14 3v) x(1/ves — 2/v)

Nk = . N® 4.26
T et 1 A R fwe—2gw) e -

where [z] is the largest integer < x. The numbers my = ni11 are given by the numbers of
particles n = ng and the weights of the operator O

o _ — (”0 — N1 NNy2 -1 T n[N/Q]) for N odd
w (wl,.,.,'UJ[N/Q}) {(no—nl,...,n[]\//g]_g—n_—n+,n_—n+) fO’]"N even .
(4.27)
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The proof of this lemma can be found in appendix C.1. The cases k = M = [% (N — 3)]
have to be considered separately.

Lemma 5 For N = odd the level k = M = (N —3)/2 means an O(3) problem with vjy; = 2
and KM (u) of (4.21) satisfies the equations (1)) —(iii)(®), if

- 1 3(1+3v)T(1+3v)
NOMD - 4 27 NOMD 4.28
T B G+ 3] g (-gy e U
In particular for N =3
Np=— L3 (4.29)

m(m—1)16x "M%

The proof of this lemma can be found in appendix C.2. Note that the shift in (4.23) is not
that of O(3), but that of O(N).

For N even and k = M = (N — 4)/2 we have vy = 1 as for O(4), however, the shift
in (4.23) is not that of O(4) but that of O(/N). We use the technique of subsection 4.3 and
set analogously to (4.18)

1
EMw) =d,,, [ sin 5 (uij = 1) KV (w) K (WAL, (4.30)
1<i<j<nps
with
KO ) = FN, v /c oy @om B, 0)p2 (u, v) 57 (u, v) (4.31)
huo)=T[[]o(wi—v)) T[] mloy)
i=1j=1 1<i<j<m
- 1 11 1
¢u(u) =T (—yu> r (1 ——v+ I/U) , (u) = ———— . (4.32)
2 2 2 bu(u)py(—u)

The p-functions p+ satisfy the conditions of e.g. [19]. Note that ¢, (u) satisfies
O (u—2/v) = —b(u)d, (u)

which implies the shift relation (4.23). For N = 4 i.e. v = 1 we obtain the ¢-function of
SU(2) (see e.g. [19]).

Lemma 6 For N = even and k = M = (N —4)/2 the K-function of (4.30) satisfies the
equations (1)) (i) ®) 4f

2
dny = _Tﬂgan*Q
~ 1 —1)m+ ~
N B L,

my 2mil2 (— %1/)

The proof of this lemma can be found in appendix C.3.
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5 Examples

5.1 Field

The fundamental field ¢*(z) in the Lagrangian (1.1) transforms as the vector representation
of O(N) and has therefore the weights w = (w1,...,wn/9) = (1,0,...,0) (see [6, 33])
which implies with (4.27) that the numbers n; of integrations in the various levels of the
off-shell Bethe ansatz satisfy

n—1=n;=mny=--=nppy for N odd
n—1=n;=ny=--=n/-—2=n-+n4,n_ =ny for N even.

Because the Bethe ansatz yields highest weight states we obtain the matrix elements
of the highest weight component of p* which means in the complex basis &« = 1. We use
the short notation ¢ = ¢! and propose for the n-particle form factors (n = m + 1 odd)

<O|(10( )‘904:F¢ HF z]

1<j

K£(0) = N¥ / dz ... / Qo B0, 2)p% (0, 2) Ta (0, 2)
; 5

with the p-function for n =m + 1 =odd > 1

m—1 ) m m—1 . m
Z ez]'+z7'rz/+ E e%i < Z e IV Z eZ]‘>

jodd jeven j odd Jj even

(5.1)

which satisfies (4.9). The scalar function h(6,z) is given by (4.1) and the Bethe ansatz
T, (6, z) state by (1.4) and (2.17).
The one particle form factor is trivial

(0]0(0)[0)a = FZ(0) = 6. .

The three particle form factor is obtained by the ansatz (1.2), the integral representa-
tion (1.3) and the state (1.4) for n =3, m =2

(0](0)[0) o = FZ(0) = F(612)F(013)F(623) K£(0) (5.2)
K2©) = NF [ da [ dah(0.207(6.2) 0a(0.2)

with

1
H( ¥ — 2% 22)) X(z212)¥(—212)

=1

(ez1+zm/ 4 ezg) (6—21—i7TV 4 e—zg)
(€01 4 ef2 +€f3) (01 + o702 4 e=03) — 1’
a(6.2) = £5(2) (IS0 @ T (0.0

p?(0,2) =

o3
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The higher level function Ly 5 (z) = C 4,4, L(712) is given by the solution of lemma 4 for
the O(N — 2) weights w = (0,...,0). In appendix C.4 we get the result

F(%—}—lu—ﬁz)f‘(—f—{— V—F%z)

L(z) = (14 30— 552)T (37 + 55:2)

(5.3)

We could not perform the integrations? in (5.2) for general N, but we calculate the 3-
particle form factor for O(3) and O(4). In addition we expand the exact expression in
1/N-expansion to compare the result with the 1/N-expansion of the o-model in terms of
Feynman graphs.

O(3)-form factors of the field ¢(x). As explained in subsection 4.2 we perform
the integrations in (5.2) for O(3) by calculating a finite number of residues. We obtain (see
appendix E)

FZy (0) = 7925, (0)G(012)G(013)G (023)

with

955,(0) = 0230,Cpy + (2mi — 013) 64Car + 0125 Ca
tanh — 0F(9) _bmim tanh? 16 (5.4)

Go) = 00— 2mi) 2

1
0 (6 — 2mi)
which agrees with the result of [11] obtained by different methods.

The 5-particle form factor of the field for O(3) is determined by the same technique in
appendix E.

O(4)-form factors of the field p(x). We apply the techniques of subsection 4.3
where the O(4) form factor is written in terms of SU(2) ones as (4.18). For details see
appendix B. We use the general formula (4.19) with

+Ol = _02 ¢+

TOy= "0 = P (5.5)
and write formally
1
o = =5 (v x 02 +ud x¥F) Thp (5.6)
where N
Aoy _ (Y% (ar))
@ = (e

is the fundamental field of the SU(2) chiral Gross-Neveu model (see [19, 45]) with statistics
factors (see appendix B)

o4 = +1

2Doing one integral we obtain a generalization of Meijer’s G-functions. The second integration does not
yield known functions (to our knowledge). One could, of course, apply numerical integration techniques
and one could determine the asymptotic behavior for large 6’s which is under investigation [44].
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and “spin” s = 1/4 such that

1

(01640) 10} = 53410 ) -

Because the Bethe ansatz yields highest weight states we obtain the matrix elements of the
field p(x) = () with

SDE%(¢+X1/}—+¢—X¢+)

where 14 = 1!11 are the highest weight components of the SU(2) fields. The O(4)-weights

of p(z) are wg(4) = wga) + wg@) = (1/2,1/2) + (1/2,—1/2) = (1,0) as we need. This

follows because SU(2)-weights of 1+ are wg%(z) = (1,0) which mean the O(4)-weights

ng([‘l) = (1/2,£1/2) (for more details see section 3.1.3 of [33]). The 1-particle form factor is

(O[> (O0]) (g x -+ xy) (|0) x |0))

L R A R g —1pg\ _ a1
=0 <e 17e1” fe1’e 17 ) =0,

(0]¢]0)a

The n = 3 particle form factor (4.18) is (up to const.)
1 _ _ / ’ ’
FEy (01,02,05) = [T coth 30i5 (Fiie O F e (0) + Fige (@) Filycn (0)) Ta*TEP TS
1<j
(see also (8.5) in [14]). This O(4) form factor satisfies the form factor equations (i), (ii)

and (iii). The three-particle SU(2) form factors FXi (0) have been discussed in [19, 45],
they can be expressed in terms of Meijer’s G-functions.

1/N expansion. For convenience we multiply the field with the Klein-Gordon op-
erator and take
O() = i(0+m2)p(x).
We obtain (see appendix D.1)

inh ¢
+ 0L C 12)+O(N2)

1 — 912
(5.7)

sinh 913

81 inh 6
FO, (8) = —%mZ (5;[057“123 +65Cay

aBy T — 023 T — 913

which agrees with the 1/N expansion using Feynman graphs (see appendix D.2).
5.2 Current
The classical Noether current (real basis)

TP = ¢ 0up” — PP 0,0

transforms as the antisymmetric tensor representation of O(N) and has therefore the
S = (w1,...,winyg) = (1,1,0,...,0) (see [6, 33]) which implies with (4.27)
that the numbers n; of integrations in the various levels of the off-shell Bethe ansatz satisfy

weights w

n—2=n;—1l=ny=-=nppy for N odd
n—2=n;—1=ng=-=npyp-2="n-+ny,n_=ny for N even.
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Because the Bethe ansatz yields highest weight states we obtain the matrix elements
of the highest weight component of Jﬁ‘ﬂ which means in the complex basis

J, = ‘];? _ ¢lau902 _ 902%901‘
The conservation law 0, J# = 0 implies that there exists a pseudo-potential J(x) with
JH(x) = €0, J(z).
For the form factors we have
FJ'(8) = —ie P,FL(8), P = Ypi.
We propose for n =m + 1 even

(017(0)[0)0 = F(0) = [[ F(0:5) K (0
1<J

KJ() =N/ /o dz ... /e dzm h(8, 2)p” (0, 2) U,a (0, 2) (5.8)

with the p-function
n m 1 n
p’(0,2) = exp <291 - >z — niwu)/Zeei (5.9)
i=1 j=1 2 =1

which satisfies (4.9). The scalar function h(6,z) is given by (4.1) and the Bethe ansatz
state W, (0, 2) by (1.4) and (2.17).
We calculate the 2-particle form factor

KJ(0) = N{ / ) dzp(0y — 2)1(0y — 2) Wy (8, z) 170272/ (691 + 692) (5.10)

U, (0,2) = b(0) — 2)&(02 — 2)0L 62, + &(0; — 2)62 6.

a1’ o a1 ot

The integration in (5.10) can be performed using the result of Example 5.3 in [6]. We
obtain for N > 4

Fl(9) = (5&1532—5316é2)tanh1912F_(912) (5.11)
FI0) = i (52,08, — 02,62, (b1 — p2),, F- (612)

which agrees with the result of [15] where also the 1/N-expansion was checked.

O(3)-form factors of the current. The 2-particle form factor for O(3) is obtained
from Example 5.4 in [6] as
F1(9) = (64,00, — 62,6, ) 2G(0) (5.12)

a1 Yas a1 Yas

with G(0) given by (5.4).
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For the 4-particle form factor for O(3) we use again the techniques of subsection 4.2.
Performing the integrations in (5.8) by calculating a finite number of residues we obtain in
appendix E for example

1 . . .
Fo1(0) = 5775 (012013023 + 2mib14 (034 — 2i) — 2i7°) H G(6;5)
i<j

1
Féjln((g) (934 — 227T) (923924 — 912 (912 — ’Lﬂ' H G 2]
1<J

The other components are obtained by the form factor equations (i) and (ii). These results
agree with those of [11] which were obtained by different methods.

O(4)-form factors of the current. The O(4) form factor is written again in terms
of SU(2) ones as in (4.18). We apply again the techniques of subsection 4.3 (for details see
appendix B) and use the general formula (4.19) with

O=01 x0y34+ 03 xOy. (5.13)

The p-functions of these operators are proposed to be

" 1
pol(e’z)—exp< 29 —Zzz>/ZeXp9i, m=-n-—1

where the SU(2) weights are w® = w® = (2,0), w9 = w® = (0,0), which means that
the O(4) weight vector is w® = (1,1).
With (4.17) we get for the K-functions

1
17(6) = T] cosh 56, (Kg () K32(0) + K (0)K9? (Q)) 4B (5.14)
i<j
The results of [19, 45] imply (for n = 2)

2
019 — i

K .. (0) = (oL 62, — 62 5%,)

Q1o ] a2 Q] a2

which agrees with (5.11)
FI0) = i (99,02, — 00,08, (1 — p2),, F-(62)

because of (4.16).
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5.3 Energy momentum
Because T is an O(N) iso-scalar we have the weights w = (w1, ..., wn/) = (0,...,0)
(see [6, 33]) which implies with (4.27) that

{n:n1:-~:n[N/2] for N odd

n=mny=-=nNj-2=n-+tng,n_=ny for N even.

Following [11] we write the energy momentum tensor in terms of an energy momentum
potential

T (z) = R* (i0,)T (x)
RM(P) = —PHPY + g P?

For the potential we propose the n-particle form factor as

(OIT(0)|)a = Fa (8) = Ny ][ F(6:) K4 (6)

i<j
KT (0) = / dz ... / Az (0, 2)p7 (0, 2) o (0, 2) (5.15)
N C cg' N
with the p-function for n = m = even
pl(8,2) =1 (5.16)

which satisfies (4.9). The scalar function h(6,z) is given by (4.1) and the Bethe ansatz

U, (60, z) state by (1.4) and (2.17). The form factor of the energy momentum tensor is then
(O™ (0)|0)a = Fa " (0) = [] F(6:ij) K3 ()
1<j
K" (0) = (—P"P" + g™ P*) KL(0), P=> pi. (5.17)
We do not calculate the integrals in (5.15) for general N, but we derive the 2 particle

form factor following [15]. In addition we calculate integrals explicitly for N =3, N =4
and N — oo in appendix C.4. Using the arguments of [15] we write

FI00,0) = (—=p/'ps — php{ + g™ (p1p2 + m?)) Cayas Fo(012) (5.18)
1
Fcz;az (Q) COZlOZQFO(912)

~ 2cosh? %912

where Fy(#) is the minimal form factor (3.8) in the scalar channel belonging to the S-matrix
eigenvalue Sy (f). The normalization means that the energy momentum operator satisfies
for a one particle state the eigenvalue equation

Pr0)a = /dwlT”O(f'«“) [0)a = [6)ap"(0).
Using (3.8) for general N we obtain explicitly (with 6 = 6;2)

2
FT') =-C TG+3v)” D(-i+iHr(-14i4)
a\Z ajaz 272 F(l—i—ly—li)I‘(
2 2

F (). (5.19)
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O(3)-form factors of energy momentum. Again we perform the integrations
in (5.15) for O(3) by calculating a finite number of residues.

It turns out that the leading term in the limit v — 2 (i.e. N — 3) vanishes and we
have to calculate the contribution of order (v —2). For the 2-particle form factor we obtain

1, 1

FT(Q) = _Ca1a2 §7T G(912)

(e

019 — i

which agrees with (5.19) for N = 3.

For the 4-particle form factor for O(3) we obtain in appendix E for example the com-
ponent

1 , .
FL () = 5775 (612 — 27i) (034 — 2mi) [ [ G (035) -
1<j

The other components are obtained by the form factor equations (i) and (ii). These results
agree again with those of [11] which were obtained by different methods.

O(4)-form factors of energy momentum. Applying the results of appendix C.4

we obtain from the general formula (4.18)

1
019 — i

2
Fgﬂm (Q) = *20041&2 < > F(912)

which agrees (5.18) for N = 4.

1/N expansion. In appendix C.4 we also calculate the integrals in (5.15) explicitly
for n =2 and N — oo and find

Fia,(8) = —C

Qa2

1 1
alazm tanh 5912 + O(l/N)
which agrees with (5.18) for N — oo. This result agrees also with the one obtained by
calculating Feynman graphs. This calculation is similar to that, which was done in [15] for
the O(N) Gross-Neveu model up to O(1/N?). Note that the leading term for N — oo is
not the free value.

6 Conclusions

In this paper the general form factor formula for the O(N)-sigma model is constructed.
As an application, the general O(N) form factors for the field, the current and the energy
momentum operators are presented in terms of integral representations. The large IV limits
of these form factors are compared with the 1/N-expansion of the O(N)-sigma model in
terms of Feynman graphs and full agreement is found. Using these general results some
examples of O(3) and O(4) form factors for low particle numbers are computed explicitly
and agreement is found with previous results [11] obtained by different methods. We believe
that our results may be relevant to understand the behavior of correlation functions in
theories with asymptotically freedom like 4D QCD.
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A Proof of the main theorem 3

The co-vector valued function Kg (@) given by the integral representation (1.3) can be
written as a sum of “Jackson-type Integrals” as investigated in [6] because of the identity

[e.e]

dzI'(a — 2) f(z) = 2mi Res Z Ia—z—=1)f(z+1) (A.1)

z=a
Ca l=—

where the C, encircles the poles of I'(a — z) anti-clockwise. For these expressions sym-
metry properties and matrix difference equation have been proved in [6] which imply the
form factor equations (i) and (ii). Therefore we only have to prove, that the assumptions
of theorem 3 picks those solutions of (i) and (ii), which in addition satisfy the residue
relation (iii)

Res FO (01,...,0,) =2iC1a FS (03,...,0,) (1 — Sgp...So3) .

12=17

Proofs. The K-function K  (0) defined by (1.2) contains the entire pole structure

and is determined by the form factor equations (i)-(iii) which read in terms of KO  (0) as

Kf?ijm(. 0 05,05,..) = Kf?jim(. 3 05,0i,...) Sii(0:) (A.2)
KS (61 +2mi,0s,...,0,)Ct =KS (0o,...,0,,0,)C! (A.3)

2i T e
GIP;Sﬂ Ki.(0) = mcu [ 406 + im)(8i2) K5 _n (63, - .., 6n) (1 = Sau, ... Sa3)
i=3
(A.4)

where (4.7) has been used. The residue of K., () consists of two terms

(1) (2)
Res Kj._ ,(0) :< Res + Res )Kln(e)

O1o=1m O1o=tm  BOi1o=im

This is because for each z; integration with j even the contours will be “pinched” at two

points (see figure 2):
(1) zj =0 = 6 —in

(2) zj:91—27ri%92—i7r
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In appendix C.1 we prove for general level k of the off-shell Bethe ansatz the residue
formulas. The general result imply for & = 0 that the contribution from the pinching

(1) gives
(1)
Res K1_n(0) = — clzl'[w Oi1 + im)X(0i2) K3, (03, ..., 0)

Oro=1im

if the normalization relation (4.10) holds. Therefore we have proved

(1)
Res Fl_”n(el, ey Gn) =21 Clg F3”,n(93, cey 9n) .
O12=-+iT

(2)

To investigate eRes Fy . n(0) due to the pinching at z; = 61 — 2w ~ 0 — im we use (ii) and
12=1T

(i) to write

Fi n(0) = C11Fsn1(0a, ..., 00, 0; — 21i)C
= CliFgl...n(eg, 01 — 27T’i, . ,Hn)CHSin . 513

We use the result for Res and obtain

01=0>+im
P({Q) Fi (0 I({l) Cy1 o1 (09,0, — 2mi,....0,)C'1S S
g 08 1"'”<*)__92=(91—e2§ri)+m 11521, (02,60 — 27, ..., 0,) in--- P13

= —C,72iCy FY ,(03,...,0,)C" Sy, ... Sis
= —2iC1p F¥ ,(03,...,0,)S0, ... Sa3.

B 0O(4) solutions of (iii)

In order to get solutions of the form factor equation (iii) in the form of (4.18)
0) = cn Y [ coth 305 1 @) 2 @2 (B.1)
1 i<y

we need that

Res FO(Q) =2 Fg(é) (Ca1a2 1& - Ca1a (SQOn(AL) e 52%(4))&&2)

O1o=im — Qs

with = (03,...,0,) etc. The fact that fields of the chiral Gross-Neveu model posses a
generalized statistics implies that the form factor equations contain statistics factors o
(see [19, 45]). The residue equation (iii) for SU(2) form factors reads as

Res FP ,(01,...,0n) =2iC12 FS (03,...,0n) (1 — 0%pSap ... Sa3) . (B.2)

O1o=1m
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where S is the SU(2) S-matrix. Here 0@ is the statistics factor of the operator O(z) with
respect to the particle 2 and p is a sign factor due to the unusual crossing relation of the
S-matrix, in [19, 45] was shown that

where Q¥ = nmod?2 is the Charge of the operator 0. By charge conjugation we have for
the conjugate operator 0@ = e ~im32°  The condition (if}) in [19] for the SU(2) p-function
also contains the statistics and extra sign factors

pO(Q, z) = Uop(fl)me(Gl +2mi, 0a,...,2).

We calculate (for simplicity we skip here all constants, questions of normalization will
be considered in appendix C.3)

Res F2(0)

Oro=1im —

N B i A Al
H coth — 913 Z F Ol (9) <CA1A2 13 — C,41A’2 To1p (San - . . 523)A2142>
2<i<yg

=/

X <03132 12 — Cp,p, o1p (Sam - 523) ) ry?

. o 0(4)\ & %
= FO(d) (camla ~ Cayo (S5 n<4>...523<4>)a2;>

O, 15\ 2 O BB,
Z FA’ l(Q)FE/ 1(9) <CA1A21A CBlB' oip (Szn 523)3252
l

+ Ca, 4, Toup (San - 523) 03132 B)FAB 0 (B.3)

and
+Jl o] = (—l)nil .
It was used that

A1B11AsB
CAlAchlerall 1Fa22 *=-C

Q1o

and

A A B'B! AB
Yo, o CAlA’ CBlB’FAlBl (Som .. 523)* 2 (Son - 523) QFAQBQF

= o, 70(~1)" 2 C g, CBIB,FAlBlpA BQFAE (5%4)'..5203(4»@2

s

. n— o4 0(4)\ ¥ o4 O(1)) X%
= To1 7 01(—1)" ' Cpya (S%( A )>a2d = Coya (5271( A ))a2d

where (4.13) has been used. The condition (B.3) holds if

N F FO9) F P (OTAE = 0. (B.4)
l
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Scalar operators. Let us first consider an O(4) iso scalar operator O, then n is even
and Fg (0) is of the form

Fg(g) - Z fﬂ'(Q)Cﬂ'Oélﬂ'Otz e Cﬂan,m’an

TES],
where the set S/, contains all n!/(2"/2(n/2)!) permutations of {1,...,n} with the restric-
tions
T < T, ... ,TOyp—1 < Ty,

Toag < ez < ... < TQp_1.

Obviously, if the special components Fg (0) with o; € {1,1} vanish, then all f;(#) vanish
and FQ(0) = 0 for all a.
For the case of two term of the [-sum in (B.4) and
TO,= "0y = O
T, = "0 = 0,
01 = —09, 0102 = —1=0,==+1

we have in (B.4)

> o Py 0) Fy @ OTAE = o1 (FH(0) FE*(0) — F*(0) FS(0)) T2 = 0
l

because for a; € {1,1} the symmetry rat - Fng holds (see (4.15)). As an example of this

construction see that for the energy momentum in subsection 5.3 and appendix C.4.

Vector operators. For the highest weight component of an iso vector O(4) operator the
number n is odd and the form factors are of the form

Fg(@ = Z fx(0)Craimas - -- Cﬂ'an7277an7167lran

weSs),
with the restrictions
T < TQQ,...,TAp_—9 < TOp—1
T < oy < ... < TOp—2.

As above, if the special components Fg (0) with a; € {1,1} vanish, then all f;(6) vanish
and Fg (f) = 0 for all . For the case of two term of the /-sum in (B.4) and

TO1= 0= 0
T0y = ~01 = Oy

01 = —09, o100 =1= 01 = +1

again (B.4) holds. As an example of this construction see that for field in subsection 5.1.
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Anti-symmetric tensor operators. The construction is similar as above, however, one
needs 4 operators as for the current in subsection 5.2.

The highest level off-shell Bethe ansatz for even IN. For these constructions one has
to apply a modification of the O(4) construction above because the shift in equation (4.23)
is not that of O(4) but that of O(NN) (see appendix C.3).

C Higher level K-functions

C.1 Proof of lemma 4

Lemma 4 also holds for £ = 0 in (4.24), if Res is replaced by E({le)s as explained in appendix A.
For convenience we use here the variables u and v with 0 = imviu, z = imypv and v, =
2/(N — 2k —2) (for the S-matrix see (4.20).

Proofs. The relations (i)*) and (ii)*) follow as above in the proof of theorem 3 from
the results of [6]. To prove (iii)¥) we calculate

Res K{, )= Res N0 [ v [ v, hw) ¥, o). (C)

ui2=1/vy ui2=1/v "

For j even contours will be “pinched” at v; = us ~ u; — 1/14.> Due to symmetry it
is sufficient to determine the contribution from one of the v; and multiply the result by
[%mk] . We take for convenience v; = v9, then the contribution is given by the v, integration
fuz) dvy - - - along small circle around vy = ug (see figure 1). The S-matrix S (ug — vy) yields
the permutation operator S(0) = P and the S-matrix S(u; — vp) yields K after taking

Res, ,=1/, S(u12). In the representation of the Bethe state (2.17)

(59 = (1) () b (79 )

a k+1

~ B2
we may move for generic values of the other v; the operator (T(k)>k . (u,v2) to the left
+

by means of the T7'S = STT commutation rule (14) of [6] and (2.18) (using the short
notation Tj,(v;) = Ty (u, v;))

HkaTk(vm) PN Tk(vg)fk(vl) = §k+1(1)32) NN §k+1('Umg)HkaTk(vg)Tk(vm) NN Tk(vl).

B,

Because of (2.19) (H(k)) i 0 we find Res, ,—1/, 11,95 (u, v2) = 0. However, the
pole of (L(k))l...mk

(v) (see e.g. (4.24)) at via = 1/vg4+1 will produce a singular contribution
from the v;-integration §, _, dv;--- (which is a part of [, dv;---) for i odd. We have a

0/0 situation which we can resolve as follows.

3For k = 0 there is a second pinching point at v; = u; — 2/vy =~ uz2 — 1/} as explained in appendix A.
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We take i, 7 = 1,2 and multiply the result by [%mk] [%mk + %] and shift again Tj,(v;)
and Tj,(v2) through all the other Tj(v;) as above
(k‘) 7\ Mk =\2 /4 \ 1
., (@)™ (T)*(T)")
S8 SO S0 (w () (T)* ()™ - (T4))

SO SRS S oy (e (D) (T)* ()™ - (T4))

Applying this to Lgk)mk (v) using (4.22) for higher levels we get
4 k k “\L/m\2/7/\m ~\3
‘I’g) (u,v) = LZ(’)..).mk21Hi(’>..).mk21 (Qk (Tk) (Tk) (Tk) Ry (Tk) )a

For uig = 1/vg, v1 = up — 1 and vy = ug (i.e. vi2 = 1/vp, — 1 = 1/vp41) we may replace

inside \ilgc ) the S-matrices

gk(ul —v1) = é(uyp — )P
Splug —v1) = 1

Si(ur — v2) = dp(u12) K
Sie(ug —vg) = P.

For the first relation it has been used that b(u) ~ —é&(u) ~ 1/(u — 1) and the only nonva-
nishing contribution from Sj(uy — v1) is b(uy — v1) (1 — P+const K)7! b1 = = ¢(up — ”1>Pg/1

because (1 — P) Klﬁ = 0 and moreover (H(’“)) ﬁm’f = 0 holds (see (2.19)) . Therefore
we may replace (see figure for k = 0)

TP (u, ) — 5(u1 - Ul)dk(uu)[’i(’;k)mk21( Sleis (C.2)

« Cq Hak en k( —n, (Q (Tk)mk...@)g)

1 1 1 1
NG| . 1
N\ 1 1
1 — 1
1 Un
Ul u2lusg U, Qi
a1 09 (a3 (67%%
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Note that unitarity and crossing imply for uio = 1/v

Clgg(k) (Ul - Umk) e S’(k)(ul — ’Ug)g(k) (UQ - Umk) e g(k) (U2 — ’Ug)
o CmS(k) (U1 — 'Umk) . S(k) (u1 — vg)S(k) (’u,z — Umk) . S(k) ('LLQ — ’Ug)

ag(ur — vm,) - .. agp(ur — v3)ag(uz — vmg) - . . ag(ug — v3))
mp 1

=C .
12};[3 ak(ul — vj)ak(uQ — ’Uj)

We calculate for vig — 1/vk4q

—1 myg
Lé’?mkﬂ(y’)cm = ( Res dk+1(v)> Hak+1(vlj)ak+1(vzj)¢(vj1 + 1))2(Uj2)Lg]i)_n@)-

’U:1/Vk+1 ]:3

It has been used that from (4.24) and (4.22) follows

mg

T % + Dx(o2) LS, ()1
j=3

= Res LY) (@)

vi2=1/vp 41

=LY, Res SETV(w) =LY | Res  dii(vi2)Kis
v12=1/1/k+1 Ul2:1/Vk+1
= Li(%].g.).kaI (Q, @)Séi;:l) . S,él;—f—l)s%i;:l) e gg—i—l) Res sz—i—l (v12)621612
vi2=1/vj 11
k “o1 T 1 5 >
= Lg..).mkm@? @021 H Res  di11(v)Ci2.

is W1 (V1) @k11(025) 0=1/vs

where again unitarity and crossing for vio = 1/vk11 has been used. We write

h(u,v) = [TT1¢5(wi—vp)  TI 7o)
i=1j=1 1<i<j<my,
2 2 _ mi ~ _ ng ~
= (H [T 6w - Uj)) (H ¢j(ur — vj)Pj(uz — vj)) <H Y(ui — v1)X(ui — vz))
i=1j=1 =3 i=3
x Tia(v12) [ (71 (v15)25(ve;)) (i, )
=3

and obtain finally

ol T
® ) = 70 [Lon, ] Lo+ L
o, K0 = 5 o] ]

~1
X < Res ‘ZkJrl("U)) Res j{ dvié(uy — 1) (—j{ > dvo
’U:l/l/k+1 u12:1/yk up—1 us

2 2 ng
x dg(u12) (H 1650 - Uj)) T12(v12) [ [ ¥ (win + 1) % (ui2) — (,1) CaKg) (1)
i=3

i=1j=1 N,

mg—2
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It has been used that for uio = 1/vg, vie = 1/vky1, us = v, ug =vo+ 1/vp =v1 +1

( (V1)1 () P(vj1 + 1)>~<(vj2)) <§5j(ul —v;) (2 — ”J')le(vlj)mj(v%)) =1

ap(u1 —vj)ag(uz —vj)

for odd and even j, which can be shown by means of (4.2) and the formula
ar(u1)ag(ug) = b(—usg) /b(uy) .

The result is that equation (4.24) holds if

(k) -1
Ny T1 1 1 . e
mg—
X Res 6(u1 — 1)1) Res cik(ulg)z/?(l)zﬁ(um + 1))2(7112) R_es )N((UQ — ’1)2)7'12(1)12)
vi=u1—1 ui2=1/vy v2=u2
Vg 1 1 X -
_ my |+ 1 1 279 x(1/vp —2/v) _
=5 ] [ e 2 e
mp—

which follows from the assumption (4.26).
In particular for £k = 0 we have

70 _
"l

and (A.4) with (1.3), (4.21) and (C.1) implies (4.10). m

L x(1/v=2/v) <)
m+ 1] ax22(1) X(1/v — 2/v)" ™2

N[

C.2 Proof of lemma 5

Proofs. For N odd and k = M = (N — 3)/2 we have v = 2 and v = —2 as for O(3),
however, the shift in (4.23) is not that of O(3) but that of O(N). We proceed as above for
general k, for N > 3 there is for all j even “pinching” at v; = ug ~ u; — 1/2 and we take
j =1,2 as a pair of an odd and an even j and multiply the result with [%mM] [%mM + %]
The L-function ng.\_/.[) (v) = K(M+1)(Q) is a c-number satisfying (4.22) with

mas 1..mas

S(M+1)(v)_v+1/uM+1v—i—1 ~v—1/2v+1
0 S v—1/vypv—1 wv+1/2v-1

and (4.23) with the solution (as in subsection 4.2)

1,1 1,1
@) = [ ™), LW = r (?/ + ?l/u) I(1+ ?/ — ?l/u)
1<i<j<mar r (5’/ + E’/u) r (1 +av - 51/u)
We have again (C.2) where here
mnr
L8001 @)€ = L0 (@) TT (290 (0;0) L (v32) ) LD (v21)
=3
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and instead of (C.3)

(M)
NmM 1 1 (M) 2
N( ) [2mM} [2mM + } LY (vg7) (— (271) )
myr—2
X Res E(ul — 7)1) Res dM(ulg)Ib( >¢(U21 + 1) (ulg) R_es )Z(UQ — ?)Q)Tlg(’l)m)
vi=u1—1 U12:1/l/k1 V2=U2
NM) 1 1 17 2720 (1-1v)
N {QmM] [2mM+ ]1“3( W)T(1+1v)

NmeQ

which is (4.28). For N = 3 there is for all j even and odd “pinching” at v; = up ~ u; —1/2
! 1] has to be replaced m (m — 1). It was used that for ujp = 1/2 and

and [QmM] [amar + 5

V12 = _1/2
(M) (4.1 ) L) (49, - ]

L (0;1) LM (v)) (¢j(m — vj)@j(u2 — ’Uj)le(Ulj)TQj(mj)) =1

an (w1 — vj)an (ug — vj)

which follows as above because

(—v2)/b(v1) .

S

(—v1 +1)x(—v2)

<

LM (—p)) LM (—g) =

C.3 Proof of lemma 6

Proofs. For N even and k = M = (N —4)/2 we have v, = 1 as for O(4), however, the
shift in (4.23) is not that of O(4) but that of O(N). We use the technique of subsection 4.3

with the SU(2) S-matrix (see [19, 41, 45])

SSU@) 1y, )_aSU(Z)(u)< . 1 1P> |
u — u —

(1)
First we calculate Res iKA(g) which is due to the pinching at v1 = us — u; — 1 and
--- along

U12=
gives the first term in (B.2). The contribution is given by v;-integration ¢ duv;
For ui19 =~ 1, v1 = us we may replace the S-matrices inside

small circles around v1 = us .
of \iliU@)

g(UQ — Ul) — P

~ ~ 1
S(u1 — ’Ul) — S(ulz) — (1 — P)
Ul — 1

such that we may replace

Ca,a, ﬁ b(uy — vj) (QC’(@, V) -+ - O, UN)>A

W7 (u,0) —
Ul — 1 =2
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because (1 — P)illA2 = Cy,4,- We write

m4 nm
A(w,v) = (u(w = v1)gu(uz = 1)) TT (0l = 0)u (uz = v5)m(v1,)) T] b (wiz) i@, 0)
j=2 i=3
and get
Op
Res “K4(u)
u12=1 -
e, Res () f andutin - o) T30 0 a0
- = m es v vluo —v (U ilu
v S i — 1 u12 g vy 2 — U1 11 2)Ca4, B4
iNmi . m+ 2 1 T + ~
= jE~7mi2m(—1) iT —3? ou(ui2)Cay A, KA(g)
my—1 i=3
where we have used the identity
b (u1) y (u2) 7 (u2)b(ur) = —1
because of éu(ul)g(ul) = —éy(—ug). Finally we have
(M -y T + -
Res K a(u) = [ [ év(uiz)Caya, TK 4 ()
2=l =3 n
if
- —1)m= -
iNmi = ( X )2 iNmifl
my2mil (—fy)
Now we take the residue of (4.30)
Res KOO (w) = d, [+ TT sin irv (g — 1)
Res Ko™ (1) = duy | 577 1 singmy (ug
2<i<g
M 1 1 1 (1)
X H <sin —mv (uy; — 1) sin —7v (ug; — 1)) Res +K/(1l) (u) Res _Kj(gl) (uw)T48
ke 2 2 ] u12=1 = u12=1 = -
dose (1 \ 27X - : ® oy - TT 0 . o
= o L \a™)T H Y(uir + D)X (ui2) Caly” (@) = H Y(wir + )X (wiz) Caky (1)
= j=3 j=3
if 5
dny = _ﬁdHM—Q‘
We used that CA1A2C3132F§IIBIF&QBQ = —Cg,,0, and

() T ———T T )

sin 57v (u — 1) sin 57w
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C.4 Two-particle higher level K-functions

For the examples of section 5 we need higher level K-functions. In particular K&’j)a? (01,62)
(level £ =0,1,2,...) belonging to O(N — 2k) in the iso-scalar two-particle channel (with
weights w = (0,...,0)).

Lemma 7 The vector valued functions

K(k) ((91, 92) = C(N72k)Kk(912)

(03X D) Qa2
with
(-1 —-k la-mYHra-ta-m) - -rm)l
Kk(e): ( 2( V)TZ(l V) m)o ( 12( - V) 2(0 V) m) (05)

satisfy for k =0,1,2,--- < N/2 — 2 the recursion relation (for a suitable normalization)

K0 = N0 [ da [ dniio.) 1) @3950.2

o o -

LY(2) = K§ v /i), v =2/ (N =2k - 2)

with

(k)

o3

The K-function Kéo ) (9) belongs to an iso-scalar, spin zero operator (with p-function
p = 1). This means it belongs to the energy momentum potential (see example 5.3 for-
mula (5.19))
Fi(0) =K (0)F(0) .

o

The L-function Lg)) (2) = Kg)(gykﬂ/l/k) is for n = 2 that of (5.3).

Proofs. We do not calculate the integrals in (4.21) for general N, but we use arguments
of [15] to prove the claim. In addition we calculate integrals explicitly for N — oo, N =3
and N =4 (see below). That for all levels ny = 2 is follows from

w:(wl,...,w[N/m):(O,...,O)

_ (n—nl,...,n[N/g]_l —n[N/Q}) for N odd
(n — N1y NN/ =2 — e — Mgy N — n+) for N even.
Note that for N even we have n_ = ny = 1 (see below). For convenience we use here

the parameterization 0 = inmvyu and z = imygv, (v, = 2/(N — 2k — 2)) and the S-matrix
S (u) = SON=2K) (4 (see (4.20).
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Theorem 3 (with the proof in appendix A) implies that Kj(u) defined by (4.21) satisfies
() Ki(w) = Ki(~uw)5¢ (w)
(i) :  Kp(l/v—u) = Ki(1/v +u)
with (see (2.7))

ut+1/vpu+1l  u+(1/v—k)u+1

S = S0/ S 00 = L = e R 1

The minimal solution of (i) and (ii) is

Kpin(u) =

1
F(1+3v—2vu)T (3v+2vu) T (1+ 5 (1 —kv) — vu) T (3 (1= kv) + 2vu)

The proof of (iii) in appendix A shows that Kj(u) has a pole at u = 1/, = 1/v — k if
Kjy1(u) hasapole at u =1/v; = 1/v—(k + 1). If there are no other polesin 0 < vu <1
following [15] we conclude (up to normalization)

1
) = g W~ )i et 1o B)

Kpin(u)
which proves (C.5). m
N — oco. For v — 0 with 0 fixed we get from (C.5)

tanh 16
K,(0) = 27 Zn 2

+0(v) (C.6)

— T

for all k. We prove that this result agrees with the recursion relation (4.21).

Proofs. For convenience we use the notation z; = vu; = 6;/(im), y; = vv; = z;/(im).
We calculate the r.h.s. of (4.21) for the component with « = k + 1,k + 1 (up to normaliza-
tion)

/ dy1/ dyz Iz, y) K1 (y1 — y2) @r (2, )

with Kj11 given by (C.5) and

) T
By = Oy IOV ER, @y ©)
= ngg_z%_2)c?zl\fﬁ—22k—2) (6(:::1 — yo)dy(z1 — y1) + fr(y12) (5(361 —y1) + di(z1 — y1)>>

= (N -2k —2) =y =)

(yi —ya+v/vg—v)(y1 —x1 +v) (y2 — 21 +v)

where (2.8) and (2.20) have been used. We get after a lengthy calculation the result

tan L7 (212)4+0() (C.8)

/ dyl/ dys h(z, y) K1 (y1—y2) @k (2, y) = — 167702
2 Cs T19 — 1 2

which agrees with (C.6) (up to const.). m
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N = 3. Forv=2andk=0,1we get from (C.5)

tanh %9
0 (0 —im) (0 — 2mi)

1
tanh 52

K(0) = Ko(6) = 87°

L(z) = Ki(—2) =27 (z —im)

z (z — 2mi)

The result (E.11) in appendix E proves that these functions satisfy the recursion rela-
tion (4.21) (for suitable normalization).

N = 4. Forv=1and k=0 we get from (C.5) (up to const.)

K(x)—( ! )2 (C.10)

010 —im
We use the general formulas (4.19) and (4.18) (for details see appendix B) with

+01 = "0y= 0y
+02 =701 =09

and we propose the p-functions

p91(0,2) = S expz /Y expl
i=1 =

2920, 2) = exp (;i (92- - ;m) - fjlz>

i=1

with weights w%@) = (0,0) = w8(4) = (0,0) = n = 2m = even and statistics factors
01 = —o9 = 1 which satisfy the condition of appendix B

0109 = (—1)n_1 .

The results of [19, 45] imply for n = 2 (up to constants)

1 1
(@ _ 1 <2 2 <1
KA11A2 (Q) - (5A15A2 B 5A15A2) cosh %912 019 — i
1
O 1 2 2 <1
Kp/p,(0) = (531532 - 531532) 019 — im

and therefore

1 o o
K0, (0) = cosh 012K 1, (0) K p, s,

A1 As1B1B
ajag H)Fall QFagl 2

1 2
:Caa o
12(912—Z7‘(’>

which agrees with (C.10) and (5.18).
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D 1/N expansion

D.1 1/N expansion of the exact 3-particle field form factor
For O(x) = (0 + m?)p(x) we derive for the component F©1;(8)

FO 87Tm2 < sinh 912 sinh 913 > + O(N_2)

(@) = N
Proofs. The p-function of O(z) and three particles for v = 0 is

912 —am 913 —am

1
p© = (e + €%2) (e7*' + e **) = 4 cosh? 3 (21 — 22)

We have to consider (up to const.)

cosh? (21 — 29) -
111 /0 le /E dZQ H 9 - Zl 9 — Z2)> = 2 g 1 2) \I/i:Ll(Q’g)

X(212)¥(=212)
with
Ui (0. 2) = L(212) Gy, 5,80 (261 — 22)d(01 — 21) + f(212) (2601 = 21) + (61 — 1))

I )2 —iTY 01 — =1 Ty
212
01— 20 —imv 0L — 21 —imv 01 — 21 —im

Ty —iTY 01— = v
+ - - — + - -
21— 29 +im—inmv \O1 — 2 —inv 01—z —imv 0 — 21 —iw

3 (21 — z2) tanh £ (21 — 22) 5
pu— O
T e — 2 —in) (51— £ im) (01— 21) (01 —72) ()

for v — 0 using L(z) = 2% _tanh 3z (see (5.3)). The leading terms are given by the
integrals

/le/dZQ...:</ +/ +/ >d21</+/+/>d22...
Co Co 601 —imv O —imv O3 —imv 01 ) 03
:</ —i—/)szjé dzi--+0Ww) =11+ I+ O(v)
02 03 01 —imv

where §,dz... means an integral along a small circle around 6 and [, dz... an integral
around all the poles of the gamma function according to figures 1 and 2. Up to higher
order terms in v and with 1) = 1, ¥ S we get (always up to const.)

. (21 — 22) tanh 3 (21 — 22) 51
I = d 0y — d —
! /92 Z2X( 2 22) %91 A1 (21 — Z9 — i?T) (Zl — Zo + i7T) (01 - 21) (91 — ZQ) o8 2212

~ (01 — zo) sin (01 — zo)
/ dzoX (02 — 22) (01 — 29 —im) (91 — Z2 +1m) (61 — 22)

= —sinf <% % > 2m (92 - 22)) 1 1
2 01—in  Jo1+in V——(92—22))91—z—i7r01—z+i7r

271

(5 (912 —im)) (5L (912 + 7)) )

= — sinh 912
2w <F(% + o (2 —im))  T(3v + 55 (012 + im))

v . 1
:§smh912912_ —|—O( )
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Similarly

which proves (5.7). =

D.2 1/N perturbation theory

The nonlinear O(NN) o-model is defined by the Lagrangian and the constraint

L N
52 dupa)?  with g3 @GR =1
a=1 a=1
The Greens’s functions may be written as

WO ga () 10) = Z_néjad(m) 5Ja6(xn)

Z(J)

where a; are O(INV) labels and Z(J) is the generating functional of Greens’s functions given
by the Feynman path integral

2(J) = / A 5(2* — 1/g) expi (A(g) + Jo) (D.1)

with the action A(p) = [d?z L(p). The fields ¢, (x) transforms as the vector repre-
sentation of O(N). In eq. (D.1) and in the following we use a matrix notation of the
x-integrations e.g. Jp = ZLVZI [ &Pz (2)pa(z).

For the derivation of the result below the following Feynman integral is used.

d? 1 1
T -
m, %) / (2m)? p*> —m? (p+ k)? —m?
i 1 L VA? - B 4 VR
A REE R VAR — R — V2
' 1
P9 <k:2 — —4m? sinh? 2¢> .

= drm? sinh ¢

For divergent integrals we use a Pauli-Villars regularization

I(m) — I(m) — I(M) — lim (I(m)— I(M)) ,

M—o0

d’p 1 1 i om?
IOO = / (27]')2 <p2 —m2 — p2 _ M2> = Elnm . (D2)

We may introduce the bosonic field w and rewrite eq. (D.1), equivalently as

for example

2(J) = / dp expi (Alp,w) + J) (D.3)

with the action A(p,w) = [ d?z L(p,w) and the Lagrangian

£ 1 al 2 Al 2
p.w) =5 | D (Oupa)” —w Zsoa 1/g) | -

a=1
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Performing the ¢-integrations we obtain

Z(J) = /dw exp (iAeﬁ(W) - ;JA(w)J>

with the propagator A,s(w) = idas(—0 —w) ™! and the effective action
Aet(w) = sz Tr In(iA™! /d2

The symbol Tr means the trace with respect to xz-space, the trace with respect to O(N)-
isospin has been taken and given the factor N.
We define the vertex functions I' by*

=1
=3 :'/d%l...d%nr(n)(xl,...,xn)w'(xl)...w’(a;n),
.
n=0

where w = W' — m2.

The value w = m? is defined by the condition A.g(w) being stationary at this point,

6A

which means that the one-point vertex function vanishes F(l)( ) = =5 = 0. Expanding

Aeg for small w’
1

1
= ——iNTr In(iA ™! Zp —
Aest 5 n(iA™ (w)) +/d x 2gw

1
= —§iN <TI“ In(—0O — m2) + Tr {(—D _ m2)71w/

1 1
+ 5(—D —mA) (O -mH) W + ... }) + 2 /de (m2 + ')
we obtain
r(z) = —lNA(:r z) + Ly
2 ’ 2g

with the propagator A = i(—[ —m?)~!. This equation defines the mass m by
4
m? = M?e” o

where M is an UV-cutoff (see (D.2)). There is the effect of mass generation and dimensional
transmutation: the dimensionless coupling g is replaced by the mass m.

The 1/N-expansion is obtained by expanding the effective action at this stationary
point. Next we calculate the two point vertex function

02A d2k ) ~
(2) _ 9t —i(z—y)k 1(2)
P @) = 5@ty / ezt W

in momentum space

- 1 d*p 1 1 N o
@y — L _
(k) QZN/ (27)2 B <p2 —m? (p+ k)% — m2> 8mrm? sinh ¢

“Note that the iT'™ are the 1-particle irreducible connected graphs with n external lines.
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(_
Lo = i

Figure 3. The elementary vertex for the O(N) Gross-Neveu model. With respect to isospin the
vertex is proportional to the unit matrix.

/ E 3 4 O\/
(X
coorn. / \ Lo ___ A

1 2 1 2 1 1

Figure 4. The connected part of the three particle form factor of the fundamental fermi field in

1/N-expansion.

where k? = —4m?sinh?(¢/2). The w-propagator is obtained by inverting the two-point
vertex function A = 0"

Au(k) =i <—;iNI(m, k:)) - %nﬂ Sm;:gb .

This propagator together with the simple vertex —icsg of figure 3 yield the Feynman rules
which allow to calculate general vertex functions in the 1/N-expansion. For example the
four point vertex function is

if(4)i}i(—p3, —D4,P1,P2) = —5253 Aw (p2—P3>—5g565 Aw (ps—pl)—(Sa,B‘SM Aw (P1+p2) (D-4)

where a0 are isospin. We now calculate the three particle form factor of the fundamental
bose field in 1/N-expansion in lowest nontrivial order. For convenience we multiply the
field with the Klein-Gordon operator and take

O°(z) = i[O +m?)¢’ (x)

and define
in s
ou’z<p3|06(0)‘plup2 >a,8:F0 a6(03;017‘92)'

By means of LSZ-techniques one can express the connected part in terms of the 4-point
vertex function.
o’ 7 7(4)97
Fonn.ap(03:01,02) = il 5(—p3, p3 — p1 — p2, 1, p2). (D.5)

The lowest order contributions are given by the Feynman graphs of figure 4

”y ~ ~ ~
Fc(gin.aﬁ = —5252 Ay(p2 —p3) — 5352 Au(ps — p1) — 6a50% Ay (p1 + p2).
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Using A, (k) = BTim? % with k2 = —4m? sinh?(¢/2) we obtain up to order 1/N
gO° 7 87Tz'm2 655,Ysinh (023) ey sinh (613) L5 555“/Sinh (im — 612) .
OB By B0y “ im — 012

and by crossing in the complex basis

8mi sinh 60 sinh 0
F05a57(91792763) = _sz <5206723 + 5?30%713 + 53%5

sinh 912
i — O93

im — 019
(D.6)

T — 013

which agrees with expansion of the exact form factor (5.7).
Now we are in the position to check whether this expression is consistent with the
exact S-matrix of section 2 (see also [5]). Using LSZ-techniques we obtain

out (7,133 0, pa | @, p1; B, pa) ™
Y
= 5145252353 + 0130762405 + (2m)26) (p1 + p2 — p3 — pa) ZF(4)O¢73

= 514006238} + 6135702400 + (14023 + 013024) F Oy 1 5

4m? sinh 0

where 814 = 212p05(p1 — pa) ete. and T™ is the 4-point vertex function in (D.4). T has
been used that

(2m)20@ (p1 + p2 — p3 — pa) = (014023 + 013024) -

4m? sinh 019

By means of the formula

out (7,235 0, P4 | @, p1; B, p2)™ = out(7,p3; 0,94 | B, p2s o p1)°™ S1
1 0
= 0130245, s + 01402355

we obtain

1 s
SO (012) = 6707 + o

chonn.ag(es; 01,02) for ps—po, ps—p1. (D7)

Equation (D.6) implies the perturbative result up to order 1/N or

1 0) = 5765 (1— ) 46050 [~ ) £ Oy [~ N2
Sas(?) aﬁ( Nsinhg) %\ "Ng) T P\ "N (ir — 0) OV
which agrees with the 1/N expansion of (2.6). The relation (D.7) is equivalent to the fact

that the form factor of the field (up to O(N~2))

s <(<)~;{(35’y sinh(im—623) + 5%(30” sinh(im—013) + 5%,Caﬁ Sinh(iﬂ'—@lz))

N im—0a3 it—013 im—019

F?pv(01,02,03) =

cosh %012 cosh %913 cosh %923

satisfies the form factor equation (iii)

Res F?,3,(01,02,03)

O1o=im
= 47 (5Cs— 4 §4Ca 16 Cy +0(N7?)
N @ 6ﬂyi7‘r—923 A OW923 v aﬁsinh923

= 2i (Capdl — Capdl S (6))
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E More explicitly calculations

E.1 General formulas

The maximal number of particles of type o; = &; # 1,1 in the Bethe ansatz state ég(ﬁ, z)
of (2.17) is m; the other n—m particles are of type 1. This follows from the structure of the
IT-matrix (see [6, 33]) and the S-matrix (2.1). We consider the corresponding component
of the form factors for n particles
Fs1(0) = NamKar(0) [ F(6:i—06))
1<i<j<n

for & = &q,....,64,, with &; # 1,1 and 1 = 1,....,1. For convenience, we use here a
different normalization compared to (1.2) and (1.3). The K-functions is given by

m

Kss®) =1 (- [ d)hi0. 2002 3 katt. 2 (B.1)

k=1 TESm

where the sum has to be taken over all permutations of the z; and

WO, 2)=[[11¢0:i-z) T[ 7tz

i=1j=1 1<i<j<m
1 m ~ m _
ka(0,2) = La(z) ] 7 11 (C(9j —z) ] o6, — Zk)>-
1<i<j<m (Zl]) j=1 k=j+1
Proofs. We use formula (15) of [6]
Tor.m(@,2) = []00 - 2zj)1.11... 1,
j=1
- - 4 Sam(zim) ~al(zzl)
+ > (0 —z)b(0 — zm) Pui...b(0 —21)—=
2'2:; b(zlm) b(zzl)
LA b0 — z,) = b —2) 5 .
+ d(e_zl) N Sam(zmz) K = al(Zli)
zzl b(ZmZ) b(Zh)
which implies for the Bethe state
Va1(0,2)
1 m m _
= B(Z)H (2) H = H <6(93 — zj) H b(8; — zk)> + permutations of the z;
S icidiem M) 5 k=j+1
1
+ permutations of the z;
1
On
1
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because TI2 ( ) = 5§ Note that the d-terms do not contribute because of II 1 = 0

(see (2.19)). It has ‘been used that the state ¥ o(6,z) is a symmetric function of the z;
(see Remark 2). m

Pairs of ¢&; may be replaced by 11. For example, we obtain for & = &1, . ..., &m_o, with

& # 1,1
Ks111(8 H (2177/ de) (0, 2)p(0,2) Y ka0, 7z) (E.2)
k=1 TESm
and
1
Brm—1Bm

ka(.2) = Lyg,, 5, (2)C7 H

where (2.20) H%BQ(Z) = CBlBQf(z) has been used. Similar formulas are obtained if more
pairs of &’s are replaced by 11.

E.2 0O(3) form factors

For O(3) the general formulas simplify because the integrals reduce to a finite number of

1 n
dz . <7{ 7{ ) dz .
27,7'( cﬁ 227T i 0;—2mi

3; (8) — % i(2) = 22

Furthermore all &; are equal to 0 and Lé(g) = [li<icj<m L(zij) (see section 4.2). The

residues

and we may replace

example (E.1) writes as

Fo.01(8) = NmKo..or(8) [[ F(6: - 6;) (E.3)
1<i<j<n
K E4
0-01(0 ]:[ <2m (7{ 75 2m>dzk) 0,2) > k(0 7z) (E.4)
= 7r6577l
with
—2mi - 0; — 2z,

k(0. 2) = ( | ; ) (E.5)

1<i1<_]l,<m 11_[1]1_119 —zj H 0; — zj — 2mi kg_l 0 — 2z — 2mi

We have integrated h(f, z) into k(6, z). We have also used the amplitudes (2.8) and

I(2) = L(=)7(2)/B(2) = (= — i) tanh %z.
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Similarly, we obtain

Ko.om(®) =] <2m/ d2k>p(9,2) > k(0,7z) (E.6)
k=1 TFESm
with
n o m m—2
k(,z) = 2 — zj HH 0; — zj) H< c(0; — z5) Hb9—2k>
1<i<j<m i=1j= 7=1 k=j+1
X f Zm—1 — Zm)c(em—l — Zm 1)5(9771 1— Zm)
and
1
Ko..o11111(0) = H <2W/c de) 0, 2) Z k(0,72)
k=1 0 TESm
with
k0, z) = H l(zi—zj)HHqg(H — zj) H ( (05 — z;) H b(0; — 2, >
1<i<j<m i=1j=1 j=1 k=j+1
X f(sz?; - me2)é(0mf3 - me?;)b(eme - meQ)b(emf?) - mel)g(emf?) - zm)
X f(zm—l - Zm)é(em—Q - Zm—l)l;(em—Z - Zm)
etc.

It turns out that the form factors for the field and the pseudo-potential of current are
of the form (see also the explicit calculations in subsection E.2.2)

Fo(0) = 9(0)G(0) (E.7)

where go(6) is a polynomial (cf. [11]) and

I Gy

1<i<j<n
tanh 160 0 —ir 1
)= 027 pgy= """ tann2 4.
GO0 = g2 "0 = g =2 0 3

Proofs. A sketch of the proof for (E.7): the K-functions with n = m + 1 are of the

form
K(Q):k 1<2m (jq{ jé M)m) 0.2) > k(0,72)

TESm
Z iims i €{1,...,n}

L, (0 = 50 (7{ f _2m>dzl 5 (?{ 7{ _2m>dzmp 4, z) Z k0, mz)

TESm
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Where I“ 4, 18 symmetric with respect to the indices and for two equal indices the integrals

Lin-1(8 li[ (2; (jék +7€k—2m> de> p(0,2) Y k(0. 7z2)

= 0. For example for (E.4) we obtain, using (E.5)

TESm
1
:J(9)< H tanh267ij>p(9,z:91’,__’971_1)7
1<i<j<n—1
where

n—1

k=1 2’”1— Ok O —27i WES
' = —2mi m 0; — 2
j(0,z) = H i HHH—Z H(ej—zj—zm' H Hj_zk—Qﬂ'z)'

Isi<jsm i=1j=1 k=j+1

Let the p-function satisfy

Z(_l)nk< H tanhiﬁij) p(Q,g: 01,...,0;,...,971) = H tanh %01]

k=1 1<i<j<n,i,j#k 1<i<j<n

which holds for the p-functions p? and p” of the examples below. Then, because I Lhn =

I T (where k means that the index k is missing) we obtain

K@) =J@)n [] tenh %eij and  F(6) = 9(8)G(0)
1<i<j<n
where g(f) is a polynomial. m
For the energy momentum potential formula (E.7) holds for n > 2 (see (E.9) and (E.10).
However, the prove is more complicated (see the prove of (E.9)).
The normalization factor N, is obtained from the form factor equation (iii), which

implies that?
22m—37.[.

Nim = (m—1)m

Ny (E.8)

E.2.1 Examples

Form factors of the field. In particular, for the form factors of the field (n = odd)
with m = n — 1 we have to apply the p-function of (5.1) for v = 2
€% e %
p0,2) = IR
(2 e)(2oe ™) -

To prove the form (E.7) of the field form factors one uses the identity (for n = odd)

3 (femgm)(£0) (E2)) =1 () (B):

i i i

The normalizations follow from (E.8) as N,,, = —‘ﬂim22m(m D
m!

®This follows from (4.29), taking into account the different normalizations here compared to that of
theorem 3.
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Form factors of the current. For the form factors of the pseudo-potential of the current
(n = even) with m = n — 1 we have to apply the p-function of (5.9) for v = 2

exp (30 — >0 %)
>_expl; '

To prove the form (E.7) of the current form factors one uses the identity

n n 1 n
Z el H coth 5615 = Z eli .
i=1  j=1 i=1

J#i

p’(0,2) =

1
The normalizations follow from (E.8) as N, = ﬁmé(m“)ﬁ(m(m—l)—?) .
m!

Form factors of the energy momentum potential. For the form factors for the
energy momentum potential (m = n = even) we have to calculate (E.1) and (E.2) with the
p-function of (5.16)

p'(0,2) =1.

Again we have to perform the integrations for O(3) by calculating a finite number of
residues. It turns out that the the leading term in the limit ¥ — 2 (i.e. N — 3) vanishes
and we have to calculate the contribution of order (v — 2).

E.2.2 Explicit calculations

n=1,m = 0.

FE0) =1
n=2m=1.
FJ () = %z’Ter(Q) = —%WQG(Q)
which agrees with the result of [15] (see also (5.12).
n = 3, m = 2. After some simple calculations we obtain with G(6) given by (5.4)
Fio(0) = w012 G(9)

F¥ L (0) = 7 (2im — 623) G(6) .

which agree with [11] which were obtained by different methods. The other components
can be obtained by the form factor equations (i) and (ii)

F5(0) = 7925, ()G(0)
955,(0) = 0236,Cpy + (2mi — 013) 55Car + 0126,Chp -

n =4, m= 3. From (E.4) and (E.6) we get the results
1 . . .
FO{)Ol (Q) - §7T5 (912913923 + 27T2912 (932 — 2’/’1’2) — 2’L7T3) G(Q)
1 ) )
Fi, (0) = 5”5 (032 — 2im) (B23622 — O12 (012 —im)) G(0) .

which again agree with [11].
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n =5, m = 4. Again from (E.4) and (E.6) we get the results
FL(0) = 94(0) G(0)

with (up to normalizations)®

911111 (Q) = ((912 — 27Ti)(934 — 27ri)(935 — 27Ti)(945 — 27ri)(—47r2 —2imly5 — 3imh + 2imlh3 —
3’L'7T(92+4Z'7T94*20301 +9§*29392+20304*9491*9492+93501*93593+03502*93594+39291)
900111<Q) = —(27T + 2(94 — 95))(2 70 + 2i7T4(3 01 + 0y — 2(04 + 95)) — 2(91 — 92)(9% —
20103 — 0405 + 93(94 + 95))(9% — 20903 — 0,405 + (93(94 + 95)) — 27T3(49% — 0% + 92 + 360405 +
952) — 92<94 + 95) + 03(94 + 05) + 91(2 0y — 5(04 + 05))) — Z'7T2((—0§)03 + 0%(592 + 36035 —
4(94 + 95)) + 91(9% - 493% + 94(93 +4 94) + (93 + 594)95 +49§ — 692(94 +95)) + 2(93 — 04—
05) (0405 + 03(04 + 05)) + 02(5 0405+ 03(04+05))) — 7T((9:1)’(92 —03)+ 9%03 +260504(2 65 —
04 — 95)95 — 9%(2 9% — 0405 + (93(94 + 95)) + 92(9%(94 + 95) + (94(95(94 + 95) + 93(92 —
460,405 +9g)) +9%(49§ — 360405 +93(94 +95) +92((*7)93 +2(94 +95))) +91(*9§) +39%03 —
503(04+05) + 0405 (04 +05) + 03(0F + 460,405 + 02) + 20205 — 63 — 0405 — 62 + 63(64+05))))
900001 (8) = i(i(01—02)(01—03)(—02+05) (01 —04) (02— 04) (03— 04) +27° (301 + 62 — 505+
94) +8i7‘d’4<91 + 09— 293)(91 — 95) —|—27T3<—913 +(923 — 933 —|—93264 — 393042 +943 — 022(393 +
94)—|—294(93+94)95+(393+94)952+912(—792+93+304+695)+92(932+9394—942—3952)+
01(02%+052+0304— 04> —8(03+04)05 — 05> +302(03+04+205))) — 2im?(—0903 (02— 04)04+
2013(02 —05) + (209> — 509203 + 302057 — 203 + 03 (402 +303) 04 — (202 +703)04> +20,3) 05+
204(—02 403 +0,4)05% — 012 (0304 — 20305 — 30405 — 2052 + 0203+ 20,4+ 305)) + 01 (— 202> +
2033 — 30520, + 603042 — 204> + 052 (603 + 04 — O5) — 04205 — 2(03 + 204)05% + O (36052 —
40504 + 047 + 40405 + 26057))) + 2m(61° (02 — 05) (04 — 05) + 02° (04 — 05)05 — 02%05(64 —
05)(0a+205) — (03 — 04)05 (0304 (03 + 04) — (03 + 047 )05) — 0205 (—04705 + 0304 (04 + 05) +
932(—394 + 295)) + 912(—93(93 — 294)94 + 630,405 — (93 + 94)952 -+ 92(932 — 2942 + 460,605 —
952+93(—394+05)))+91(933(64—95)—!—922(94—95)(393+94—95)+29329495+923(—94+
05) +04°05(04+05) — 0304(04° + 460405 — 05> ) + 02(— O3+ 04) (03(304 — 05) — 05(04+65))))) -

n = 2, m = 2. For the 2-particle form factor we obtain

1 1
FQT(Q) = 7Cala2 577-2

P G(612) . (E.9)
12 — i

n = 4, m = 4. For the 4-particle form factor for example a component is
1
Fiy1(0) = 57 (612 — 2mi) (034 — 2mi) H G(0i5) (E.10)
1<J

The other components are obtained by the form factor equations (i) and (ii). These results
agree again with those of [11] which were obtained by different methods.
Proofs. We calculate (E.6) for n =m =2

2
Ki,(0) = H (2’j7r/ dzk) Z k0, 7z)

k=1 TES>

k:(9 Z = l Zl — Z9 H H gbj 91 — 21)6((91 — Zg)f(zl — Zz) .

i=1j5=1

5These results have been obtained by Mathematica.
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For convenience we write 8 = imx and z = iny

I= /C dyy | dy2é(z,y,v)T12(y1 — y2)q(y1 — y2)s(z, y,v)

e Jeg
with
() = L) _vT (—3tav—sy)P(—5+sv+sy ()
b(y) y U (37— 5y) T (57 + 3v)

(
<(z,y,v) = &z — y)b(e1 — y2) — &ar — y2)b(ar — 1) -

It turns out that the leading term for v — 2 in I vanishes and we have to calculate all
terms in order O(v — 2). We use

1 1 v 1 1 1 1 1 1
— —~(sin= Ir(—c vy ylr(—c4p—=
q(y)7(y) 5 <51n27r(y+u)) - ( 5 + 21/+ 2y> < 5 + 5V 2y)

(i) 1+ P 0 (- 27)
P(y) =0 (v =2)

and

1
/ dy1/ dy2¢(x, y,v) tan §7T(y1 —y2)s(z,y,v) =0 ((V - 2)2) :
Therefore we obtain after some calculations up to terms O ((1/ — 2)2>
1
I= / dyl/c dyap(z,y, V) tan 577(@/1 —y2) P(y1 — y2)s(z,y,v)
(& b

=111+ Iio+ Io1 + 122

with

Iy = <£1 +j£1_2) dyy (?i +]£2_2> dy29(z,y,2) tan %W (1 —y2) P(y1 — y2)s(z, y,v)

tan lﬂ'xlz
—2(-2) 2 § gy § oty 2 )
r12 — T X9
1 1 1
=-32(v—2 tan — =1 E.11
3 (V ) 1o — 1:612 (Ilz — 2) an 27['.7312 21 ( )

which proves (E.9) because I1; = Iz3 = 0. Similarly, one derives (E.10). m
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