
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

ALEXANDRE TORRES

Essential Notation for Object-Relational
Mapping

Thesis presented in partial fulfillment of the
requirements for the degree of Doctor in
Computer Science.

Prof. Dr. Renata Galante
Adviser

Prof. Dr. Marcelo S. Pimenta
Co-adviser

Porto Alegre, Abril, 2014.

CIP – CATALOGAÇÃO NA PUBLICAÇÃO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb
Coordenador do PPGC: Prof. Luigi Carro
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

Torres, Alexandre
Essential Notation for Object-Relational Mapping / Alexandre

Torres. – 2014.
188 f.:il.
Orientadora: Renata Galante.
Co-orientador: Marcelo Pimenta.

Tese (Doutorado) – Universidade Federal do Rio Grande do
Sul, Instituto de Informática, Programa de Pós-Graduação em
Computação. Porto Alegre, BR – RS, 2014.

1. Object-Relational Mapping. 2. Model-Driven Development.
3. Patterns. 4. UML. 5. Relational Model. I. Galante, Renata,
orient. II. Pimenta, Marcelo, coorient. III. Título.

Essential Notation for Object-Relational Mapping

ABSTRACT

This thesis presents the Essential Notation for Object-Relational Mapping
(ENORM), a general purpose notation that represents structural concepts of Object-
Relational Mapping (ORM). The goal of ENORM is to facilitate the design by the clear
application of ORM patterns, document mappings with a platform independent notation,
and became a repository for model-driven transformations, partial code generation, and
round-trip engineering tools. ENORM is a UML profile based notation, designed to
represent patterns within a domain modeling logic, with objects of the domain
incorporating both behavior and data.

The notation represents patterns adopted by widespread ORM frameworks in the
market (Active Record, of Ruby; SQLAlchemy, of Python; Entity Framework, of
Microsoft .net; JPA, Cayenne, and MyBatis, of Java), following the Don´t Repeat
Yourself and Convention over Configuration principles. ENORM was evaluated by
controlled experiments, comparing the modeling by students with the use of separated
UML and relational models, achieving significantly more goals in the majority of the
scenarios, without being significantly different in the worst experimental scenarios.

Keywords: Object-Relational Mapping, Model-Driven Development, Patterns, UML,
Relational Model.

RESUMO

Esta tese apresenta a Notação Essencial para Mapeamento Objeto-Relacional (em
inglês, ENORM), uma notação de propósito geral que representa os conceitos
estruturais do Mapeamento Objeto-Relacional (MOR). O objetivo de ENORM é
facilitar o projeto através da aplicação clara dos padrões MOR, documentação dos
mapeamentos com uma notação independente de plataforma, e tornar-se um repositório
para transformações dirigidas por modelos, geração parcial de código e ferramentas de
engenharia round-trip. ENORM é uma notação baseada em perfil UML, projetada para
representar padrões pertencentes a lógica de modelo do domínio, com objetos do
domínio incorporando tanto comportamento como dados.

A notação representa padrões adotados por frameworks MOR difundidos no
mercado (Active Record, do Ruby; SQLAlchemy, do Python; Entity Framework, da
Microsoft .net; JPA, Cayenne, and MyBatis, do Java), seguindo os princípios Não se
repita e Convenção sobre Configuração. ENORM foi avaliado por experimentos
controlados, comparando a modelagem de estudantes com modelos UML e relacionais
separados, atingindo um número significativamente maior de objetivos na maioria dos
cenários, sem ser significativamente diferente nos piores cenários experimentais.

Palavras-chave: Mapeamento Objeto-Relacional, Desenvolvimento Dirigido por
Modelos, Padrões, UML, Modelo Relacional.

LIST OF ABBREVIATIONS

ANOVA Analysis of Variance

AST Abstract Syntax Tree

BNF Backus–Naur Form

CoC Convention over Configuration

DA Data Administrator

DRY Do not Repeat Yourself principle

EBNF Extended Backus–Naur Form

EER Extended Entity-Relationship

ER Entity-Relationship

FK Foreign Key

IMP Impedance Mismatch Problem

JPA Java Persistence API

MDD Model-Driven Development

OO Object-Oriented

ORM Object-Relational Mapping

PIM Platform Independent Model

PK Primary Key

PSI Platform Specific Information

PSM Platform Specific Model

RAR Ruby´s Active Record

RDB Relational Data Base

Rel Relational model

SA SQLAlchemy

SoC Separation of Concerns

UML Unified Modeling Language

LIST OF FIGURES

FIGURE 1.1: TEXT ORGANIZATION..19

FIGURE 2.1: JAVA EXAMPLES OF TABLE MODULE PATTERN (LEFT) AND
DOMAIN MODEL PATTERN (RIGHT)..21

FIGURE 2.2: ACTIVE RECORD EXAMPLE..23

FIGURE 2.3: INHERITANCE TO GENERATED CLASSES.............................24

FIGURE 2.4: INSTANTIATED MAPPING EXAMPLE FOR SQLALCHEMY
LOOSE COUPLING APPROACH..24

FIGURE 2.5: JPA LOOSE COUPLING OVERVIEW...25

FIGURE 2.6: DATA MAPPER SUCH AS IN MYBATIS....................................27

FIGURE 2.7: ENTITY DATA MODEL FOR MS ENTITY FRAMEWORK
(SNEED, 2012)...29

FIGURE 2.8: CAYENNE MODELS DOMAIN AND DATABASE ELEMENTS
SEPARATED..30

FIGURE 2.9: PRIMARY KEY FIELDS (A) AND PRIMARY KEY CLASS (B).. 31

FIGURE 2.10: ASSOCIATION RELATIONSHIP BETWEEN CLASSES..........33

FIGURE 2.11: ASSOCIATION TABLE EXAMPLE...36

FIGURE 2.12: UML MODEL (LEFT) AND TABLES (RIGHT) OF THE
ASSOCIATION TABLE EXAMPLE...37

FIGURE 2.13: DEPENDENT MAPPING PATTERN EXAMPLE: CLASS
MODEL (UPPER) AND DATABASE MODEL (LOWER)..................................38

FIGURE 2.14: INHERITANCE EXAMPLE FOR ACCOUNT.............................40

FIGURE 2.15: SINGLE-TABLE APPROACH FOR ACCOUNT EXAMPLE.....40

FIGURE 2.16: CLASS-TABLE APPROACH FOR ACCOUNT EXAMPLE......40

FIGURE 2.17: CONCRETE-TABLE APPROACH FOR ACCOUNT EXAMPLE.
..41

FIGURE 2.18: INDEPENDENT KEYS IN CLASS-TABLE INHERITANCE
EXAMPLE...42

FIGURE 3.1: MAIN VISUAL ELEMENTS AND THEIR MEANING...................47

FIGURE 3.2: SIMPLE TRANSACTION EXAMPLE...48

FIGURE 3.3: SUMMARY ACCOUNT EXAMPLE..48

FIGURE 3.4: DATABASE MODEL OF ACCOUNT EXAMPLE........................49

FIGURE 3.5: MAIN ELEMENTS OF THE ENORM PROFILE...........................51

FIGURE 3.6: A CLASS EMBEDDED BY TWO PERSISTENT CLASSES.......54

FIGURE 3.7: EMBEDDED CLASSES REFERENCING PERSISTENT
CLASSES...55

FIGURE 3.8: TRANSITIVITY OF EMBEDMENT...55

FIGURE 3.9: USING <<EMBED>> FOR DEPENDENT MAPPING..................56

FIGURE 3.10: TWO COLLECTION-EMBEDMENTS EXAMPLE.....................57

FIGURE 3.11: TWO DEPENDENT COLLECTIONS TO THE SAME CLASS.. 57

FIGURE 3.12: MAP WITH KEY REFERENCE..58

FIGURE 3.13: THREE DIFFERENT INHERITANCE EXAMPLES WITHOUT
PARENT TABLE..58

FIGURE 3.14: INHERITED ASSOCIATION WITH PERSISTENT CLASS.......59

FIGURE 3.15: ALTERNATIVE WAY TO EXPRESS MAPPED
SPECIALIZATIONS WITH ENORM...59

FIGURE 3.16: ENORM PROFILE MODEL OF GENERATORS.......................60

FIGURE 3.17: PROFILE MODEL OF TABLE DEFINITIONS, FOR INDEXES
AND CONSTRAINTS...60

FIGURE 3.18: DEFINITION EXAMPLE WITH UNIQUE INDEX CONSTRAINT
DEFINITION..61

FIGURE 3.19: A SKETCH OF META-MODEL WITH FLEXIBLE DATA
SOURCES..62

FIGURE 3.20: TEMPLATE PARAMETER EXAMPLE......................................63

FIGURE 3.21: EBNF SPECIFICATION FOR ENORM LABELS......................64

FIGURE 3.22: VISUAL DISTRIBUTION OF THE ENORM NON-TERMINALS.
..65

FIGURE 3.23: MODELING TOOL SCREEN SHOT..66

FIGURE 3.24: EXPERIMENTAL TOOL ARCHITECTURE...............................67

FIGURE 3.25: MDD SCENARIO FOR ENORM MODELS................................67

FIGURE 3.26: UML PROFILE FOR DATA MODELING EXAMPLE (AMBLER,
HARTFORD AND RUECKERT, 2003)..69

FIGURE 4.1: PARTY PATTERN DESIGNED WITH ENORM...........................72

FIGURE 4.2: ACCOUNTABILITY, FIRST MODEL...78

FIGURE 4.3: ACCOUNTABILITY WITH PARTY TYPE PATTERN AND
KNOWLEDGE LEVEL..79

FIGURE 4.4: CONCEPTUAL MODEL FOR THE RESOURCE ALLOCATION
PATTERN...90

FIGURE 4.5: RESOURCE ALLOCATION ENORM MODEL............................91

FIGURE 5.1: TASK 1 - ADDRESS BOOK UML AND ER MODELS..............108

FIGURE 5.2: TASK 1 - ADDRESS BOOK ENORM MODEL..........................109

FIGURE 5.3: SCREEN SHOTS OF TREATMENT A (LEFT) AND B (RIGHT)
USING THE MODELING TOOL...113

FIGURE 5.4: FEEDBACK OF I1..116

FIGURE 5.5: EXPERIENCE LEVELS AMONG GROUPS (GRAPHIC)..........118

FIGURE 5.6: MEAN DIFFICULTY LEVELS (Q1-Q3, LEFT) AND PREFERRED
METHOD (Q4, RIGHT)...119

LIST OF TABLES

TABLE 2.1: SUMMARY OF FRAMEWORKS...22

TABLE 2.2: ORM FRAMEWORKS SUPPORT FOR EACH PROPOSED
CRITERION..44

TABLE 2.3: SUMMARY OF DESIGN DECISIONS BASED UPON ORM
FRAMEWORKS...45

TABLE 4.1: MAIN CORRESPONDENCE OF ENORM CONCEPTS................97

TABLE 4.2: UML CLASS MAPPINGS, NON TRIVIAL CASES........................98

TABLE 4.3: PLATFORM SPECIFIC INFORMATION.......................................99

TABLE 4.4: DESIGN QUESTIONS AND RESPONSE SCOPE......................100

TABLE 5.1: SUBJECTS AND EXPERIMENTS...104

TABLE 5.2: ANALYSIS PATTERNS AND TASKS...108

TABLE 5.3: FEATURE COVERAGE AND TASK GOALS.............................110

TABLE 5.4: TASKS AND TIME CONSTRAINTS FOR EXPERIMENT I1......113

TABLE 5.5: CODES USED IN THE GROUP EXPERIMENT FOR RANDOM
ASSIGNMENT..114

TABLE 5.6: RESULTS FOR THE ANOVA OF MISSES CONSIDERING THE
SEQUENCE..115

TABLE 5.7: LEAST SQUARE MEANS OF MISSES AT I2, WITH
ADJUSTMENT TUKEY-KRAMER...116

TABLE 5.8: ORIGINAL DATA OF VARIABLE TIME AT I2............................117

TABLE 5.9: GROUP STATISTICS FOR EXPERIENCE LEVELS..................117

TABLE 5.10: T-TEST FOR EQUALITY OF MEANS (EQUAL VARIANCES
ASSUMED)...118

TABLE 5.11: MANN-WHITNEY U TEST APPLIED TO DIFFICULT LEVELS.
..119

TABLE 5.12: MANN-WHITNEY RANKS, MEANS, AND DEVIATION OF G. 120

CONTENTS

 ABSTRACT..3

 RESUMO..4

 LIST OF ABBREVIATIONS...5

 LIST OF FIGURES...6

 LIST OF TABLES...10

1 INTRODUCTION..16

2 ORM PATTERNS AND FRAMEWORKS..20

2.1 Survey organization..20
2.1.1 Object-Relational Patterns...20
2.1.2 Selected Frameworks for the Survey...21
2.1.3 About the examples...22

2.2 Transparency and Coupling...22
2.2.1 Discussion...26

2.3 Mapping Type..26
2.3.1 Mapping Classes to Many Tables...27
2.3.2 Discussion...28

2.4 Model-based Mapping..28
2.4.1 Discussion...30

2.5 Identity...30
2.5.1 Discussion...32

2.6 Foreign Key..32
2.6.1 Fetch Strategy..34
2.6.2 Discussion...35

2.7 Association table..35
2.7.1 Discussion...37

2.8 Embedded Values Support...37
2.8.1 Discussion...39

2.9 Inheritance Mapping..39
2.9.1 Discussion...43

2.10 Summary..43

3 ESSENTIAL NOTATION FOR ORM (ENORM)...46

3.1 Overview..46

3.2 A Simple Example...47

3.3 A not so Simple Example..48

3.4 ENORM Meta-model..50

3.5 Special Mapping Cases...53
3.5.1 Embedded Values..53
3.5.2 Maps..57
3.5.3 Inheritance...58
3.5.4 Auto-generated Columns...59
3.5.5 Constraints and Indexes...60

3.6 Limitations...61
3.6.1 Flexible Data Sources..61
3.6.2 Qualified Associations..62
3.6.3 Multiple Inheritance, Multiple Types..62
3.6.4 Association Class and “n-ary”...62
3.6.5 Generics and Template Parameters...62

3.7 ENORM Notation Reference...63

3.8 Modeling Tool..65
3.8.1 Modeling Tool for the Experiments..66
3.8.2 Future Steps...67

3.9 Other Class Models and Persistence Extensions..68
3.9.1 A UML Profile for Data Modeling..68
3.9.2 Information Management Meta-model (IMM)...69

4 ENORM IN PRACTICE: APPLICATION EXAMPLES..............................71

4.1 ENORM and ORM Frameworks..71

4.2 Party Pattern for Accountability...72
4.2.1 Mapping Persistent class Telephone...73

4.2.1.1 Using JPA..73
4.2.1.2 Using SqlAlchemy...73
4.2.1.3 Using ActiveRecord of Ruby..74

4.2.2 Embedded classes..75
4.2.2.1 Using JPA..75
4.2.2.2 Using SqlAlchemy...75
4.2.2.3 Using ActiveRecord of Ruby..75

4.2.3 Party, Person, Company, and Flat inheritance..75
4.2.3.1 Using JPA..75
4.2.3.2 Using SqlAlchemy...76
4.2.3.3 Using ActiveRecord of Ruby..77

4.3 Accountability Type Model..78
4.3.1 Implementing the Associations...79

4.3.1.1 Using JPA..80
4.3.1.2 Using SqlAlchemy...80
4.3.1.3 Using ActiveRecord of Ruby..81

4.4 Account Model...82
4.4.1 Entry is a dependent entity..82

4.4.1.1 Using JPA..82
4.4.1.2 Using SQLAlchemy..82
4.4.1.3 Using ActiveRecord of Ruby..82

4.4.2 Account mapped by two tables...83
4.4.2.1 Using JPA..83
4.4.2.2 Using SQLAlchemy..83
4.4.2.3 Using ActiveRecord of Ruby..83

4.4.3 Vertical Inheritance of Account..84
4.4.3.1 Using JPA..84
4.4.3.2 Using SQLAlchemy..84
4.4.3.3 Using ActiveRecord of Ruby..85

4.4.4 Properties and columns with distinct names...85
4.4.4.1 Using JPA..86
4.4.4.2 Using SQLAlchemy..86
4.4.4.3 Using ActiveRecord of Ruby..86

4.4.5 Overrides and Embedded objects referencing persistent classes..86
4.4.5.1 Using JPA..86
4.4.5.2 Using SQLAlchemy..87
4.4.5.3 Using ActiveRecord of Ruby..87

4.4.6 The Account-Entry association...87
4.4.6.1 Using JPA..88
4.4.6.2 Using SQLAlchemy..88
4.4.6.3 Using ActiveRecord of Ruby..89

4.5 Resource Allocation Model...89
4.5.1 Horizontal Inheritance at the Resource Allocation Tree...92

4.5.1.1 Using JPA..92
4.5.1.2 Using SqlAlchemy...93
4.5.1.3 Using ActiveRecord of Ruby..93

4.5.2 Overriding inherited properties and associations..94
4.5.2.1 Using JPA..94
4.5.2.2 Using SqlAlchemy...95
4.5.2.3 Using ActiveRecord of Ruby..95

4.5.3 Association to general classes with horizontal specializations...96
4.5.3.1 Using JPA..96
4.5.3.2 Using SqlAlchemy...97
4.5.3.3 Using ActiveRecord of Ruby..97

4.6 Remarks about implementing ENORM models...97
4.6.1 Guidelines for MDD..98

5 EMPIRICAL EVALUATION...102

5.1 Experimental Related Work..102

5.2 Planning and Design...103
5.2.1 Subjects...104
5.2.2 Task Design...105

5.2.2.1 Individual Experiments..105
5.2.2.2 Group Experiment...106

5.2.3 Hypothesis Formulation, Factors and Variables...106
5.2.4 Tasks and Feature Coverage of the Individual Experiment..108
5.2.5 Tasks of the Group Experiment...112
5.2.6 Experimental Setting...112

5.3 Results and Analysis...114
5.3.1 Individual Experiment with Crossover (I1)...114

5.3.1.1 Analysis of the Feedback...115
5.3.2 Individual Experiment with Time Measurements (I2)..116

5.3.2.1 Results Regarding the Variable “Misses”...116
5.3.2.2 Results Regarding the Variable “Time”..117
5.3.2.3 Experience Level Influence...117
5.3.2.4 Analysis of the Feedbacks...118

5.3.3 Group Experiment (G)...119
5.3.4 Analysis Summary..120

5.4 Validity Evaluation...120
5.4.1 Internal Validity..121
5.4.2 Construct Validity...121
5.4.3 External Validity...121
5.4.4 Conclusion Validity...122

6 CONCLUSION..123

 REFERENCES...125

 APPENDIX A – CROSSOVER EXPERIMENT (I1)...................................131

 APPENDIX B – NON-CROSSOVER EXPERIMENT (I2)..........................138

 APPENDIX C – TASKS (INDIVIDUAL EXPERIMENTS)..........................142

 APPENDIX D – TASKS (GROUP EXPERIMENT)....................................164

 APPENDIX E – EXTENSIONS TO ACTIVE RECORD.............................170

 APPENDIX F – RELATED PUBLICATIONS...173

 ANNEX A – EXPERIMENTAL REPORT – EXPERIMENT I1...................174

 ANNEX B – EXPERIMENTAL REPORT – EXPERIMENT I2...................177

16

1 INTRODUCTION

Relational Databases (RDBs) are the backbone of information systems, and nobody
knows when (or if) this will change (ATZENI et al., 2013). However, the Impedance
Mismatch Problem (IMP) (ATKINSON and BUNEMAN, 1987; COPELAND and
MAIER, 1984) continues to haunt object oriented designs that tend to underestimate the
Object-Relational Mapping (ORM) difficulties.

In the past decade we saw a growing adoption of ORM frameworks by information
system developers of distinct platforms such as Java, C#, Python, and Ruby on Rails.
These frameworks have most of their resources based upon established patterns
(BROWN and WHITENACK, 1996; FOWLER, 2002; KELLER, 1997), and its use
spread a more standardized approach for the IMP. Nevertheless, mappings scattered in
the code, annotations and/or XML files are difficult to read, understand, and reason
about changes.

The Model-Driven Development (MDD) proposes that models take on the main role
on the system development process (BEYDEDA, BOOK and GRUHN, 2005; OMG,
2001). For an effective MDD approach, the information represented by models should
be coherent, integrated, and computable, so that automatic transformations could turn
models into executable system (MELLOR et al., 2004). The UML notation lacks a
specific notation for persistence, or to map classes to database. The absence of mapping
information poses a challenge for developing transformations.

 The problem under study at this thesis is the lack of a persistence notation that
serves both to document and communicate the mappings between relations and classes,
and as an artifact with the necessary information for MDD. One of the roots of IMP is
the conceptual miscommunication (AMBLER, 2003), and we believe that an adequate
persistence notation will contribute solving this problem.

This thesis presents a general purpose notation named Essential Notation for Object-
Relational Mapping (ENORM). ENORM extends the UML class model, by a profile,
and offers a concise set of new visual elements specific to represent the structural
concepts of ORM. These essential concepts are based upon persistence patterns, and the
way these patterns are adopted by distinct ORM frameworks in the market.

The goal of ENORM is to facilitate the design by the clear application of ORM
patterns, document mappings with a platform independent notation, and be a repository
for MDD transformations, partial code generation, and round-trip engineering tools.
ENORM is designed to represent patterns within a domain modeling logic, with objects
of the domain incorporating both behavior and data (FOWLER, 2002). Therefore, this

17

study does not encompasses the design of queries, nor the specification of models that
describe the behavior of the systems.

In a nutshell, the contributions here presented are a survey relating ORM patterns
and frameworks; the ENORM notation, comprising graphical elements, the profile and
the modeling tool; a set of examples using ENORM and implemented by selected
frameworks, summarizing the mappings from model to implementation; and
comparative experiments evaluating the modeling activity with ENORM.

The main modeling principle of the ENORM approach is the Don´t Repeat Yourself
(DRY) (AMBLER, 2002; HUNT and THOMAS, 1999), avoiding the duplication of
domain concepts, such as separated class and table specifications for the same element.
ORM providers, such as the Ruby´s Active Record (RAR), and JPA, detected that
classes and tables are often very similar, and that the ORM could be very
straightforward most of the time. They adopted the Convention over Configuration
(CoC) design pattern (CHEN, 2006), reducing the amount of configuration, and
therefore code, to realize what would be an obvious mapping.

At a higher abstraction level, when modeling information systems with separated
class and relational models, the designer often have to deal with duplicate definitions of
the same domain objects. For instance, a class that represents a telephone, and the table
that stores this information, may have a trivial mapping, predicted by convention: same
names for class and table, properties and columns; or computable names, such as the
table name being the plural of the class name. At a scenario that often can be predicted
by convention, having two separated models seems to be a waste of effort and time. On
the other hand, if all elements have one straightforward mapping, ENORM would not
be needed, because no mapping would be necessary.

ENORM has a single model approach, and is focused at the class model. If the class
can be mapped by convention, or in other words, without additional mapping
information, it is not necessary to specify this information. Conversely, if this mapping
is not trivial, the meta-model supports the detailing of this mapping. ENORM was
designed to be easily understood by developers and rich enough for MDD tools,
allowing the specification of the relevant persistence details, or hiding what can be
inferred.

Database design concerns, such as data normalization, Primary Key (PK) and
relationships are distinct from the behavior oriented forces of high cohesion and low
coupling of OO design (AMBLER, 2003). The single model approach is strong when it
is necessary to link the RDB specification, and the domain specification, because it
enforces the habit of reasoning about the two domains together. In other words, it is a
synergistic modeling, because it shows the cooperation between database and classes.

However, another principle to consider is the violation of the Separation of
Concerns (SoC), by specifying two traditionally separated viewpoints, such as database
and OO, together. Nevertheless, the SoC applies ideally when each concern delivers
distinct functionality, that can be developed and validated independently (PRESSMAN,
2010). This rarely fully applies to applications and databases.

Moreover, SoC is not the same of ignoring the mappings between software and
database. ENORM main audience are the software developers and designers that need

18

to understand, evaluate, and document this information, in order to deliver software that
deal with both viewpoints, taking in account database and software forces.

The database model may be independent of the system, shared among various
distinct systems; or serve only one system. If the database is exclusive to the system,
and its design is entirely under the responsibility of the same team of this system, the
mappings tend to be more conventional. This, however, depends on the performance
requirements, the amount of data, and the model itself: if the database performs poorly,
and the model have to change, the mapping may not be the obvious one. This is what
makes all database and class models hardly ever the same, and hardly ever
automatically mapped by convention.

Moreover, if the database is independent, the mappings tend to be more
complicated, because changes in the RDB are complicated, involving various parties
and Data Administrators (DA) (AMBLER, 2003). At this scenario, ENORM is
appropriate for developers understand the connections between their particular domain
and the database, and also to communicate their needs to the DA or external parties.
However, ENORM diagrams are not appropriate for the DA tasks at the production
database, and are not intended to replace ER models for database design.

The scenario where a system access multiple databases is a variation of the shared
database scenario, but with added complexity. ENORM meta-model allows the
specification of the schema and catalog, that can be used to filter the models according
to a certain database.

ENORM meta-model contains all mapping information, by convention or
configuration, and it is easy, for a tool, to transform ENORM models to the database
viewpoint, presenting a relational model. It is also easy to present a pure class
viewpoint, removing the elements introduced by ENORM.

The essential elements, contained at the ENORM meta-model, are the result of a
survey relating six commercial ORM tools, and the ORM pattern literature. This survey
includes representatives of four Object-Oriented (OO) programming languages, selected
among the top ten most popular OO languages of 2013: Java, C#, Ruby, and Python
(CARBONNELLE, 2014; DE MONTMOLLIN, 2013; O’GRADY, 2013; TIOBE,
2013).

In order to evaluate our meta-model, we followed two strategies. The first is by
implementing application examples for the models, following the prove it with code
approach of agile modeling (AMBLER, 2002). Despite the name, it is not a formal
proof, but based at the comparative implementation of a set of example models, using
three distinct frameworks of three distinct OO languages. The goal is to capture, by
examples, how the notation, and its meta-model, relates to practical implementation.

The second strategy focus at the empirical evaluation of ENORM single notation
approach, in comparison with using separated class and relational models. The main
issue under evaluation is if ENORM models are hard to understand and modify, due,
perhaps, to a possible lack of SoC. The hypothesis tested was that ENORM single
notation does not decrease the quality of models, and may perhaps increase its quality,
independently of MDD, ORM framework, or actual implementation.

19

Two controlled experiments were performed, with computer science students,
individually performing changes in models; and one experiment was performed with
groups of students creating and integrating models, simulating database sharing among
different systems. None of the results showed a decrease of quality, in terms of achieved
goals and time, by using ENORM. In fact, in most studied scenarios, ENORM achieved
significantly more goals, although no significant difference in time.

The last evaluation step would be a case study (WOHLIN et al., 2012), involving
professionals and a real project, with modeling and development. This case study,
unfortunately, could not be executed, and depends on establishing partnerships with the
industry.

As the last contribution of this thesis, a modeling tool is under development. This
tool allows the modeling using the notation, integrated with the Eclipse software
development tool. Code generation, reverse engineering, and round-trip engineering are
the next steps towards a MDD tool.

The text is organized as shown by Figure 1.1. Chapter 2 presents a bibliographic
review surveying ORM patterns and tools, and organizing the knowledge in pattern
based criteria and characteristics. Chapter 3 presents the ENORM notation, its meta-
model, special cases, limitations, and tools under development. Chapter 4 present the
application examples, based upon analysis patterns, and guidelines for developers in the
context of MDD. Chapter 5 presents the empirical evaluation of the notation, in
comparison with separated modeling. Chapter 6 presents the conclusion of this work.

Figure 1.1: Text organization.

20

2 ORM PATTERNS AND FRAMEWORKS

This chapter presents a bibliographic review relating ORM patterns and practices,
based upon the study of representative ORM frameworks and tools. This review,
presented in the format of a survey, has the purpose of conceptual organization,
identifying the essential concepts necessary for our notation, and the consequences of
ORM decisions at the OO design.

At the first section we explain the survey organization, introducing the domain
patterns and frameworks under study. The following sections presents the survey,
criteria by criteria. The last section presents a short summary relating patterns,
frameworks, and design decisions.

2.1 Survey organization

At this first section we discuss the three basic patterns that guide the organization of
the domain logic; the selection of ORM tools for this survey; and the examples used at
this and the following chapters.

Each of the following sections describes a criteria proposed for characterizing and
assessing ORM frameworks. After introducing some unifying terminology from
patterns, we present and discuss the criteria in the context of the studied ORM
frameworks. Some criteria are identified as coarse patterns such as Embedded Values or
Association Table, but others encompass different patterns that operate over the same
problem. For instance, Coupling and Model Based criteria are more architectural design
oriented, while identity/foreign key are very close to the implementation patterns.

Under each criterion, one or more common characteristics are identified relating
patterns and frameworks. The inheritance mapping criterion, for example, has each
strategy as a characteristic, that may be available on each framework. After presenting
and discussing all criteria, a short summary is presented in the end of the chapter.

2.1.1 Object-Relational Patterns

When developing enterprise applications with large and/or complex domain logic
persisted by RDBs, there are different approaches on how to organize this domain logic,
according to the pattern literature. The simplest Transaction Script pattern has a
procedural approach, implementing a script for each action, business transaction,
identified on the system. Conversely, the Domain Model pattern assigns the domain
logic to the object model, hence each domain object incorporates both behavior and data
(FOWLER, 2002).

21

A third pattern in this category is the Table Module pattern, that proposes a structure
similar to the RDB schema. Each table, or view, has a singleton (a class that has just
one instance object) that handles the persistence and business logic, for all rows of its
table. This pattern is a middle term, between the hard to reuse transactional/procedural
approach and the difficult to implement object-oriented Domain Model pattern.

The difference between Table Module and Domain Model may not be clear at first
sight. Figure 2.1 exemplifies a simple case for a Person object that only has an id and a
name. In the Table Module approach the Person class has one instance that deals with
all persons, and thus has an insert method that deals with Person creation. There is no
specific class representing the data of Person, hence the general purpose DataRow class
is used to store the data for the retrieved person. In the Domain Model example, the
code first instantiate a person object with its data, and then asks the object to insert
itself. This is a very simple example, and the precise way to retrieve and insert
information may change among different platforms, but the key difference is the general
DataRow against the actually instantiation of Person/Other specific class objects.

The Domain Model pattern is the best approach in terms of an OO solution, because
it deals with typed instances in a transparent way, better organizing complex logic. It
gives access to resources such as polymorphism, relationships and inheritance, although
when dealing with relational persistence, it may require more work and had a steeper
learning curve (FOWLER, 2002).

The ORM solutions here studied, and our notation, are focused on the application of
the Domain Model pattern. Several other patterns deal with how to read/persist objects
within this approach, and will be identified in the following sections that analyze each
ORM solution.

2.1.2 Selected Frameworks for the Survey

Due to the large number of ORM solutions in the market, we decided to select a
small set of tools for our analysis, based in the access to documentation,
distinguishing/unique approach to a given problem and maturity/insertion in the market.
Of this list, we left out low level persistence layers that did not accomplish a minimum
ORM such as JDBC, ADO (ActiveX Data Objects) and other Record Set layers, but
included the most important tools, of four of the most popular programming languages
(DE MONTMOLLIN, 2013; O’GRADY, 2013; TIOBE, 2013).

The JPA specification (DEMICHIEL, 2013) was the first obvious choice,
encompassing a significant number of ORM solutions for the Java platform. The MS
Entity Framework (MICROSOFT, 2012a) is both a major persistence layer, and an
example of model based ORM tool. The Ruby Active Record is the major ORM solution
for the Ruby platform (HEINEMEIER HANSSON, 2012).

Figure 2.1: Java examples of Table Module pattern (left) and Domain Model pattern
(right).

22

Table 2.1: Summary of frameworks.

Framework Platform URL

ActiveRecord Ruby http://ar.rubyonrails.org/

Cayenne Java http://cayenne.apache.org

Entity Framework MS .net http://msdn.microsoft.com/en-us/library/bb399572.aspx

JPA 2 Java http://jcp.org/aboutJava/communityprocess/final/jsr317/index.html

MyBatis Java http://www.mybatis.org/

SQLAlchemy Python http://www.sqlalchemy.org/

The MyBatis (formerly known as iBatis) is probably the most known solution with
the data mapping approach to the ORM (BEGIN, GOODIN and MEADORS, 2007).
The SQLAlchemy is a well known solution to the Python platform, and presents a hybrid
approach to the coupling problem (BAYER, 2012). The Apache Cayenne is a
model/generation based solution that allows some degree of organized customization
(APACHE FOUNDATION, 2012). Table 2.1 presents a summary of frameworks and
standards, their programming language platform, and their respective internet resources.

2.1.3 About the examples

The majority of the examples presented at this thesis were based upon Analysis
Patterns (FOWLER, 1996). The models are variations of the Party, Accountability,
Knowledge level, Party Type, Account, Transaction, Quantity, Multilegged transaction,
Summary Account, and Resource Allocation analysis patterns, focusing at the
Accountability, Accounting, and Planning analysis domains.

All model elements are in italic. References to patterns, frameworks, and tools are
also in italic. Reference to meta-model elements, such as stereotypes or meta-classes,
are in sans serif (Arial). Classes always starts with uppercase, while properties are
written starting with lowercase.

Sometimes, an example database model will present tables that do not follow any
naming convention. This is deliberate, because it is not uncommon to find databases
that do not follow a convention, due to the schema longevity and resistance of the
administrators to refactoring. For example, some tables are plural, other are not.

2.2 Transparency and Coupling

Coupling is a measure of interconnection among modules in a software. Software
with low coupling levels tends to be easier to understand and less prone to the
propagation of errors (PRESSMAN, 2001). In ORM frameworks, transparency is
commonly referred to as the ability to keep a loose coupling between application and
the persistence framework, mainly by keeping the domain level classes unaware of the
persistence framework (BAUER and KING, 2004). Transparency is usually achieved
by having object-relational mapping information isolated in external configuration files
or annotations. Under transparency/coupling criterion, loose coupled frameworks are
those that do not impose coupling between the domain classes and the persistence
framework.

23

Lets take the Domain Model pattern as our context and the Active Record pattern as
the starting point for our discussion of an ORM solution (FOWLER, 2002). Each class
of the domain is responsible for retrieving and maintaining its data in the database and
each instance of the domain class represents one row (or record) in the database. This
frequently means implementing an interface of common CRUD (MARTIN, 1983)
methods, or extending an abstract super class, responsible for encapsulating the
common services among all persistent classes.

The Ruby platform can be used as an example of Active Record implementation for
ORM (HEINEMEIER HANSSON, 2012), although it uses a Metadata Maper as it will
be examined in the mapping criteria. The persistence framework provides a base
abstract class named ActiveRecord::Base that implements most of the SQL conversation
with the database. By extending ActiveRecord, the classes of the domain will be
automatically persisted according to the mapping contract defined within the
framework.

Figure 2.2 depicts an Active Record example on Ruby consisting of the Account to
Entry relationship. Each class of the domain must specialize ActiveRecord, and
optionally override its methods and properties, to represent persistent objects. Ruby is
interpreted, dynamic typed, and highly reflective, characteristics that help with adopting
conventions that represent mapping constructions, without losing the ability to override
most of these conventions. For example, the PK in Ruby is, by convention, a column
named “ID”, and the name of the table is the plural of the name of the class. However,
the developer can override the super-class replacing the convention for one or more
classes. Nevertheless, some complex mappings such as of compound keys are not
supported by the Active Record framework of Ruby and difficult to override.

In order to allow further flexibility for the Active Record pattern, one solution is to
introduce an intermediary abstract class. The intermediary class generalizes each
domain class, encapsulating the database access details. This intermediary class can
then specialize the ActiveRecord base class, that keeps the common database logic, and
acts as a template method class for the domain (GAMMA et al., 1994).

It is common to have the intermediary classes automatically generated by the
framework, from models or configuration files for instance. Figure 2.3 presents the
Account domain example in this scenario. The Cayenne framework is an example of
this approach, in which the ActiveRecord class is called CayenneDataObject. The
intermediary, underscored classes, contains the implementation of the mapping between
the domain and the database accessing the persistence layer, including the properties

Figure 2.2: Active Record example.

24

and its accessors methods. The domain classes, implemented by the developer, may
then override these properties and implement the domain logic.

Both approaches to the ActiveRecord pattern leaded to concerns, about the high
coupling to the persistence framework. The inheritance relationship imposes a strong
coupling to the general classes (PRESSMAN, 2001), but there are other approaches to
persistence, based on domain classes being loosely coupled to ORM framework classes,
that can avoid this problem.

The SQLAlchemy persistence framework for the Python platform presents a hybrid
example of the previous Active Record examples, and a loosely coupled solution based
on the Mediator pattern. The developer can choose among inheritance from base class,
configuring a strong/tight coupling, or the loose coupled, dynamic instantiation of
mapping objects that link domain classes to table definition objects.

Figure 2.3: Inheritance to generated classes.

Figure 2.4: Instantiated mapping example for SQLAlchemy loose coupling approach.

25

Figure 2.4 shows a simplified example of the transparent mapping, achieved in
SQLAlchemy. The framework provides classes to specify the table (with attributes such
as name, column, column types...) and mappings (Mapper class) between a Table and
any class. In the application package, some class will instantiate the tables with its
metadata, and the mappers binding each Table to the corresponding domain class. For
example, the instance accountMapping is a Mapper that refers to the instance
accountTable as its Table and to the domain class Account as its mapped class. The
accountTable contains information about the database table, such as the name of the
table being Accounts. This example is simplified, usually accountTable would contain
all data necessary to create the table and its constraints. The Entry class is mapped in a
similar way, by the entryMaping instance to the entryTable, with table named
Acct_Entries. The framework can then use the Mapper instances to access the database
and factory instances of the domain classes, based on application requests. This kind of
loose coupling by instantiating mapping classes is named Instantiated mapping.

A slightly variation of the Instantiated mapping approach has became part of the
JPA specification: instead of instantiating the mapping on some application class, as
with SQLAlchemy, the mapping is done on independent files and/or code annotations,
achieving a better SoC. This mapping artifact (file or annotation) is accessed by the
framework, that internally builds the necessary metadata on memory. As in
SQLAlchemy, the domain knows nothing about its persistence, and the persistence can
be applied to any domain package, even without its original source code (Figure 2.5).

An additional advantage is that the JPA acts as an abstract factory (GAMMA et al.,
1994) to one among various JPA frameworks, making it possible reduce or eliminate
the coupling between the application and the implementing framework. In Java, domain
classes with no coupling to the persistence framework are commonly referred as POJO
(Plain Old Java Object) classes (FOWLER, 2000).

Figure 2.5: JPA loose coupling overview.

26

The MS Entity Framework uses an ActiveRecord coupled approach, like the one
shown in Figure 2.2, combined with a configuration as its default solution
(MICROSOFT, 2012a). The domain classes specialize the EntityObject abstract class
(MICROSOFT, 2012b). Recently it was introduced the concept of POCO (Plain Old
CLR Objects) classes which allows persistence ignorance on the domain classes
(DERSTADT and VEGA, 2009).

Finally, Mybatis also employs external configurations for ORM. It achieves a loose
coupling between the domain and the framework, encapsulating framework access at
the application level.

2.2.1 Discussion

A framework that requires subclass coupling will introduce “alien” elements from
the framework into the domain classes. If the platform does not support multiple
inheritance, it will be impossible to have inheritance between persistent and transient
application domain classes, given that each domain class already specializes its
persistent counterpart and cannot inherit from another class.

On the other hand, a framework that allows a loosely coupled domain model still
have restrictions, mapping requirements and limitations. The naive assumption that any
model can be persisted may lead to a domain model that cannot be implemented (or is
unpractical) with the chosen framework or technology. If legacy databases are present
(and they often are), chances are great that the design freedom on the domain model
will be severely limited.

2.3 Mapping Type

An ORM framework has the responsibility of mapping data among domain objects
and database tables. The mapping type criteria defines how a framework perform this
mapping: the Data Mapper knows how to map the sets of data from SQL statements;
the Metadata Mapper builds this SQL from metadata informed by the developer and/or
extracted from the system. For example, this extraction may be performed by
introspection and querying the database for metadata. Both mapping types were
identified in previously published patterns with the same name (FOWLER, 2002).

Figure 2.6 illustrates how the Data Mapper works on environments such as the
MyBatis framework. The mapper instance reads the configuration artifact that contains
SQL statements prepared by the developer for each mapping situation of each class in
the domain. For instance, the artifact Account.xml defines a query that is responsible for
the construction of each Account instance. The artifact Entry.xml declares a query, that
returns a set of Entry instances related to one Account. The developer must also provide
SQL statements for the remaining CRUD operations.

The Metadata Mapper is represented by the Mapper class in Figure 2.4. Instead of
storing developer written SQL statements, it stores information about the tables,
columns and mapping options of the developer (FOWLER, 2002). The mapping options
depends on the attribute and column types, including cardinality, length and precision,
but may require some special configuration for Large Binary Objects (LOBs) and dates.
This metadata is then used to dynamically assemble a SQL statement for each
operation.

27

A Metadata Mapper framework may have all metadata informed by the developer,
by configuration artifacts and domain structure. Another approach to obtain metadata is
to extract it from the database itself and combine with data informed by the developer.
In such case, the database schema itself is a configuration artifact, complemented by the
developer according the framework rules.

RAR uses the metadata extraction approach to perform all column mappings. The
developers do not need to declare properties representing the database columns, all they
need to do is to declare the class mapped to the table and the framework will, at run-
time, query the database to obtain column metadata and dynamically provide properties
to the classes. One drawback of this approach is that without database connection, the
developer may not know what properties a persistent class have.

MyBatis is the only Data Mapper analyzed. All other frameworks, i.e. SQLAlchemy,
JPA, MS Entity Framework, and Cayenne employ the Metadata Mapper approach.

2.3.1 Mapping Classes to Many Tables

Metadata mapper frameworks usually allows the mapping of one class to multiple
tables. JPA, Entity Framework, SQLAlchemy, and RAR have mechanisms to map a class
to more than one table, offering some mechanism to resolve the persistence of the
instances. Data mappers, such as MyBatis, can easily be mapped to many tables due to
its query flexibility.

JPA, Entity Framework, and SQLAlchemy allows the definition of secondary tables,
joined by a common PK. The framework retrieves the data by performing inner joins,

Figure 2.6: Data mapper such as in MyBatis.

28

and persist data by issuing inserts, updates, and deletes for each table in the mapping.
JPA did not forbid implementing frameworks of improving secondary table support
beyond this limitation, and in fact Hibernate allows the definition of the SQL statements
that perform the joins and database changes (RED HAT MIDDLEWARE, 2014).

RAR allows secondary tables by using nested attributes (RUBYONRAILS.ORG,
2014). Differently from the other ORM frameworks, the secondary tables must first be
defined as classes, with the necessary associative mappings. Therefore, the
ActiveRecord framework do not hide the secondary tables from the domain as the above
mentioned frameworks.

Another approach to map classes to multiple tables is the definition of entities over
updatable views. This solution moves the mapping implementation to the database as
stored procedures, views, and/or triggers. This approach gives greater flexibility, but
hides the mapping inside the database.

A persistent class can often be defined over an arbitrary query, as a view can be
defined by any valid SQL query, as long as it is read only. But the usual benefit of
defining a domain class is its persistence. The problem of detecting what queries
imposes a read-only restriction to the persistent class is similar to the problem of
translating updates on views (DAYAL and BERNSTEIN, 1982; KELLER, 1985).
Ultimately, the ideal mapping implementation would have to translate the operations
affecting the tables, and these operations should be side-effect free: a change on one
instance cannot affect any other instance in memory, or stored in the database.

2.3.2 Discussion

The Data Mapper approach requires the specification of SQL statements for each
CRUD operation on each domain object. These statements are the mapping between the
domain and the database, becoming sensitive to changes in both ends and dependent to
the chosen database platform.

The Metadata mapping approach requires the specification of equivalence between
domain classes and database tables, what sometimes may be difficult to achieve in
legacy systems. The more resourceful is the Metadata Mapper, more freedom the
domain model will have from the database and/or vice versa. Transferring the SQL
responsibility to the framework may impact the performance and this may influence the
design and require careful parametrization of the mapping. A framework may allow that
part of the mapping specification is done through a Data Mapper approach.

One characteristic of the Data Mapper pattern is the higher mapping flexibility: by
treating each case by individual hand crafted SQL statements, the domain model can be
very distinct from the original database model (FOWLER, 2002). On the other hand, the
Metadata Mapper encapsulates the database access, avoiding the database vendor “lock
in” and its configuration is less repetitive and pretty much automatic when domain
objects are similar to the tables.

2.4 Model-based Mapping

ORM frameworks often include a set of tools to specify the system, manage
configuration artifacts, generate pieces of code and/or data modeling. Nevertheless,
frameworks may rely on such tools to construct an abstract logical model ahead of

29

implementation, or work straight with implementation artifacts without any previous
specific abstract model. Model based ORM involves a language with higher abstraction
level (usually a visual one) to specify the two natures of entities: persistence, as a
relational table, and behavior, as an OO class. This modeling language can actually
represent elements from database, application and all the mappings required to
overcome the IMP.

The mapping model is the primary input for any future change in the configuration,
database structure and/or domain classes. Usually there are tools that can perform
reverse and forward engineering between model, database and domain classes by Match
and ModelGen operations, according to the model management approach
(BERNSTEIN and MELNIK, 2007). The match operation tries to identify the mappings
between elements from two meta-models, while the ModelGen generates elements from
one model to another (such as generating DML or application code).

The Entity Data Model (EDM) is a model based mapping tool for the Entity
Framework (ADYA et al., 2007; MICROSOFT, 2012a), influenced by the model
management approach. The mapping starts with a model (with an ER logical inspired
notation) that can be created from scratch, or by reverse engineering a database. This
conceptual model is extended with visual elements to identify ORM patterns supported
by the tool, such as navigation properties for relationships. Finally, this model is used to
generate source code and configuration, by a template mechanism, that implements the
domain objects and its mappings.

Figure 2.7 presents an example of EDM. The Product entity has a many-to-one
relationship to Category, specified by the navigation property Category. The Category
has a reverse navigation property named Products, that contains a collection of
products.

The disadvantage of using an ER like model (such as EDM) as the source for
generating the domain model is the absence of visual behavior specification for the
entity classes. Even when dealing with code and mappings, currently it is only possible
to define methods that call stored procedures outside the model. Operations on the
application side are not represented on the models.

The Cayenne is another example of model based tool that generates the source code
from a visual model. Instead of one model, Cayenne requires the specification of two
models. The first is a data model and the last is a class model bound to this data model.

Figure 2.7: Entity Data Model for MS Entity Framework

Source: (SNEED, 2012).

30

Figure 2.8 presents an example of Cayenne model for a similar Product x Category
model. The “C” icon represents the classes (ObjEntities) and the boxed icon represents
tables (DbEntities). The modeler allows the specification of how each ObjEntity is
mapped to one or more DbEntity. The model itself has a “Property explorer” visual
representation, far away from the ER visual language.

Although the JPA specification was not conceived as a model based mapping
framework, nothing prevents independent vendors from building tools for modeling
ORM. The Hibernate Tools project (RED HAT MIDDLEWARE, 2014) provides a
graphical view of the mappings, along with other development tools. The key point here
is that such tools are not intended to design, but more focused on ease the
comprehension of the (eventually huge) mappings.

2.4.1 Discussion

Model based ORM frameworks are somewhat new and clearly did not encompass all
design choices for mapping, with limitations on behavior specification and a lack of
connection to the transient components of the system.

EDM option for ER models naturally limits behavior specification, better expressed
with class models. It is somewhat unclear how manual behavior development and code
generation should work together without constant overriding, if by customizing the
generator (that may require maintenance when updating the framework) or by moving
any behavior out of the entity classes (what fells like a procedural solution).

The separation of class and table concepts on Cayenne, potentially duplicates the
number of elements that the developer have to deal with (elements that in a conceptual
viewpoint represent the same thing). Its modeling tool is much more a visual editor than
a notation itself, leaving most of mapping information hidden behind wizards and
menus, instead of graphic displaying its details. Moreover, it has the same limitation of
the EDM regarding the lack of operations specification.

A model based solution, with support to mappings that are sensitive to changes on
both sides of the ORM artifacts, still seems to be missing and not being offered by any
of the tools available for the researched frameworks.

2.5 Identity

The PK is the minimal subset of columns that uniquely identifies a row in a database
table. The PK may be composed by meaningful or meaningless information to the

Figure 2.8: Cayenne models domain and database elements separated.

31

developer viewpoint, and it is usually immutable. PKs can be referenced in other tables
by Foreign Keys (FKs).

The identity problem refers to the mapping of the PK concept to the domain object.
Objects usually do not need a declarative identity because they are internally identified
by their memory position. From an OO viewpoint, if an object is serialized to an
external system and later reconstructed to the same state, it is another instance and
therefore a distinct object. Non standard equality and guarantee of uniqueness are
behaviors that must be implemented on the class, such as the equals operation on the
Java platform (GOSLING et al., 2005).

The identity problem was covered by the Identity Field pattern (FOWLER, 2002).
The following characteristics were identified based on the implementation of this
pattern by the ORM frameworks:

— Identity Complexity: can be of Single or Compound complexity: Single identities
are formed by a single column; Compound identities by a set of columns.
Compound keys are often used to implement weak entities.

— Identity Uniqueness scope: can be of Table or Database uniqueness. Concerns if
the database is designed, to have PKs that are unique in the context of the table,
or the entire database. Table uniqueness is the most common situation on legacy
databases.

— Identity Assignment: can be of Auto-generation, Counter or User Assigned. A
database can offer different resources to assign the PK: With auto-generation
the database assigns a key for each inserted row; With counter assignment, the
developer obtains a new key from a named unique counter (also called sequence
generator), that may be shared by several tables; and with user assignment the
application is responsible of assigning the key, asking the user for a meaningful
key or generating the key by a client side solution.

ORM frameworks may not support all combinations of the above characteristics.
Some ORM frameworks only support single key mappings, such as the RAR
(HEINEMEIER HANSSON, 2012). Some characteristics are supported by all
frameworks, such as single complexity and table uniqueness.

Figure 2.9: Primary key fields (a) and primary key class (b).

32

Composite keys may be represented by a separated PK class, or by PK fields
identified within the class. On Figure 2.9, diagram a) shows the composite PK for
Telephone as two properties, area and number, directly containing the columns values;
and diagram b) depicts the PK as an identifier relationship, between Telephone and
TelephonePK classes. Some frameworks, such as the ones that follow the JPA
specification, allow both representations, although the definition of PK classes may be
required even if the identified fields approach is used (DEMICHIEL, 2013).

Key assignment is a tricky problem to the ORM. A domain object is first created in
memory and then it can be persisted on database. If the key is user assigned, the ORM
must ensure that a key is provided before that object is persisted. On the other hand, if
the key is generated by the database, it must not be assigned by the user. If it is an auto-
generation field, the ORM must implement some way of capturing the generated value,
to store in the object for later updates. When a counter is employed, the counter
specification must be informed in the mapping, or obtained from some default naming
convention.

The user assigned identity may be automatically generated in the ORM level. The
most common techniques are based upon Globally Unique Identifier (GUID)
generation, key tables and table scans. A framework may allow the user to create
customized generations, combining different techniques.

Complexity and assignment are affected by the chosen uniqueness scope. Composite
and auto-generated identities are usually related to table scope, while GUID and single
identities are the usual combination for database scope. The ORM may treat all scoping
as table, offer some facility to distinguish database or table scoping, or just require
database scoping. By treating all scoping as table, the developer can still implement
some sort of database scoping, if the ORM supports user assignment to generate
GUIDs for instance. Conversely, requiring database scope turns out to be an
impediment for database schemas with table scoping and access by legacy systems.

2.5.1 Discussion

PK mapping is often forgotten in the OO project stage, spanning unpredicted PK
classes in the implementation stage. Another common problem is the absence of the PK
attributes in the domain classes, since they are required only to model the database. The
assignment, and uniqueness of scope, may impact in the inheritance support of the
framework. Single and compound keys will impact the foreign key support.

If a metadata mapper is employed it will require metadata about how the PK will be
represented. Conversely, the data mapper will require the presence of "find-by-primary-
key" factory methods for most domain classes.

2.6 Foreign Key

The Foreign Key Mapping pattern describes the common solutions for representing
database relationships in classes (and vice verse) for the one-to and to-one cases
(FOWLER, 2002; KELLER, 1997). One of the most important features of RDBs is the
referential integrity, a mechanism that guarantees coherent relationships between rows
in different tables (ELMASRI and NAVATHE, 2003; GARCIA-MOLINA, ULLMAN
and WIDOM, 2008). One row references the other by having a FK, a subset of its

33

columns that references the PK columns (sometimes an Alternate Key) of the other
table. The database must either ensure that the FK is pointing to some row that exists in
the referenced table, or that it has NULL values in all of its columns.

In OO systems, classes may reference other classes by variables, what denotes a
(usually transient) dependency relationship. An association (or structural) relationship
between two classes A and B typically happens when there is an instance variable on A
with type being B, or a collection of B elements (BERLER et al., 2000). This
relationship is often persistent, and may be unidirectional or bidirectional, the later
typically requiring another instance variable on B referencing A.

Figure 2.10 represents two diagrams representing Party, a pattern to represent
persons and organizations, and Telephone (FOWLER, 1996). The upper diagram is an
UML representation of a bidirectional relationship between Party and Telephone.
However, in implementation terms, the relationship is only implied by instance
variables phones and party, as shown in the lower diagram. It is not clear, without
looking at the upper diagram, if phones and party forms a bidirectional relationship or
two independent unidirectional relationships. If a second variable references the same
destination class (calls), there is no structural information, on the classes, that indicates
which property is in the opposite side of the relationship. There is nothing like a FK
constraint in OO programming languages, although it can be implemented, by
encapsulation of instance variables access with operations.

On RDBs the FK is placed in one table, depending on the cardinality of the
relationship. The row with the FK can reference at most one row in the other table by
this FK. Rows in the table referenced by the FK, often named master table, can be
referenced by zero or more rows within the same constraint rule. Nevertheless, database
relationships are considered bidirectional because the SQL query language allows to
access both the master row knowing the detail FK, or the detail rows by knowing its
master PK.

The Foreign Key Mapping pattern simplest version is to have a field, in the class
that owns the foreign key, that references an instance of the master class. This mapping

Figure 2.10: Association relationship between classes.

34

is known as many-to-one. Sometimes the inverse is a more significant design, such as
the party referencing its phones, in such case the field is a collection, owned by the
master class, and is named one-to-many. One-to-one relationships differ very little from
many-to-one, regarding the implementation in unidirectional situations like that.

Nevertheless, if both classes references each other, the foreign key mapping is
named bidirectional, and it must deal with the problem of keeping both sides of the
relationship updated. If one Telephone is added to the phones of Party, the Telephone
itself must have its party reference updated, and if the Telephone is assigned to a
different Party, both parties must be updated: the old Party collection of phones must
have this Telephone removed and added to the phones collection of the new Party.

The simplest case of mapping unidirectional many-to-one is supported by all studied
ORM frameworks. The instance variable identity is mapped to a FK, automatically, if
the name matches the database structures. Additional mapping information is needed,
when the variable name did not match with the column name, or when the identifier is
compound.

The bidirectional case must support some mechanism to specify what is the opposite
instance variable, as shown in the Figure 2.10 party-phones relationship. To represent
the to many side, the instance variable requires some collection instance, with variable
size support, such as the Java Collection framework. Mechanisms such as Templates, or
Generics, allow the framework to type collections.

Some languages do not support the typing of collections, leading to some
mechanism to specify the target of the relationship. One solution, employed by the RAR,
is to match relationships by the variable name. If this match is not possible, the
relationship can still be defined, by overriding the standard active record
implementation. Most ORM frameworks have some customization approach using
reflection, instantiation (SQL Alchemy), or external configuration (JPA, Entity
Framework).

The one-to-many unidirectional relationship is one exception scenario. By using the
Foreign Key pattern, the key is stored in the many side, that should supposedly not
know about the relationship. This can be handled, at some ORM frameworks, by
implementing one-to-many with the association table pattern, avoiding an FK in the
“wrong” direction.

For the one-to-many direction of the relationship, some frameworks work with read
only collections and add/remove methods for the elements, while others allow the direct
manipulation of collections, later reflecting these changes as updates in the referring
object. Cayenne, for instance, requires a method to add elements to the collection, while
the JPA allows direct manipulation of collections. However, for bidirectional
relationships, changes on one side may not be automatically reflected in the opposite
side, hence add/remove methods are a good practice to encapsulate such details, when
this is the case.

2.6.1 Fetch Strategy

The fetch strategy determines what part of a persistent graph should be retrieved
(BAUER and KING, 2004). For the example in Figure 2.10, the fetch strategy, specified
for the phones of a Party, would specify whether these phones should be loaded from

35

the database along with that instance, or not. Conversely, when a Phone instance is
loaded from the database, loading the Party, into the party instance variable, is also
subject to the fetch strategy, specified for this instance variable.

The Lazy Load pattern offers a flexible solution to the fetch strategy, by deferring
the loading, to the first moment the information is requested by the system (FOWLER,
2002). For collections, the most common solution, is to provide a transparent wrapper
around the collection, that checks if the collection was initialized, and load it only when
needed.

In the to zero/one scenario, the solution may be a virtual proxy, an instance of the
class that actually is a pointer to the real object, retrieved on demand from the database
(GAMMA et al., 1994). The decision about using virtual proxies appears to be
transparent, but it may end up neglecting polymorphism. For instance, imagine the
following scenario: the Party class has a specialization called Person. If the system
retrieves a Telephone with lazy loading strategy, a Party virtual proxy will be
instantiated despite the possibility of the party being a Person. If the system access the
party variable, the related Person will be instantiated and loaded, but, the already
instantiated Party proxy, will be wrapped around this Person instance.

For data mappers such as MyBatis, the lazy loading is controlled by the nesting type
used in the configuration. In the previous example, the Party class might be mapped to
an outer join with Telephone and a nested resultset; or, alternatively, mapped by one
query to Party and a nested “on demand” query for Telephone. All frameworks in this
survey, present the possibility of fetch strategy configuration, but only JPA and
SQLAlchemy allow the configuration of proxies for relationships.

2.6.2 Discussion

Relationships are best represented in visual models, rather than code or SQL, in
which the reader must interpret statements, to discover the nature of one relationship.
For ORM frameworks, some mapping are often needed, to specify elements such as
relationship direction, type or collections, that are connected by foreign keys.

Performance is a concern in relationship mapping. The fetch strategy plays an
important role in ORM design. Lazy fetch in to-zero/one relationships has different
consequences on each ORM framework, leading to the use of proxies and impacting on
the way that the domain objects behave.

2.7 Association table

The Association Table Mapping pattern describes the common solutions to represent
OO many-to-many relationships in databases (FOWLER, 2002; KELLER, 1997). RDBs
do not deal transparently with many-to-many relationships. These relationships must be
implemented by a third association table, containing mandatory many-to-one
relationships to both related tables.

The basic idea, behind Association Table Mapping, is to use a link table to store the
association. This table has only the foreign key IDs, for the two tables that are linked
together, and it has one row, for each pair of associated objects. The link table has no
corresponding in-memory object. As a result, it has no ID and its PK, if it exists, is the
compound of the two PKs of the tables that are associated.

36

Figure 2.11 shows an example of many-to-many table mapping, between classes
Employee and Post of the Post pattern. The Employee class has the collection field
posts referencing Post objects. Employee and Post are stored in the tables with the same
names, and the employees-posts collection is stored in the Employee_Post association
table. If a Post is added into the collection, a row must be inserted in the
Employee_Post table, with corresponding empId and postId values; if it is removed
from the collection, this row is deleted in the same way. The identification of this table
is usually done by joining the PKs, from the associated tables.

Tables such as Employee_Post, present in the database model, may not be of interest
from an OO design standpoint. In OO language models, many-to-many relationships can
be transparently mapped into object references, as long as the underlying relationship
table does not contain information by itself. For example, an employees-posts
association may be transparently mapped, as long as it does not have other information,
such as experience in years, or type of degree. When the relationship has attributes, it
usually ends up being a Class, represented in UML by an Association Class (OMG,
2011b).

The Employee_Post table is not represented in the class model, but ORM
frameworks usually have to store metadata about this table, in order to implement the
relationship. Some tools may assume the table name from the class names, but usually
the developer supply the name of the association table.

For bidirectional relationships, the ORM must deal with two instance variables
(employees and posts on Figure 2.11) that represent dependent collections. If a Post is
added or removed from the posts collection of an employee, this employee should be
added/removed from the employees collection of this Post instance.

Most persistence frameworks are able to deal with transparent association tables, but
some of them may have restrictions. For instance, the MS Entity framework assumes
that the association table has a PK consisting of the two FKs and is unable to recognize
any other column in this table. An association table with a unique identifier is therefore
unsupported. The Cayenne Framework allows some flexibility of the transparent
association table for read-only relationships. JPA allows to represent the relationship as
a Map containing the associative attribute(s), such as the experience level.

Transparent association tables are not directly supported by MyBatis. Nevertheless,
the mapping language allows the definition of collections over nested results or nested
queries that can emulate the association table without the existence of an association
class to explicitly map the association table.

Figure 2.11: Association table example.

37

2.7.1 Discussion

Transparent association tables are a great abstraction for modeling systems, and
may simplify the implementation of domain classes, by removing association classes
required only to emulate many-to-many relationships. However, support for association
tables is often limited in ORM frameworks, while it is common to find several
variations in legacy databases that are unsupported by transparent association tables,
regarding, for instance, surrogate keys in association tables.

2.8 Embedded Values Support

Not all classes in the OO design model will make sense as database tables. Some
classes may represent persistent data only when related to another persistent class. In
cases where two classes relate in a one-to-zero/one basis, the dependent classes are the
best candidates to be stored within the owner table, by the application of the Embedded
Value or Single-Table Aggregation patterns (FOWLER, 2002; KELLER, 1997).

Imagine the situation where the system deals with contacts for its employees and
customers, within the Accountability domain (Figure 2.12). A Contact may be an Email
or a Phone with SMS support. Both Employee and Customer can have one Phone and
one Email contact, but the customer may not inform the contact information. To reuse
and encapsulate the contact behavior, phone and email are separated classes, but from
the database viewpoint these are simple attributes of the parent tables.

Phone and Email can be seen as regular value objects (like String or Date) and are
only persisted when related to an owner instance, such as employee or customer.
Usually the relationship is unidirectional from the owner to the embedded class, what
denotes an “attribute of” relationship (OMG, 2011b). This relationship may be a
composition, although it is common to see the owner reassignment allowed by the
persistence framework.

Cayenne and JPA have support for embeddable classes. In the MS Entity
Framework the Embedded Value is named Complex Type; in the SQL Alchemy it is
named Composite Column; and in RAR its named Aggregated Value Object. MyBatis
does not need to distinguish embeddable classes, because for each class, the developer
have to provide the SQL for persistence.

Figure 2.12: UML model (left) and tables (right) of the Association table example.

38

Some frameworks, such as JPA and MS Entity Framework, allow the definition of
standard mappings for embeddable classes, such as the preferred database types. Others,
such as RAR and SQL Alchemy, do not support default mappings, requiring a specific
mapping of each reference to an embeddable class.

Another pattern that falls under this embeddable criteria is the Dependent mapping.
In fact, as a pattern, Dependent mapping is a generalization of embedment, that deals
with classes that are persistent due to the relationship to other persistent classes,
regardless of the nature or cardinality of the association (FOWLER, 2002).

Figure 2.13 revisits the embeddable example replacing the one-to-zero/one with
one-to-many relationships between Employee/Customer and Phone/Email contacts. In
order to store more than one associated element, a new table is required, as what
happens with the Foreign Key pattern. The key difference here is, that the table that
stores the phones of Customer, is not the same table that stores the phones of
Employees. The table that stores a dependent mapping should do it exclusively for one
owner.

In the example of Figure 2.13, the dependent tables are designed with composite
keys with one column referencing the owner table, and the other registering the order of
the element in the relationship. The dependent relationship simplify the persistence
changes, in a collection of dependents that can all be safely deleted, and reinserted,
when the owner is persisted.

Figure 2.13: Dependent mapping pattern example: class model (upper) and database
model (lower).

39

The Dependent Mapping pattern described by Fowler states that the owner class is
responsible to the persistence of the owned objects. Considering ORM tools taking over
this work, or with metadata mappings performing general persistence, this pattern can
be used to describe element collections such as collections of embeddable objects and
basic types.

The support of more generic dependent mapping is not yet widely supported by
ORM solutions. JPA supports collections of embeddable objects (named element
collections), mapping such collections into a separate table that refers back to one
owner entity table. The element collection mapping allows the mapping of one-to-many
dependent mappings.

2.8.1 Discussion

Embedded values are a valuable asset to bridge persistent and transient elements of
the domain model. Reuse and encapsulation are great advantages of OO, and the forces
that lead OO design to break a class in two or more pieces are often contrary to the
database normalization forces that put that information together.

The possibility of defining default mappings for the embedded classes can facilitate
the design, by reducing repetitive mapping. Information such as field types and lengths
will probably be the same for all embedded mappings that target to the same class.

2.9 Inheritance Mapping

Inheritance is not supported in pure RDB models. It must somehow be emulated
with optional fields, discriminators and/or table joins. There are three preferred ways,
identified as patterns, for mapping inheritance (FOWLER, 2002; KELLER, 1997).

— “single-table” or “one inheritance tree one table”, meaning that one table
contains all possible attributes of the class tree.

— “Class-table”, “Vertical inheritance”, or “one class one table”. Each class is
mapped to one table containing only the attributes for that class.

— “Concrete-table”, “Horizontal inheritance”, or “one inheritance path one table”.
Each concrete class is mapped to one table, but each table contains the sum of all
attributes of the class hierarchy.

The choice of patterns depends on implementation and platform specific issues. The
balance of performance forces, such as update and write access versus polymorphic
read, may be more determinant than maintenance and ease of writing queries, in the
decision about what pattern should be followed. Resources of the database system, such
as NULL compression that saves space for the single-table pattern, must be also taken
into account before deciding the best strategy (KELLER, 1997).

The Account example is expanded in Figure 2.14 to illustrate a specialization of
accounts, named SummaryAccount, which represent accounts that are composed by
other accounts. SummaryAccount inherits properties from Account, such as name, and
adds its own properties. The components relationship may connect a SummaryAccount
to any Account, including another SummaryAccount. The Entry class has a polymorphic
association with the Account class: it may refer to one Account or to one
SummaryAccount object.

40

A single-table pattern solution for the components model is shown in Figure 2.15.
The Accounts table contains the sum of all attributes of the hierarchy and the sum of all
associations. The type attribute (marked with *) was added to discriminate between an
Account and a SummaryAccount row, although it could be replaced by using the
synthetic object identifier pattern (KELLER, 1997). Mandatory associations are mapped
as optional associations, but our example association was already optional.
Nevertheless, the standard database integrity mechanisms cannot prevent an Account,
from being referenced by another Account which is not a SummaryAccount. It would be
necessary to check the discriminator value, in order to determine that such constraint
was violated.

A class-table pattern mapping is shown in Figure 2.16. Accounts and Summary
represent Account and SummaryAccount classes, with a similar attribute/association
distribution. To retrieve a SummaryAccount, the system must join tables Summary and
Accounts, by its common PK. The association is now placed in the Summary, allowing

Figure 2.14: Inheritance example for Account.

Figure 2.15: Single-table approach for Account example.

Figure 2.16: Class-table approach for Account example.

41

the database to enforce the components association. One visible downfall for this
approach is the cost of joining Accounts and Summary, to obtain a single
SummaryAccount instance.

A concrete-table pattern mapping is shown in Figure 2.17. Each concrete class of
the hierarchy is mapped to one table, but the retrieval must be done without the
requirement of joining tables. The consequence is that specialization tables will contain
columns for the inherited attributes.

Even without the foreign key constraint, in the specialized concrete tables, it is high
desirable that the number (marked with *) be unique for the entire hierarchy, because
otherwise, it would be impossible to represent a polymorphic association to a super
class. In the example, Acct_Entries refers to an acct_number that can be a row at
Accounts or Summary tables. This kind of relationship cannot be enforced by a FK and
should be enforced by the persistence layer.

Both Account and SummaryAccount can be components of a SummaryAccount,
requiring two column references, to represent the components association of Figure
2.14. The summaryId column, of Accounts, can reference the Summary PK, but a
Summary PK can also be referenced by a summaryId column, of another Summary. In
the concrete-table strategy, it is not uncommon to have one association become two, or
more, column references between tables.

Besides problems related to relationship mapping, the concrete-table has a severe
performance problem for polymorphic queries (KELLER, 1997). If one needs to query
the entire hierarchy, for a specific condition, an expensive UNION operation is issued to
all tables.

Surely, this example does not explore all possible combinations of problems
adapting each inheritance pattern to the other relationship, PK, FK, and so forth
patterns. If, in this scenario, the concrete-table seems to be a bad choice, it may be
turned into a good choice, depending on the relationships, the number of estimated
account records, what classes are persistent in the class tree, and/or presence of a legacy
database schema. Some flexibility, to change between each approach, is a valuable asset
for this solution.

Most ORM frameworks have some kind of inheritance mechanism, and these three
patterns are usually supported. JPA, MS Entity framework and SQLAlchemy let the

Figure 2.17: Concrete-table approach for Account example.

42

developer choose between the three patterns, although the concrete-table support is
optional in JPA. Cayenne supports single-table and class-table (named vertical
inheritance) but has the concrete-table (to be named horizontal inheritance) under
development. The RAR implements only the single-table strategy, by introducing a
discriminating column named inheritance_column (HEINEMEIER HANSSON, 2012).

MyBatis framework data mapper approach, requires the specification of the SQL
expressions for each mapping, and offers the discriminator mapping, that uses one table
column to discriminate the correct class of the hierarchy. The discriminator can be
utilized to implement a single-table strategy, but it is possible to emulate the class-
table, by manually providing adequate SQL expressions. However, the discriminator
column is required for all “type select” situations.

The discriminator column may be required depending of ORM and pattern in use.
With JPA, a discriminator is required for single-table, but optional for class-table
inheritance. In Ruby, the discriminator may not exist for single-table, but it means that
the instance type will not be automatically detected. It is sometimes possible to identify
the record type in the single-table strategy, by the presence of null values, but it is not
really supported by the researched tools, due to its poor performance.

SQL-Alchemy allows fine control on retrieving class-table objects, but requires a
discriminator column in the root table. When retrieving Account, for instance, only the
Accounts table may be queried, and the remaining attributes are loaded on demand,
avoiding the expensive join. With the discriminator, the persistence framework can
determine which type must be instantiated, without performing an outer join to each
possible sub-type.

Another issue rises in the joining of inheritance tables. The MS Entity Framework
requires that, the PK of each table, must be the same, and a FK to the master table
(Figure 2.16). The JPA specification states that the PK should be specified only in the
root entity, but at same time, allows the FK to the super-class to be redefined by
subclasses, using the PrimaryKeyJoinColumn annotation. The effect of this redefinition,
in JPA, may have unexpected consequences depending on the implementing
framework, because it is not possible to declare in the mappings the PK of the subclass.
The SQL-Alchemy explicitly allows user defined FK relationship between each class-
table.

Figure 2.18: Independent keys in class-table inheritance example.

43

Figure 2.18 shows an example of class-table mapping with independent PK and a
discriminator (marked with *) column. Flexibility in the FK inheritance mapping is
important to map legacy database relationships as inheritance relationships, when the
FK relationship is not in the PK, but an alternate key.

2.9.1 Discussion

Inheritance is one key feature of ORM, and the most difficult issue to deal with. The
mapping strategy to be chosen is a decision that affects behavior, performance, and
design limitations of the domain model. Some of these limitations are dependent of the
ORM tool, and others are inherent to the strategy itself.

Mapping inheritance in legacy schemas may be difficult, because certain design
conditions must be met to support inheritance, and these conditions change from tool to
tool. Moreover, not all constraints can be enforced by the database for every strategy,
and if there are other non ORM based applications, using the same schema, they must
ensure these constraints are satisfied within their code.

2.10 Summary

Table 2.2 presents a summary, with each analyzed criterion, and its characteristics,
related to each ORM framework analyzed over the previous sections. This summary is
organized as criteria, subdivided by characteristics previously presented, and its
relationship with each studied ORM framework.

The first criterion is the domain coupling, in which some frameworks offer loose
coupling and others are tied by inheritance coupling. The entity framework is usually
not loose coupled, although with some customization it is possible to design a loose
coupled domain, hence its marked with depends. Another characteristic analyzed is if
some of the mapping is done by external configuration files.

The mapping criterion is determinant for the mapping abstraction level. Data
Mappers deal directly with SQL statements, therefore some of the criteria can be
satisfied by emulating their mapping requirements. Entries in Table 2.2 marked with the
Emul. abbreviation indicate these situations.

The model criterion is focused on model first tools, in which entity class models
represent the mapping between the relational and OO artifacts. As show in Table 2.2,
none of the tools are yet focused on the structural behavior specification of operations.

On the identity criterion, the PK representation as a field, or as an embeddable class,
has limitations in some of the frameworks. In JPA, for example, when mapping a
composite PK as fields in the class, the developer must also define a PK class with these
PK fields. Also, support to table independent keys exists in all frameworks, and unique
identifiers for databases can be achieved by application or user assigned keys.

Foreign keys, transparent association tables, and embeddable values all represent
relationship criteria, the first two between persistent entities, and the third with transient
reusable classes. Mybatis can emulate some of these constructs, as explained earlier.

Finally, on the inheritance criterion, JPA allows, but does not require, the concrete-
table strategy, hence it is marked as implementation dependent (Dep). MyBatis supports

44

single inheritance, but may emulate other strategies through some additional mapping
work.

Table 2.2: ORM Frameworks support for each proposed criterion.

Criteria \ Frameworks RAR Cayenne Entity
Framework

JPA 2 MyBatis SQL- Achemy

Coupling Loose No No Depends Yes Yes Yes

External conf. No No Yes Yes Yes No

Mapping Metadata Mapper Yes Yes Yes Yes No Yes

Extract metadata Yes No No No No No

Model Entity class No Yes Yes No No No

Operations No No No No No No

Identity Compound keys No Yes Yes Yes Yes Yes

Table uniqueness Yes Yes Yes Yes Yes Yes

Auto-generation Yes Yes Yes Yes Yes Yes

Counter gen. Yes Yes No Yes Yes Yes

Application gen. No Yes Yes Yes Yes Yes

User assignment Yes Yes Yes Yes Yes Yes

PK as Field(s) Yes Yes Yes Yes Yes Yes

PK as Class No No No Yes Yes No

Foreign
Key

Bidirectional No Yes Yes Yes Emul Yes

Collection update Yes Yes Yes Yes Emul Yes

Fetch config. Yes Yes Yes Yes Yes Yes

Proxy option No No No Yes No Yes

Transparent Assoc. Table Yes Yes Yes Yes Emul Yes

Embed.
Value

Map container Yes Yes Yes Yes Emul Yes

Map aggregated No Yes Yes Yes No No

Inheritance Single-table Yes Yes Yes Yes Yes Yes

Class-table No Yes Yes Yes Emul Yes

Concrete-table No No Yes Dep. Emul Yes

Join class-table No Flex PK Flex Emul Flex

The join of inheritance class tables may be done by PK, or may be flexible if user
defined. JPA allows FK redefinition, but not the mapping of distinct PK in subclasses,
what may bring unexpected problems for some mappings.

Table 2.3 presents a summary of the discussed topics that affect the design of
systems based upon ORM frameworks. The topics were organized by UML element,
such as models, classes, attributes, relationships and inheritance, helping designers to
document their decisions on class models. The information summarized by tables 2.2
and 2.3 relates resources and decisions common to the studied persistence frameworks,
helping with designing and documenting applications, as well as porting application
across distinct ORM frameworks.

45

Table 2.3: Summary of design decisions based upon ORM frameworks.

Domain Level What to observe/question during project design

Model If the framework has a data-model that controls persistence, how does it work with
object-oriented domain models?

Are operations assigned to classes that extend generated classes or domain classes do not
support operations?

Class All domain
classes

Are inheritance to ORM framework classes mandatory?

Is there some dependency to framework classes on domain classes? Can it be decoupled?

If persistent Which table(s) (if data mapper, what SQL statements) are mapped to that class?

Is the identity mapping defined? one or more attributes?

How the identity will be assigned? Will generation parameters for the identity be
necessary? (such as table of ids, sequences, auto-columns...)

If embeddable Is it necessary to distinguish a class as embeddable?

Is it possible to define preferred mapping for attributes?

Is it used as identity for persistent classes? If so, should the class follow specific rules
required by the ORM framework?

Relationships from embeddable values to other domain classes should be avoided, and
may be unsupported according to each framework.

Attribute (persistent) Does it match a database column type or should it be an embeddable value?

If it is part of a composite Identity, does it represent an embeddable value class
containing PK fields or each attribute of the identity is an individual attribute of the
class?

Type parameters such as length and precision were defined? Dates and LOBs may need
specific parametrization. Is the cardinality matching NULL/NOT NULL constraints?

Association
(persistent)

zero/one-
to-many

Should a collection type be defined ? How to deal with element ordering?

Can/Should the fetch configuration be specified?

many-to-
zero/one

Will the relationship attribute be loaded by a proxy?

bidirectio
nal

The collection must have a reverse attribute or collection in the opposite class that
maintains a bidirectional relationship. Is it defined and documented?

to-one The FK that implements the relationship may be a class attribute or may be hidden by
the framework. The relationship may be represented only by a reference to the related
object. Is the relation Attribute-Collection-FK clear and well documented?

many-to-
many

Is a join table clearly defined, with FKs to the tables mapped to the related classes?

Do your ORM framework transparently support Join Tables? In what cases a join table
must be explicitly implemented as an association class?

other Maps and element collections are supported by few frameworks.

Inheritance What strategy will be employed (among those available in the chosen framework) ?

Is a discriminator column necessary? This column is not an attribute of the domain
model, but it is required to map inheritance. Discriminator requirements change from
one framework to another.

Does the persistence framework support classes in an inheritance hierarchy with distinct
Identities (PKs) ?

46

3 ESSENTIAL NOTATION FOR ORM (ENORM)

This chapter presents the Essential Notation for Object-Relational Mapping
(ENORM) and the artifacts related to this notation. ENORM extends the UML class
model, offering a concise set of visual elements specific for ORM designs. These
essential concepts, introduced at chapter 2, reflect persistence patterns of the literature
adopted by distinct ORM frameworks in the market. The goal of ENORM is to facilitate
the design by the clear application of ORM patterns, document mappings with a
platform independent notation, and be a repository for MDD transformations, partial
code generation, and round-trip engineering tools.

This chapter begins presenting the main visual elements, followed by examples
explaining the key features. After a few examples, the meta-model is presented,
followed by an analysis of special cases, known limitations, and a reference, in BNF,
for element naming. The chapter ends by presenting the main features of the modeling
tool, and related notations specialized in persistence.

3.1 Overview

The notation here proposed is a lightweight UML profile, represented by a set of
graphical extensions for class models, encompassing the essential structural concepts of
ORM. ENORM was designed to be easily understood by developers and rich enough
for MDD tools, allowing the specification of the relevant persistence details, but hiding
what can be inferred.

ENORM elements (Figure 3.1) are derived from ORM patterns following the
Domain Model pattern (FOWLER, 2002). Besides, ENORM reflects common practices
of various ORM frameworks, such as activerecord for Ruby (RAR), JPA, and
SQLAlchemy (SA) for Python (BAYER, 2012; DEMICHIEL, 2013; HEINEMEIER
HANSSON, 2012).

A Persistent class (marked with “||”) represents a class implemented as an Active
Record, Data Mapper, or mapped in such a way by a framework. The class is persisted
by a table with the same name; or one or more specified tables. Each property of a
persistent class maps to a column, that can be detailed in the model when necessary.

Associations between persistent classes are implemented with Foreign Keys (FKs)
detailed by join columns and tables. Inheritance can be flat for single table pattern;
vertical, for joined table pattern; or horizontal for the concrete table pattern. Non
persistent classes can be persisted within persistent classes, by associations marked as
embed. A persistent class can have transient properties by using the transient symbol.

47

The specification of ENORM follows the principles bellow:

• Do not Repeat Yourself (DRY): By representing concepts that are the same
together: classes and tables, properties and columns, etc...

• Convention over configuration (CoC): Keep the notation short, and hide what
can be inferred. For example, any association between persistent classes are
persistent; if no PK is specified, use a simple non-meaningful column as PK.

• Keep It Short and Simple (KISS): Do not introduce completely new visual
elements, but decorate existing elements of UML. Use of formatted comment
boxes, or braces, to display stereotype details, as suggested by the UML
specification.

• Models as central artifacts: All the essential mapping information should be
stored at the model, and follow the ENORM meta-model.

• Platform independence: The notation is pattern centric, the majority of the
resources are established ORM patterns in the literature. In a few exceptions,
they represent trends revealed by our survey of chapter 2.

• MDD aimed: The ENORM is a UML profile, stored with XMI, and ready to be
used as input for transformation languages that read UML models.

3.2 A Simple Example

Figure 3.2 shows a simple design for the Accounting patterns (FOWLER, 1996).
Account, Entry, and Transaction are persistent classes, each persisted by tables with the

Figure 3.1: Main visual elements and their meaning.

48

same name. Account has a meaningful PK named number. Entry and Transaction will
also have PKs, but they are not specified (inferred by convention).

Quantity is not persistent and does not correspond to a table. However, each Entry
instance refers to a Quantity with the Embed stereotype. Since the upper multiplicity is
one, quantity association is persisted along the Entry table, by columns amount and unit.
Quantity is similarly embedded by Account.

Finally, the associations between persistent classes are mapped as FKs connecting
the PKs of each table. Entry will have a column referencing account number and a
column referencing the PK of Transaction.

3.3 A not so Simple Example

Database information systems usually refer to centralized databases serving multiple
systems, that must adapt to the existing schema. Often that means a break between
nomenclature used by the system and the database, and a more complicated mapping.

Figure 3.3 introduces the SummaryAccount class, that aggregates accounts
implementing multiple summary accounts (FOWLER, 1996). Each account can be part
of one or more summary accounts, and the entries of the summary was redefined as the
union of all underlying DetailAccount instances. The Unit class now replaces the free

Figure 3.3: Summary account example.

Figure 3.2: Simple Transaction example.

49

text unit property. Figure 3.4 presents the database derived from the model. Several
changes were introduced in the mapping:

1. Account is mapped to two tables: Account and Act_brief. The table Act_brief has an
FK to Account, that is also a PK, and each instance of Account is retrieved by a join.
Account is the main table, because it is the first in the list.

2. Property dtBalance is mapped to column dt_calc on table Act_brief. Mapping
information of a property can be specified using the persistence symbol (||).

3. Quantity now refers to a Unit persisted by the Currency table. When Account
references a Quantity instance, it stores a reference (FK) to the Currency table.

4. Property amount with default SQL precision/scale of (20,2).

5. Account overrides the quantity: amount is persisted by the column value of table
Act_brief; the association end unit is stored by the column unit in table Act_brief, that
references the table Currency. By default, all columns would have been stored along the
primary table Account.

6. The account inheritance tree is persisted with the joined table pattern. Each class has
its own tables, and each PK of the specializations refers to the Account PK. The
discriminator column can assume 'S', for summary accounts, or 'D', for detail accounts.

7-8. Entry refers to Transaction with a column named id_transaction, and refers to
DetailAccount with a column named acct_number. Both relationships are marked as
PK, setting a composite PK of Entry.

9. Account defines the association entries as abstract, therefore it is not persisted.
DetailAccount redefines entries as bidirectional, with an FK, and a concrete association.
The SummaryAccount redefines the association as derived from its components, with

Figure 3.4: Database model of account example.

50

the transient symbol marking that this association should not be stored by an FK
column.

10. The components association is many-to-many, and therefore is mapped by an
association table. The join table specifies that this table is Acct_Comps. By default, it
will have FK columns referring to Account and SummaryAccount.

3.4 ENORM Meta-model

The profile package of UML contains a set of mechanisms providing the ability to
tailor the UML meta-model for different platforms (OMG, 2011b). A profile is mainly
comprised of stereotypes, each of them extending a meta-class of UML, such as classes,
properties, or use cases.

The UML meta-model works as a tree, where each leaf is owned by its parent in a
composite relationship. For instance, the Property is owned by one Class, that is
owned by one Package. Each object has one, and only one, parent owner, or is the
root. Each stereotype can have properties representing scalar values, or other meta-
objects. When defining new meta-classes, they must also belong in the owning tree,
tracking back to the root UML element. This ownership is denoted by making the
association between the stereotype, and this meta-class, a composition.

Backing up the visual notation of ENORM, there is a profile providing compatibility
between ENORM and UML implementations. Figure 3.5 summarizes the stereotypes,
the extended UML elements, meta-classes, and its properties and relationships.

The Persistent stereotype is applicable to a Class, marking this class with the
double bars (||) of Table 3.1. The source property allows the direct definition of one
Table, a reference to an already defined table by TableRef, or a JoinedSource
comprising two or more tables connected by JoinColumn objects. If source is
unspecified, the class is persisted by a table with the same name of the class.

The use of Table or TableRef determines the class that “owns” the table definition,
preventing duplicate specification of tables. This follows the proxy pattern, where the
owner has a composite association with an abstract meta-class, that can be the object
itself (table, column, and so on) or just a reference to an object, owned by some other
stereotype/class (GAMMA et al., 1994).

Following the example of Figure 3.3, the Account class has the Persistent
stereotype applied, with the source property referencing a JoinedSource, because it is
mapped to two joined tables. The JoinedSource will have two Table definitions at the
defines ordered composition, the first being Account, and the second Act_brief. Both
tables are defined by the Account class. The Unit class will have the Persistent
stereotype, with the source directly referencing a Table named Currency. Classes such
as Transaction can have unspecified source, because the table has the same name of
the class.

Properties owned by a persistent class are, by default, persisted, and scalar values
are stored as columns. The ColumnMapping stereotype allows the definition of these
columns, informing column name, if it accept nulls, length, precision, scale, unique
constraint, database type and so on. The column can be owned by a Table, but the table
may be inferred, if the Persistent class does not define a table, or if the class is not

51

persistent. Again, a ColumnDefinition can be a Column owned by the property, or a
ColumnRef proxy that references a Column. A property without mapping will have a
column with an inferred definition from its meta-information (type, multiplicity, etc...).

Figure 3.5: Main elements of the ENORM profile.

52

The Embedded stereotype is applied to association ends, or simple properties,
whose types are not persistent classes. This means that this class is persisted as a
dependent table (if to-many), or embedded in the table (if to-one). Properties of non
persistent classes can have the ColumnMapping stereotype applied, in order to specify
how is its preferred way of being persisted, such as length, precision, and so on. These
definitions will not be owned by a Table.

For example, the dtBalance property of Account will have the ColumnMapping
stereotype with a ColumnRef value, referencing a Column with name dt_calc. This
Column is owned by the Table Act_brief, defined in the mapping of Account. The
property amount, of Quantity class, will have the ColumnMapping stereotype
referencing a Column, with precision of 20, and scale of 2, because Quantity is not
persistent and this column does not exist at any specific table. However, when Quantity
is embedded by Entry, this information is used to know what is the default precision and
scale of this property.

The AssociationMapping stereotype allows the definition of mapping details for
one association, by the application in one of the association ends. The AssociationDef
class allows the definition of fetch strategies, cascade delete, orphan removal policy,
columns used by an order by clause, join columns, and a join table. The JoinColumn
class defines the FK column in the detail side, and optionally the corresponding PK in
the master side (for multiple PK, or ad hoc joins). If enforce is true, there will have a
FK constraint for the join columns. The source, of AssociationDef, is usually defined
on many-to-many situations, to specify the table(s) that implements the relationship.

For example, the class Entry has an association end named transaction, that refers to
the Transaction class, with the AssociationMapping stereotype applied. This defines
an AssociationDef, owning one JoinColumn, that owns a Column named
id_transaction. Notice that if Entry defines the mapping table, the JoinColumn could
own a ColumnRef referencing a Column owned by this table. Another example is the
components association end, that has the AssociationMapping stereotype with an
AssociationDef that owns, by the association source, the Table named Act_Comps.
This table implements the many-to-many relationship.

The PK stereotype marks a property as part of the PK of some persistent class. It can
be applied on association ends, such as transaction and account of Entry, meaning that
the FK columns are also part of the PK. PK can be combined with ColumnMapping,
AssociationMapping and so on. Generated marks a column with generated values.

Horizontal, Flat, and Vertical stereotypes can be applied to a generalization, to
specify which pattern will be used to emulate inheritance on the database. With Flat, all
columns necessary to represent the inheritance tree are stored in the same table. Usually,
the instance type is determined by a discriminator column, that can be defined by
applying the DiscriminatorColumn stereotype at the general class, and filling the
property discriminatorValue for each generalization with the Flat application.

The Vertical stereotype stores each class along its properties in a distinct table, that
is by default joined by a common PK. It is possible to specify what columns perform the
join by the joinCols property. It is also possible to define a discriminator. Finally, the
Horizontal stereotype stores each concrete class independently, and the origin table
determines the type.

53

In the example of Figure 3.3, the generalizations connecting Account and its
specializations have the Vertical stereotype applied. The generalization from
SummaryAcount has the discriminatorValue equals to “S”, and the generalization from
DetailAccount has the value of “D”. We could have defined the discriminator column
by applying the DiscriminatorColumn stereotype to Account, detailing the column
property. If Account was not abstract, we could had specified the discriminator value of
Account too.

A class may specify an inheritance pattern, even when it inherits from a non
persistent class. In this situation (and only this), the properties and associations of the
general class will be persisted along the persistent specializations. The Overrides
stereotype allows a class to override such properties (AttributeOverride) and
associations (AssociationOverride), defining the columns, join columns, join tables,
among other details.

A class may also override properties and associations of embedded/dependent
classes. The tricky part here is that one class can embeds a class, that embeds another
class. The property path of embedded overrides is represented by the ordered
association propertyPath.

In the example of Figure 3.3, the Overrides stereotype was applied on the Account
class, containing one AttributeOverride and one AssociationOverride. The override
with the path “balance.amount” refers to the AttributeOverride with the sequence
{Account.balance, Quantity.amount} as propertyPath. This allows the override to
differentiate when the class has more than one relationship to the same class.

The Enumerated stereotype allows the definition of how enumerations are mapped
(STRING or ORDINAL values). The Transient stereotype marks a property, or
association end, to be ignored on persistence mapping.

3.5 Special Mapping Cases

This section presents a series of special cases that exemplify other applications of
the notation supported by the profile presented by section 3.4.

3.5.1 Embedded Values

Class embedding denotes a class from which its instances are persisted embedded at
a related class table. Only the instances referenced by persistent classes with an embed
association can be persisted; and will be persisted only when the owning class is
persisted. This kind of relationship suits well to aggregations, compositions and classes
that behave like a database domain.

The embedding is represented in the relationship by the <<embed>> annotation, just
after the association end pointing the embedded class. On Figure 3.2, the Account class
is persistent, and related to the Quantity class, that is not persistent. The embedded
relationship allows the information of Quantity to be persisted along with Account
records.

The embedding on ENORM is a stereotype for the association end. The class do not
need to be marked as embeddable, but it will implicitly be mapped that way, according
to the framework used for persistence.

54

Typically, the attributes of Quantity became attributes of the table(s) of Account
(Act_brief, at the example), such as value and unit. However, the nullable characteristic
of each column depends on the relationship cardinality. An Account may not have a
balance, and therefore both columns must allow nulls on the database, even if amount
has minimal cardinality of one. Notice that a Quantity not referenced by an Account, or
an Entry, will not be persisted.

One class may be embedded by various persistent classes, and that is the usual
scenario. Figure 3.6 shows classes A, B and C, where both A and C embed B. A and C
are responsible of persisting related B instances, and therefore their tables will have the
columns necessary to persist B. Individual instances of B will be persisted on A, C, or
will be dumped, according to the references held by either A or C. If an instance, such
as b1, is referenced by more than one entity, and it is persisted, there is no guarantee
that, when restored, the same instance (in memory terms) of b1 will be referenced by a1
and c1. Thus, the implementation should ensure an adequate equality operation(s) (such
as overriding the Java equals method).

A non-persistent class may reference a persistent class without being embedded.
Instances of this class will not be persisted, even when related to instances of this
persistent class. However, they can be persisted if embedded by another class.

For instance, take the classes A, B, and C of Figure 3.7. A and C are persistent, A is
associated to B, B to C, and A embeds B. An instance b2 of B referencing c2, but
unreferenced by any A, will not be persisted. An instance b4 of B, referenced by an
instance a4 of A, will be persisted. An instance b1 of B, referenced by an instance a1 of
A, that references an instance c1 of C, will be persisted, and also the reference to C. This
will inevitability link A and C tables in the database. If the cardinality of A to B is one,
and B to C is also one, A will be persisted in a table that has a foreign key (ID_C) to C.

Figure 3.6: A class embedded by two persistent classes.

55

This is what happens between the classes Entry, Quantity, and Unit of Figure 3.3.
The table Entry, that stores the embedded Quantity, has a FK to the table Currency, that
stores Unit, as shown by Figure 3.4.

Figure 3.7: Embedded classes referencing persistent classes.

Figure 3.8: Transitivity of embedment.

56

Embedding is transitive, as in Figure 3.8. If class A is persistent, but classes B and C
are not, and A embeds B that embeds C, then instances of A such as a1 will persist
instances of B, such as b1, and any referenced instance of C, such as c1.

A persistent class can have more than one embedding association to the same class.
The modeler can use the mapping override to give meaningful names to the columns
that persist the object. Otherwise, the column names will depend of the ORM tool, that
usually concatenates the association end name with each property.

The embedding association can have cardinality greater than one, in which case an
exclusive table will be necessary to persist the data in this association (see Figure 2.13
in the Embedded values support section). Figure 3.9 shows an example of embedding
association with collections for the example of Figure 3.7. The table AB exclusively
stores zero or more B elements referenced by A. If the instance a1 references b1, and b1
references c1, then b1 will be stored as an AB record referencing a1 and c1.

The table AB, by default, does not have a PK, because only entities have identities.
However, if the embedded property is an ordered collection, AB will have an order
column, forming a composite PK with ID_A, as exemplified by Figure 3.10. The
ordering can be toggled by the UML attribute isOrdered. Figure 3.10 also presents a
variation of Figure 3.6, but with collections of B elements. Each collection is persisted
by an exclusive table, AB for B related to A, and CB for ordered B related to C.

Embedding a persistent class is not allowed. If class B is embedded it must not be
persistent. Also, the association to an embedded class must be navigable, and the
reverse end is usually not navigable, because most ORM frameworks will not support
this navigation.

Figure 3.9: Using <<Embed>> for Dependent mapping.

57

When embedding two one-to-many associations to the same class, the modeler may
want to specify the details of the collection table, such as the table name. The
AssociationMapping stereotype can be used with Embedded to specify the table
(actually, a DataSource). Figure 3.11 shows an example of this application where A
has two one-to-many embedded associations to B, specifying the collection table AB1
for the association end b1, and AB2 for the association end b2.

Nevertheless, embedded collections should be avoided when possible, and replaced
by first class entities. They are not easy to understand, although ORM tools offer
resources for this kind of mapping.

3.5.2 Maps

UML allows the specification of qualified associations, that represents partitions in
the association between two classes. When the qualified property has an upper value of
one, the association represents what is commonly referred as Map or Dictionary by OO
languages (OMG, 2011b).

Figure 3.12 presents an example where the association end of Account is a map with
a <Transaction, Entry> form, where the qualified variable of type Transaction is the
key. The Map stereotype allows the specification that the key is, in fact, the transaction
property of Entry, what is common on ORM. The goal is that, when the user adds a pair
<tx, ey> to the map, it will associate ey both with the account and the tx transaction.

Figure 3.10: Two collection-embedments example.

Figure 3.11: Two dependent collections to the same class.

58

The property key can also be user defined, derived from a complex operation. In
such cases, it can be a read-only map. Qualified associations without a property key are
also allowed. In the example, the map would be persisted in a separate many-to-many
table, instead of using the association between entries and transactions. Qualifier
properties can also assume non-persistent and scalar types.

3.5.3 Inheritance

The combination of inheritance strategies, and persistence, unlocks some special
situations with specific mappings by the ORM tools. Figure 3.13 presents three
inheritance situations where the super class did not have a mapping table.

In the first model, all three classes are marked as persistent, but the super class A is
abstract. The horizontal inheritance states that only concrete classes will have mapped
classes, and therefore there will be no need for a table that persists A instances.

In the second and third models there are instances of A, but A is not persistent, and
therefore did not have any table. However, the resulting tables persisting the
specializations are distinct: At the second model, the horizontal inheritance makes the
property p persistent at the persistent subclasses of A, and therefore tables B and C will
have a column persisting p. The third model has no defined strategy, meaning that p
should be ignored for persistence at the subclasses.

Figure 3.14 presents other cases of horizontal inheritance with non persistent parent,
but this time with an association to a persistent class. Instances of A are not persistent,
and therefore the association referencing C is transient. However, instances of B are
persistent, and should persist the inherited associations of A, because of the horizontal
inheritance.

In the left model of the figure, B references zero-or-one C instances by inheritance,
therefore the table of B will have a FK pointing to C. However, in the right model, B

Figure 3.12: Map with key reference.

Figure 3.13: Three different inheritance examples without parent table.

59

references zero-or-many C instances. This could be persisted by a FK from C to B, but
that would require a bidirectional relationship. The preferred solution to keep the
unidirectional association is to have a third table (B_C) that stores, like a many-to-many
relationship, what C objects are related to B. That table would have as PK the same PK
of C, to enforce that a C can have only one B.

Bidirectional relationships variations of the Figure 3.14 are usually not well
supported by ORM tools, because they restrict associations to transient classes. The
modeler may want to create a direct relationship between B and C, overriding the
original relationship. This is similar to what happens in the example of Figure 3.3,
where the one directional association between Account and Entry was overwritten by
the bidirectional association DetailAccount and Entry.

The inheritance symbol may be used at the end of the relationship, as exemplified at
the example of Figure 3.15. The discriminator column should be displayed near the
arrows, and only one time for the hierarchy. The discriminator values are represented
near the end representing the class. If the discriminator applies to the general class, it
should be placed after the column definition. For example, if Party was not abstract, and
its discriminator was “Y”, then the discriminator definition would be
PARTY_TYPE=“Y”.

3.5.4 Auto-generated Columns

Auto-generated PKs are very common at RDBs, and a default behavior for some
ORM frameworks, such as RAR. Generated properties are not distinguished by ENORM
notation, but can be specified at the tool applying the Generated stereotype at the
property. A class with no explicit PK will have an auto-generated PK.

Figure 3.14: Inherited association with persistent class.

Figure 3.15: Alternative way to express mapped specializations with ENORM.

60

The Generated allows the specification of the strategy of generation and an
optional generator. The default strategy AUTO means that the strategy of the target
platform should be used. This usually is the IDENTITY, that does not require the
specification of a generator.

The SEQUENCE and TABLE strategies require the specification of the name of the
generator, that can refer to a generator defined at the model, or at the database. To
specify a Generator at the model, a class must have the Generators stereotype
applied, specifying one or more SequenceGenerator or TableGenerator instances.

Sequence generators and table generators can be shared by more than one column,
and at distinct tables. The TableGenerator specifies a Table, and one of the columns
of this table should be the valueColumn, that holds the last generated value. In order to
avoid visual pollution, information about column generation is not planned to be
displayed by ENORM diagrams.

3.5.5 Constraints and Indexes

When it is necessary to specify every detail of the database, ENORM allows the
specification of constraints and indexes, by specifying the definitions of a Table.
Figure 3.17 shows the meta-model elements of ENORM that stores the creation of
Definition objects.

Figure 3.16: ENORM profile model of generators.

Figure 3.17: Profile model of table definitions, for indexes and constraints.

61

A Definition have a type, that specify if it is an index, a unique index, a check
constraint, a FK, or a PK. The Definition may have a name, that identifies it at the
database, and a body, if the user wants to specify the command that creates the
constraint.

The Definition is also associated with an ordered list of columns that it affects. For
instance, if we want to define a unique index, for an alternate key of Person, using RG
and authority, we create a Definition on the Table Persons, referencing the columns
RG and authority. Notice that for using the Definition, it is necessary to define the
Table, and the Column of each referenced property, using the ColumnMapping
stereotype, as shows the Figure 3.18.

The notation used at Figure 3.18 for the unique Definition is a suggestion, that is not
covered by the ENORM visual notation. Most ORM frameworks did not support
advanced definition of constraints, but SA allows. If used, the title should be the type of
Definition, and the contents are the list of columns or the body.

Notice that an AssociationDef can enforce this FK if it have one or more
JoinColumn objects, each referencing one inverseColumn that is part of the PK, or
part of a unique index. At the example, Phone references Person by two columns
named rg and auth, and inverse columns pointing to the unique index columns, instead
of pointing to the implicit PK of Person. A FK Definition is not necessary for Phone.

FK and PK definitions should be avoided. The preferred way of specifying FKs is
by creating JoinColumn objects at the AssociationDef meta-object. For PKs, the
application of the PK stereotype at the properties or association ends is the preferred
way of specifying the constraint. However, ENORM allows the specification of tables
that are not visible as classes, such as tables that implement many-to-many associations
and JoinedSource, and for these cases the Definition is the only way to
specify/customize the constraints. Moreover, unique constraints with only one column,
can be specified by the unique property of Column, but unique constraints with many
columns can only be specified with Definition objects.

3.6 Limitations

This section enumerates some known limitations of ENORM.

3.6.1 Flexible Data Sources

Currently, the profile only supports the mapping of one class, to many tables, if each
table has a one-to-one relationship to the first table. This is an easy way to specify the
data source, without caring about checking how a complex mapping would be persisted.
A more flexible rule for data sources would be equivalent to a side effect free updatable
view (DAYAL and BERNSTEIN, 1982).

Figure 3.18: Definition example with unique index constraint definition.

62

This, however, does not invalidate the current ENORM meta-model. The
JoinedSource could be extended, in the future, with the definition of the Query that
would retrieve the object instance. The Figure 3.19 shows an example of these meta-
classes, but the Query would have to map all the dynamic operations of the data
manipulation language of SQL. This Query would reference the tables already defined
in the model, or defined by the JoinedSource. This goes beyond the current scope of
ENORM.

3.6.2 Qualified Associations

Qualified associations can have more than one qualifier properties. This kind of
construct would need keys with tuples of objects, what can be quite complicated to
implement using ORM tools. Qualified properties, with upper cardinality over one, are a
special case, representing a map of collection elements, where each key can have more
than one associated value.

3.6.3 Multiple Inheritance, Multiple Types

The profile does not include resources to deal with the persistent specialization of
more than one persistent class, and the resulting mapping would be unknown. However,
a class can specialize any number of other classes, as long as it only inherits persistent
information from one tree branch. Single relation with multiple type attributes
(ELMASRI and NAVATHE, 2003) was not included in ENORM.

3.6.4 Association Class and “n-ary”

The profile does not have any specific mapping for the Association Class element
of UML, it is as any other class. ENORM does not yet support persistent associations
with more than two classes, common on ER conceptual models. These associations
must be separated on binary associations.

3.6.5 Generics and Template Parameters

Mechanisms such as generics can be specified using template parameters on UML,
and they are useful for strong typed languages, such as Java and C#. We did not identify
any additional extension necessary to the use of template parameters in that context.
However, certain combinations are difficult to model, and implement, using the studied
ORM tools.

Figure 3.20 has an example of template parameter where the class Owner is
parametrized with a parameter named E that identifies what kind of Property this
Owner has; Property also has a parameter E that identifies what kind of Owner this has.
Then we created two persistent classes that specializes Owner to own properties of
persistent specializations of Property: OwnerA owns PropertyA, and OwnerB owns
PropertyB. This is denoted by the binding of E at the generalization.

Figure 3.19: A sketch of meta-model with flexible data sources.

63

As a general rule, the parametrized class cannot be persistent if the parameter affects
the type of its relationships. For instance, if Owner is persistent, and the relationship
owner-properties is defined in function of the binding of E at each class, the persistence
manager will not know for sure what subclasses of Property and Owner exist, in order
to establish FKs between the classes.

To exemplify the above problem using Java, the properties of the Owner, and the
owner of the Property, could both be implemented using generic parameters:

class Owner<E extends Property>...

Set<E> properties; // what E associations are persistent?

class Property<E extends Owner> …

E owner; // what E associations are persistent?

At the example, Owner is persistent but abstract, and Property is not persistent. An
instance of Property will not be persisted, only of its specializations. Nevertheless, the
owner-properties relationship of Property is persistent at the subclasses, because its
subclasses declare a horizontal specialization.

However, each pair (A-A, B-B) of subclasses overrides the owner-properties
relationship, to explicitly tells the ORM framework what combinations are possible. For
instance, PropertyTypeB will have a FK to OwnerB, and will not need a FK to OwnerA.

In practice, it is still difficult to use template parameters with the UML notation. For
instance, it is not clear how the notation, for a relationship bound to parameter E, would
look like, simply because template parameters are much more flexible than Java
Generics. It is possible to specify anything as constraint, not only class types, and
therefore a relationship dependent to E could have an indefinite destination.

3.7 ENORM Notation Reference

UML defines the notation, of the textual elements at the model, using a variation of
the BNF notation. With ENORM, we extended these textual notations, describing
information about the ORM mappings using the EBNF meta-language (ISO, 1996).
Figure 3.21 lists the syntax definitions to describe classes, properties, associations ends,
discriminators, and the mapping overrides. The EBNF here described omits the
concatenation operation (commas).

Figure 3.20: Template parameter example.

64

The table, catalog, schema, column_name, column_type, and discr_value non-
terminals are simple identifiers. The non-terminals ending with “_uml” are defined by
the UML specification (OMG, 2011b). The uppercase identifiers represent the terminals
introduced by ENORM.

The underlined non-terminals define the notation of the non-trivial concepts
represented by ENORM at the models:

• class_def: The notation for naming a class.

• property_def: The notation for naming a property. Notice that property_uml is
itself an UML non-terminal, containing information such as type and
multiplicity.

• assoc_end_def: The notation for naming association ends.

• overrides: The notation for displaying the list of overrides at a comment box.
Notice that overrides usually refer to properties, and associations, defined by
other classes.

Figure 3.21: EBNF specification for ENORM labels.

class_def =
class_uml [PERSISTENT [datasource]];

datasource =
table_def ["," datasource];

table_def =
[catalog"."][schema"."]table;

property_def =
[PK] property_uml [PERSISTENT property_mapping | TRANSIENT];

property_mapping =
column_ref[":"column_def];

column_ref=
[table_def"."]column_name;

column_def=
[column_type]["("length")"]{"{"column_modifiers"}"};

length = number | number","number;
assoc_end_def =

[PK][EMBED] assoc_end_uml [TRANSIENT | assoc_mapping];
assoc_mapping = "{" assoc_table | join_columns "}";
assoc_table = ("joinTable=" | "Table=") table_def;
join_columns =

"joinColumns=" (
column_ref{","column_ref} |
ext_join_column{","ext_join_column});

ext_join_column =
"("column_ref","column_ref")";

overrides = override{"\n"override};
override =

property_path PERSISTENT [PK] (property_mapping | join_columns);
property_path = identifier["."property_path];
column_modifiers =

"unique"| "non-update" | "non-insert" | "read-only";
discriminator =

property_mapping ["="discr_value];
EMBED = "«Embed»";
TRANSIENT = "ϴ";
PERSISTENT = "||";
PK = "«PK»";

65

• discriminator: The notation to display the discriminator column, at the
specialization end of the general class.

Using EBNF, the terminal symbols are specified between quotes, and the non
terminal symbols are specified by rules after the equal symbol. The rules are a
concatenation of elements, or definition lists separated by pipes. Parenthesis are used to
group elements, brackets to delimit optional elements, and braces to delimit elements
that can repeat zero or more times.

For example, the class_def non-terminal has a rule that concatenates the UML class
name (class_uml), with the optional terminal PERSISTENT (when the class is
persistent). If the class is persistent, the class_def can concatenate the non-terminal
datasource. The datasource is defined at a recursive rule, that has at least one table_def.

Figure 3.22 shows the application of the non-terminal elements at the model. Notice
that this example uses the alternative way to display inheritance, between the center and
left classes, as described at section 3.5.3. The notational elements of UML that are not
affected by ENORM, such as operations and association names, were omitted.

3.8 Modeling Tool

The modeling tool was developed as a plugin for Eclipse, using open source
components from the Eclipse Platform (ECLIPSE FOUNDATION, 2012a). The most
important components were:

• The UML2 project, a framework intended to implement the specification of
UML 2 as an Eclipse Modeling Framework (EMF) meta-model. The UML2
project provides a model to create UML and UML profiles, and store them using
XMI (OMG, 2007). However, it does not include the creation of UML diagrams.

• The Graphical Editing Framework (GEF) of Eclipse, a framework that provides
support for creating modeling tools, such as UML editors, supporting figure
manipulation, figure connections, layers, and viewport/scrolling control
(ECLIPSE FOUNDATION, 2012b).

The tool takes the responsibility to abstract the ENORM meta-model from the user,
and draw the diagrams using the notation elements of ENORM. Figure 3.23 presents a
screen capture highlighting the main windows of the tool:

1. The package explorer is an eclipse window that lists the model files. The suml
files contains the visual information about the models, and the uml files the
structural information, including the ENORM profile application.

Figure 3.22: Visual distribution of the ENORM non-terminals.

66

2. The outline window shows the main elements of the diagram in a tree view.

3. The palette toolbar lists the elements available to the user draw the model:
classes, interfaces, associations, properties, inheritance, implementation,
attribute overrides, and operations. Each component in the palette has a slide,
that allows the user to choose other components, such as persistent classes,
embedded associations, and association overrides.

4. The drawing canvas is the most important window, where the user draws the
model, and select elements for editing. At the above example, the Account class
is selected.

5. The properties window is where the user can edit the details of the selected
component in the canvas. For instance, because the Account class has a data
source defined as Join, the window knows that should list the tables defined in
the join. The proxies are therefore handled in a transparent way for the user.

The tool is distributed as open source, and can be downloaded from our sourceforge
project1.

3.8.1 Modeling Tool for the Experiments

For the experiments detailed at chapter 5, a specific version of the tool was
employed, capable of editing relational and UML class models. This tool is not a plugin,
but Rich Client Platform (RCP) available as a Java Web Start application.

The architecture of the experimental tool is summarized at Figure 3.24. The Java
Web Start allows the download and execution of Java applications, with one click on
the browser, only requiring the Java Runtime Enviroment installed in the client machine

1 http://eorm.sourceforge.net/

Figure 3.23: Modeling tool screen shot.

67

(ORACLE, 2014). The experimental modeling tool also communicates with a Java
Servlet that manages the experiment.

Each step of the experiment, and what modeling language should be used by the
user, is managed by the tool. The models, and all data about the experiment, are
uploaded to the Servlet after the experiment is completed.

3.8.2 Future Steps

The tool focus until now was to allow the modeling using ENORM.
Transformations and model checking were left out of the tool until this moment. The
ideal modeling tool would be able to implement a round-trip engineering, synchronizing
code and models, respecting what is produced in one, or other artifact (Figure 3.25).

The idea is to create bidirectional transformations for the three studied platforms at
chapter 4 (JPA, RAR, and SA). These transformations would use a mechanism, such as
Symmetric Lenses or Delta Based Transformations, to transform models to code, and
back again (DISKIN, XIONG and CZARNECKI, 2010; HOFMANN, PIERCE and
WAGNER, 2011).

Figure 3.24: Experimental tool architecture.

Figure 3.25: MDD scenario for ENORM models.

68

Because this area is a separate research topic, presenting several open research
questions (BORK et al., 2008), we decided to let this for future work, instead of using
established transformation languages, that did not yet cover bidirectional
transformations, such as QVT and ATL (JOUAULT et al., 2006; OMG, 2011a).

The Platform Independent Models (PIM) are transformed, with the aid of Platform
Specific Information (PSI), to the Platform Specific Model (PSM). The PSM is a model,
but not a diagram, being the Abstract Syntax Tree (AST) of the destination code. A
transformation takes PIM elements, that are visualized as diagrams, and transforms into
PSM elements, that are visualized as code.

Both relational and class models are subsets of an ENORM model, and therefore
function as views. All UML can be specified with ENORM, because ENORM is UML
with an applied profile, but not all databases can be specified using ENORM (for
instance, stored procedures cannot be expressed by ENORM). However, we assume that
what cannot be represented, is part of PSI.

Therefore, what takes from the ENORM model to the PSM, including database
stored procedures, are these specific information, that can be hard coded by
transformations, the result of specific profiles informing the user preferences, or the
PSM itself. Using the PSM, the reverse transformation can read the changes performed
by the developer at the code, and use this information for the following transformations.

3.9 Other Class Models and Persistence Extensions

This section briefly describes two relevant approaches to the problem of persistence
modeling and object-relational mapping. The first is a profile focusing in extending
UML to draw ER/Relational database models and the second is a proposal of the Object
Management Group (OMG) to standardize UML extensions to several persistence
medias, including a traceability support between specific concepts and requirements.

3.9.1 A UML Profile for Data Modeling

The UML Profile for Data Modeling was proposed to fill the absence of a data
model diagram on UML. It is a profile, intended to be used by class diagrams, to
emulate concepts common on database modeling tools, such as tables, PKs, foreign
keys, indexes, and views. The profile also includes support to model other persistent
mechanisms, such as files and XML (AMBLER, HARTFORD and RUECKERT,
2003).

The profile allows three levels of abstraction: Logical, Physical, and Conceptual
data models, following the ANSI standard for database design (AMERICAN
NATIONAL STANDARDS INSTITUTE, 1975). When creating a new data model, the
designer will choose a model type according to these levels. The design of the software
domain is done with separated class models, with no extensions.

Several stereotypes were defined, according to the abstraction level, to specify
classes as tables, views, or indexes; properties as columns, foreign keys, PKs, or
alternate keys; and associations as generalizations, or identifying/not-identifying, to
name a few. The notation also covers triggers, access restrictions, and stored
procedures, using OCL when necessary.

69

Figure 3.26 is an example of the profile in use, for a physical data model
representing a RDB schema. The diagram describes three tables and a view of the
database, with PKs, FKs, alternate keys (AKs), indexes, and database column type
information. It is important to observe that the diagram does not show how the tables
are related to the application classes that represent the domain.

Figure 3.26: UML Profile for data modeling example (AMBLER, HARTFORD and
RUECKERT, 2003).

Models with this notation can be used as input for MDD transformations, generating
SQL scripts to create/maintain a database. A tool was developed with this objective
(HARTFORD, 2004).

This profile, however, does not deal with the mapping between OO classes and RDB
tables. It is not intended to ORM, but as an alternative to use UML notation for database
design, with a profile compatible UML design tool.

3.9.2 Information Management Meta-model (IMM)

The Information Management Meta-model (IMM) is an ongoing effort of OMG to
bridge the gap between the UML, RDBs, and XML modeling. The IMM approach
consists in the standardization of UML profiles, and transformations, to represent
persistence using UML. It encompasses relational database design, entity-relationship
models, XML Schemas, LDAP models, and a traceability model to manage the
interoperability between these meta-models (OMG, 2005, 2012).

The IMM is still a request for proposal, however the modeling approach is similar to
the UML profile of Ambler, by creating separated models using consolidated notations
adapted to the UML meta-model. According to the proposal, when creating ER and
relational models, the design decisions will be traced to requirements, and then used to
generate code for the system. How exactly this traceability and code generation will
work is not yet clear, but the IMM does not include an effort to model concepts
together. Database models and class models are separated unconnected models.

70

By using separated models, even if all traceability is registered, the connection
between concepts will be hidden from the stakeholders. ENORM follows an opposite
path, by exploring the synergy of modeling the concepts together. The scope of IMM is
also much more generic, because it encompasses all possible ways of representing
RDBs, plus other persistent medias. The scope of ENORM is specific to relational
database mapping patterns, following the domain logic described by the Domain Model
pattern.

71

4 ENORM IN PRACTICE: APPLICATION EXAMPLES

This chapter discusses the implementation aspects of systems, designed with
ENORM models, using three different ORM frameworks, at three distinct platforms:
JPA, SA, and RAR. Chapter 2 surveyed the ORM tools with a pattern approach, and
Chapter 3 presented our notation to represent these patterns, in the context of the
surveyed tools. At this chapter, we explore the challenges and differences on mapping
from ENORM models to the distinct platforms and ORM tools.

Four ENORM domain models, based on analysis patterns, are presented, and at each
case, we point out the most important differences, when implementing each model on
the three distinct platforms. At the end of the chapter we present a summary of
guidelines to developers, highlighting the difficult points in the context of MDD.

4.1 ENORM and ORM Frameworks

The way JPA, SA, and RAR implements each ORM pattern is distinct. AR separates
database definition on migration files, apart from class and mapping definitions, that are
independent from the migrations. JPA, on the other hand, infers much of the database
structure from annotations placed before each class (or XML), but does not have a
central place where the database is defined. In the middle ground, SA allows the
definition of tables, classes, and its mappings separately (classical) or together
(declarative), but the table definitions are clearly separated at run time.

Each example implementation, presented at this chapter, is one among various
possible implementations. They represent optimal implementations, for a certain
version, at a certain configuration, within a specific platform. They capture limitations
of each tool that are specific within these constraints.

The JPA examples were developed with Hibernate version 4.2.8 and Java JDK 1.7.
The mapping was executed using annotations at the code, and only JPA annotations. We
could had used specific hibernate annotations, XML instead of annotations, or other
JPA implementations such as EclipseLink.

The SA examples were developed using the classical mapping, that separates the
instantiation of classes, tables, and mappings. SA also has another way to express the
mappings, by the use of the declarative mode, where all persistent classes extend a Base
class. But we found the classical mapping more interesting to compare with the other
two frameworks. The version of Python was 2.7.5, and the SA version was 0.8.2.

The RAR examples were implemented with Ruby version 1.9.3, ActiveRecord
version 3.2.14, and composite_primary_keys version 5.0.13, this last being an

72

independent modification, to add support to composite keys (DR NIC WILLIAMS and
CHARLIE SAVAGE, 2013). Also, migrations files were used to create the database.
The projects were created using the Ruby on Rails framework.

The database used by the examples was the PostgreSQL version 9.2. The database
creation was performed by the ORM tools, by setting options to create the database
from the mappings.

4.2 Party Pattern for Accountability

The concept of accountability applies when a person, or organization, is responsible
for another. This first example is a model for the abstract concept of Party, a pattern
described by Fowler, defining a super class that abstracts the common attributes of
person and organization (FOWLER, 1996).

The model of Figure 4.1 presents the Party pattern as a class with a one-to-many
relationship to Telephone, and one-to-zero/one Address and Email. For the persistence,
we decided to use the embedded classes solution where possible, reducing the number
of tables. Classes that represents entities such as Person, Company, and Telephone are
persistent (represented with the || sign), Address and Email are embedded. Telephone is
persisted by table TELEPHONES, and Party by table PARTIES.

The Party hierarchy has no PK specified by the model, meaning it should not use a
meaningful PK. The class that represents the organization is named Company. The
Telephone class has two properties marked as PK, area and number, what configures a
composite key.

Figure 4.1: Party pattern designed with ENORM.

73

The inheritance of Party to Person, and Company, is implemented by the Flat
strategy, meaning that all three classes will be persisted at the same table. The
PARTY_TYPE column is the discriminator that assumes the value P for Person, and C
for Company. Party is abstract, therefore has no discriminator value.

Regarding the stereotypes, all persistent classes will have the Persistent stereotype
applied. The class Party will have the DiscriminatorColumn applied, defining the
column used for discrimination. Each generalization relationship aiming Party will
have the Flat stereotype applied, with a discriminatorValue (P or C).

The properties can have complementary specification of database information,
specified using the ColumnMapping stereotype, represented by the persistence symbol
(||). For example, city has length of 30, state length of 2, and email length of 50; but
address has no length specified.

The association ends email and address will have the Embedded stereotype. The
association between Telephone and Party have no stereotype application, because
associations between persistent classes are already persistent.

4.2.1 Mapping Persistent class Telephone

The following subsections present the mappings for each studied platform.

4.2.1.1 Using JPA
With JPA, persistent classes are those annotated with @Entity. Persistent FK

associations are usually annotated using @ManyToOne at the side that owns the FK,
and @OneToMany at the side that is referenced by the FK. Only the navigable sides
have association mappings.

The Telephone class is annotated with @Entity, that has a parameter to specify the
table name. All properties are mapped to columns automatically, but it is necessary to
inform the length, by using the @Column annotation, at the instance variables that
represent each property. The association end to Party is annotated by @ManyToOne.

The tricky part of the mapping is the definition of the composite PK, requiring a
separated class just to hold the keys. Each property that is part of the key is annotated
by @Id, and the Telephone class is annotated by @IdClass, pointing out the PK class.
Here is the code fragment with the Telephone class:

@Entity @Table(name="TELEPHONES") @IdClass(TelephonePK.class) public class Telephone{
 @Id @Column(length=5)private int area;
 @Id @Column(length=8)private int number;
 @ManyToOne(optional=false) private Party party;
 //methods...(get/set)
}
class TelephonePK implements Serializable{
 private int area, number;
 //methods... (get/set/equals/hash)

4.2.1.2 Using SqlAlchemy
We have to declare the Telephone class, instantiate a Table mapping, and instantiate

a mapper connecting the class and the table. The table is composed of column instances,
informing database type, primary and foreign key constraints, and any other information

74

necessary to define the table. Bidirectional associations are declared at the many side of
the mapper, but all FKs are declared at the table instance:

Telephone_table = Table('Telephones', metadata,
Column('area',Integer(5), primary_key = True, autoincrement = False),
Column('number', Integer(8), primary_key = True, autoincrement = False),
Column('party_id', Integer,
ForeignKey('Parties.id'))

)
class Telephone(object):
 #constructor/get/set methods...
TelephoneMapper = mapper(Telephone, Telephone_table)

4.2.1.3 Using ActiveRecord of Ruby
RAR have a separated module that deals with the definition of the database, by

extending the Migration class. Each migration may define a change in database, or a
pair of up/down sections, with instructions for the application of the migration, and its
rollback. The developer can use RAR without using migrations, because RAR will not
read the migrations to make the mappings, differently from SA that uses table objects to
understand the mappings:

class CreateTelephone < ActiveRecord::Migration
 def up
 create_table :TELEPHONES, {:id => false} do |t|
 t.decimal :area, :precision=>5, :null => false
 t.decimal :number, :precision=>8, :null => false
 t.references :party, :null => false
 end
 execute 'ALTER TABLE "TELEPHONES" ADD PRIMARY KEY (area, number);'
 end

 def down
 drop_table :TELEPHONES
 end
end

The CreateTelephone migration creates a table named TELEPHONES, without
default PK (id=>false). By default, RAR migrations would create a PK named id, with
auto increment. We have to declare each column, followed by the precision specified at
the ENORM model. The FK column is declared using the t.references type, with the
name of the destination class. Ruby will create a column named <class name>_id
referencing the PARTIES table, but it did not create FK constraints. Because composite
keys are not supported, we have to specify an extra SQL command to create the PK
constraint. This “execute” command is RDB vendor dependent.

RAR persistent classes extends the ActiveRecord::Base class. Most of the mapping is
available by properties of the Base class, such as the table name (table_name). The
problem here is that RAR classes also do not support composite PKs. A solution to this
problem is to use the optional composite_primary_keys package for RAR, that fixes this
limitation, offering the primary_keys list:

class Telephone < ActiveRecord::Base
 self.table_name="TELEPHONES" #the default in RAR is plural, but lowercase
 self . primary_keys = [:area, :number]
 belongs_to :party, :inverse_of=>:telephones

The primary_keys declares area and number as the PK. The belongs_to modifier
declares party as a reference to the Party class, with inverse relationship telephones,
thus implementing the bidirectional relationship. RAR associations, based on FK

75

pattern, are mainly mapped using belongs_to for one/many-to-one associations, and
has-many for one-to-many associations.

4.2.2 Embedded classes

The following subsections present the mappings for each studied platform.

4.2.2.1 Using JPA
The embeddable classes of JPA must be annotated with @Embeddable. The

attributes can have column definitions, such as the length, that are used when
embedding the class:

@Embeddable public class Address {
private String address;
@Column(length=30) private String city;
@Column(length=2) private String state;
//methods... (get/set/equals/hash/...)

4.2.2.2 Using SqlAlchemy
The embedded classes do not need to be annotated, all they need is to implement the

composite_values method. Any configuration is done by the mapper instance of the
embedding class:

class Address(object):
 def __init__(self, address, city, state): #constructor
 self.setAddress(address)
 self.setCity(city)
 self.setState(state)
 def __composite_values__(self):
 return self.address, self.city, self.state

4.2.2.3 Using ActiveRecord of Ruby
Using RAR, the embedded classes do not need to be annotated, or modified. Any

configuration is done by the persistent class that embeds the class. In the example
bellow, Address has his three properties and a constructor. Notice that embedded
instances must be immutable on RAR, so every attribute is declared to have only public
getters by the attr_reader module method:

class Address
 attr_reader :address, :city, :state
 def initialize(address, city, state)
 @address, @city, @state = address, city, state
 end
end

4.2.3 Party, Person, Company, and Flat inheritance

The following subsections present the mappings for each studied platform.

4.2.3.1 Using JPA
The Party abstract class is defined as an @Entity, and the @Inheritance annotation

defines the mapping strategy, in our case Flat is Single_Table. Following our model, we
also define the @DiscriminatorColumn as PARTY_TYPE:

@Entity @Table(name="PARTIES") @Inheritance(strategy=SINGLE_TABLE)
@DiscriminatorColumn(name="PARTY_TYPE") public abstract class Party {

@Id @GeneratedValue private int idParty;
@Column(nullable = false, length=50) private String name;
@OneToMany(mappedBy="party") private Set<Telephone> telephones;
@Embedded private Address address;
@Embedded private EMail email;
//methods... (get/set/...)

76

The PK was not specified at our model, so we define a simple auto generated PK
named idParty using @Id and @GeneratedValue. The variable telephones is a one-to-
many bidirectional relationship, mapped in the inverse side by the party variable. The
address and email are embedded instances, and since we specified the mappings at the
classes, it is not needed to override this information. Property name has a column with
length of 50. The specializations of Party are as follows:

@Entity @DiscriminatorValue(value="P") public class Person extends Party{
 @Column(unique=true, length=11) private String cpf;
 //methods... (get/set/...)
}
@Entity @DiscriminatorValue(value="C") public class Company extends Party{
 @Column(unique=true, length=14) private String cnpj;
 //methods... (get/set/...)

The @DiscriminatorValue annotations tell what values the discriminator column
will assume for Person and Company. The properties cpf and cnpj are marked as unique
at the @Column annotation, following the model. They function as alternate keys.

4.2.3.2 Using SqlAlchemy
We first define the Table instance, and its columns, including the party_type

discriminator column, the PK, all columns needed to persist the embedded objects, and
all columns that represent the properties declared at the specializations:

Party_table = Table('Parties', metadata,
 Column('id', Integer, primary_key=True), Column('name', String, nullable=False),
 Column('address', String(255)), Column('city', String(30)),
 Column('state', String(2)), Column('email', String(50)),
 Column('party_type', String(1), nullable=False),
 Column('cpf', String, unique = True), Column('cnpj', String, unique = True)
)

After that, we declare the Party class, and its specialization as follows, without any
special ORM methods or annotations:

class Party(object):
#constructor/get/set methods...
class Person(Party):
#constructor/get/set methods...
class Company(Party):
#constructor/get/set methods...

Finally we declare the instantiation of three mappers, one for each class of the
inheritance tree. The mapper of the Party declares how to fetch the discriminator, at the
polymorphic_on clause, by using the party_type column of the Party_table declared
before. Notice that the Table Party_table has a property named c, that references all
columns of this table:

PartyMapper = mapper(Party, Party_table, polymorphic_on=Party_table.c.party_type,
properties={

'address':composite(Address.Address, Party_table.c.address, Party_table.c.city,
Party_table.c.state),

'Email':composite(EMail.EMail, Party_table.c.email),
'telephones': relationship(Telephone, backref = "party") })

 The address property embeds an Address, mapping the columns at the same order
of the composite_values method. Email works in a similar way. Finally, the telephones
relationship is bidirectional and one-to-many, referencing Telephone.

SA way of mapping FK associations is to declare a relationship property, at the
mapper that is referenced by the FK. Declaring a backref will add a property (party) to
the mapping of the class that has the FK column (Telephone).

77

Person and Company mappers must refer to the supper class, or its mapper, by the
inherits clause. They also declares the discriminator value with the
polymorphic_identity clause:

PersonMapper = mapper(Person, inherits=PartyMapper, polymorphic_identity='P')
CompanyMapper= mapper(Company, inherits=PartyMapper, polymorphic_identity='C')

4.2.3.3 Using ActiveRecord of Ruby
Using RAR, we first define the migration that creates the PARTIES table, with all

columns that belongs to each specialization of Party, and all columns that persists the
embedded objects:

create_table :PARTIES do |t|
 t.string :name, :null => false ,:limit=>50
 t.string :party_type,:null => false
 t.string :address
 t.string :city, :limit=>30
 t.string :state, :limit=>2
 t.string :email, :limit=>50
 t.string :cpf, :limit=>11
 t.string :cnpj, :limit=>14
end

The PK is implicit, but we have to introduce the discriminator column named
party_type. The Address class maps address, city, and state columns, while the Email
class maps only one column also named email. The properties cpf and cnpj are mapped
as accepting nulls, because they are obligatory depending on the type:

class Party < ActiveRecord::Base # RAR does not support abstract super class for FLAT
 self.inheritance_column = "party_type" # discriminator column
 self.table_name = "PARTIES" # table name
 has_many :telephones, :inverse_of => :party
 composed_of :address, :class_name => 'Address',
 :mapping => [%w(address address), %w(city city), %w(state state)]
 composed_of :email, :class_name => 'Email',:mapping => [%w(email email)]
 def self.find_sti_class(type_name) # Customized discriminator
 case type_name
 when "P"
 Person
 when "C"
 Company
 else
 raise "unknown party type"
 end
 end
end

Flat inheritance using RAR is supported, but specifying what values the party_type
column should use, to each class, needs some customization. By default, RAR will just
write the class name at the type column, so we need to override the find_sti_class
operation telling that Person is named “P”, and Company is named “C”.

class Person < Party
 validates :cpf, :uniqueness => true
 def self.sti_name
 :P # Person is “P”
 end
end
class Company < Party
 validates :cnpj, :uniqueness => true
 def self.sti_name
 :C # Company is “C”
 end
end

Party has a bidirectional one-to-many relationship with Telephone, mapped by
has_many, with inverse variable named party at the Telephone class. It has an Address

78

instance, embedded by the composed_of that maps the properties of Address to the
columns with the same name. It also declares the embedded instance of Email.

The specializations of Party are described as follows, overriding the sti_name
operation. This operation tells RAR that Person and Company are persisted with
party_type equals to “P” and “C”.

4.3 Accountability Type Model

This second example focus in the modeling of accountabilities between various
parties, following certain rules connecting types of accountabilities and parties. The
model of Figure 4.2 presents our model for the accountability pattern (FOWLER,
1996), which describes an Accountability having a commissioner and a responsible
parties, related to an AccountabilityType, at some TimePeriod. Each AccountabilityType
can follow a Rule that will validate if the commissioner and responsible are of the
adequate types for that type of accountability.

For instance, the AccountabilityType “Responsible Division” should accept as
commissioner only sales offices, and only divisions as responsible. It will be related to a
Rule named “divisionResponsibleOffice”, that enforces by code, that the commissioner
is of type SalesOffice, and responsible of type Division.

For example, an Accountability with type “Reponsible Division” could be created
between the Division “Serra Gaúcha”, and the SalesOffice of “Bento Gonçalves”. The
TimePeriod sets the start of the accountability, and its end, or null if it is still valid.

The design of Figure 4.2 puts TimePeriod as an embedded relationship of
Accountability. The specializations of Party are mapped using the Flat inheritance. The
associations commissioner and responsible are mapped to use specific FKs, defined by

Figure 4.2: Accountability, first model.

79

the join column, named COMMISSIONER_ID and REPONSIBLE_ID. The mappings
are simple, without defining specific table names, or PKs.

This model can be improved, by the application of separation of the knowledge, and
operational levels, of the Party Type pattern, displayed by Figure 4.3. Instead of having
a fixed structure, with several specializations of Party, we make these types dynamic by
introducing the PartyType class, and each static subtype of organization is replaced by a
dynamic instance of PartyType. A Party may now relate to one or more types. For
example, the “Serra Gaúcha” Organization will relate to the “Division” PartyType.

The Rule class can now be replaced by a dynamic solution, at which the
AccountabilityType lists what possible types of party can assume the positions of
commissioner and responsible, by the two new many-to-many relationships:
commissioners and relationships.

The mapping proposed at Figure 4.3 introduces three new many-to-many
relationships, mapped by association tables. The commissioners relationship is mapped
by the join table named ACCTYPE_COMMISSIONERS, and the responsibles by the
ACCTYPE_RESPONSIBLES table. The many-to-many types relationship, between
Party and PartyType, will have a join table without specified name, meaning that the
table name will be the default of the ORM tool.

4.3.1 Implementing the Associations

The model introduces the specification of join columns for many-to-one
associations, and the specification of join tables to implement many-to-many
associations. The distinction between associations that connect the same pairs of classes
is what differentiate this example from the first.

Figure 4.3: Accountability with Party type pattern and knowledge level.

80

4.3.1.1 Using JPA
The Association Table pattern is implemented by using the @ManyToMany

annotation. The @JoinTable annotation can be used to specify the association table, but
JPA will assume a table following a “default name”, if nothing is specified, as in the
following example, where the types property represents the association between Party
and PartyType:

@Entity @Inheritance(strategy=SINGLE_TABLE) @DiscriminatorColumn(name="PARTY_TYPE")
public abstract class Party {

@Id @GeneratedValue private int idParty;
@Column(nullable = false, length=50) private String name;
@OneToMany(mappedBy="commissioner") private Set<Accountability> commissionerOf;
@OneToMany(mappedBy="responsible") private Set<Accountability> responsibleFor;
@ManyToMany private Set<PartyType> types ;
// methods get/set/etc...

@Entity public class Accountability {
@Id @GeneratedValue private int idAccountability;
@ManyToOne(optional=false)@JoinColumn (name= "COMMISSIONER_ID")
private Party commissioner;
@ManyToOne(optional=false)@JoinColumn (name= "RESPONSIBLE_ID")
private Party responsible;
@ManyToOne(optional=false) private AccountabilityType accountabilityType;
@Embedded private TimePeriod timePeriod;
// methods get/set/etc...

@Entity public class AccountabilityType {
@Id @GeneratedValue private int accountabilityTypeId;
@Column(nullable=false,length=50) private String description;
@ManyToMany @JoinTable (name= "ACCTYPE_COMMISSIONERS")
private Set<PartyType> commissioners;
@ManyToMany @JoinTable (name= "ACCTYPE_RESPONSIBLES")
private Set<PartyType> responsibles;
// methods get/set/etc...

@Entity public class PartyType {
@Id @GeneratedValue private int idPartyType;
@Column(nullable = false, length=50) private String description;
@ManyToMany (mappedBy= "commissioners")private Set<AccountabilityType> commissionerOf;
@ManyToMany (mappedBy= "responsibles") private Set<AccountabilityType> responsibleFor;
// methods get/set/etc...

In order to specify the join columns that implement the relationships commissioner
and responsible, the Accountability class has the @JoinColumn annotation, associated
to the properties referencing parties. The commissioner uses the FK column
COMMISSIONER_ID, and the responsible uses the FK column RESPONSIBLE_ID.

AccountabilityType has two bidirectional many-to-many relationships with
PartyType, implementing the knowledge level of the model. The @JoinTable
annotation tells the ORM framework that the association tables are named
ACCTYPE_COMMISSIONERS, for the comissioners-comissionerOf association, and
ACCTYPE_RESPONSIBLES, for the responsible-responsibleFor association.

4.3.1.2 Using SqlAlchemy
The first step is to declare the Table objects, including the columns that are FKs, and

the association tables. The PARTY_PARTY_TYPE Table implements the parties-
partytypes relationship, and the other association tables have the names of the model:

Party_table = Table('Party', metadata,...
Party_Type_table = Table('Party_Type', metadata,...
PARTY_PARTY_TYPE = Table('PARTY_PARTY_TYPE' , metadata,...
Accountability_table = Table('Accountability', metadata,
Column('id_accountability', Integer, primary_key=True),
Column('begin', DateTime, nullable=False),

81

Column('end', DateTime),
Column('id_acctype', Integer, ForeignKey('Accountability_Type.id_acctype',

ondelete='CASCADE'),nullable=False),
Column('id_commissioner', Integer,ForeignKey('Party.id_party')),
Column('id_responsible', Integer, ForeignKey('Party.id_party')))

ACCTYPE_COMMISSIONERS = Table('ACCTYPE_COMMISSIONERS', metadata,
Column('id_partytype',Integer,ForeignKey('Party_Type.id_partytype'),nullable=False),
Column('id_acctype', Integer, ForeignKey('Accountability_Type.id_acctype'),
nullable=False))

ACCTYPE_RESPONSIBLES = Table('ACCTYPE_RESPONSIBLES', metadata,
Column('id_partytype',Integer,ForeignKey('Party_Type.id_partytype'),nullable=False),
Column('id_acctype', Integer, ForeignKey('Accountability_Type.id_acctype'),
nullable=False))

#...

The many-to-many mappings are declared using the relationship property, and the
parameter secondary specifies the association table name. The join column, specified at
the model, is mapped using the primaryjoin option of the relationship, that specifies the
join condition:

PartyMapper = mapper(Party, Party_table, polymorphic_on=Party_table.c.type,
 polymorphic_identity='T', properties={

'commissionersOf' : relationship(lambda: Accountability, backref = "commissioner",
primaryjoin=(Accountability_table.c.id_commissioner==Party_table.c.id_party)),

'responsiblesFor' : relationship(lambda: Accountability, backref = "responsible",
primaryjoin=(Accountability_table.c.id_responsible==Party_table.c.id_party)),

'types': relationship(PartyType, secondary=PARTY_PARTY_TYPE) })
AccountabilityMapper = mapper(Accountability, Accountability_table, properties={

'timePeriod':composite(TimePeriod, Accountability_table.c.begin,
Accountability_table.c.end),

'accountabilityType': relationship(AccountabilityType) })
AccountabilityTypeMapper = mapper(AccountabilityType, Accountability_Type_table,
properties={
'commissioners': relationship(PartyType, secondary=ACCTYPE_COMMISSIONERS, backref =

"commissionerOf"),
'responsibles': relationship(PartyType, secondary=ACCTYPE_RESPONSIBLES, backref =

"responsibleFor") })

4.3.1.3 Using ActiveRecord of Ruby
To transparently map the Association Table pattern, RAR offers the

has_and_belongs_to_many mapping. In the next code snippet, the party-partytypes
association of property types is mapped to a table named, by RAR convention,
“parties_party_types”:

class Party < ActiveRecord::Base
has_and_belongs_to_many :types , :class_name => 'PartyType'
has_many :commissionersOf, :class_name => 'Accountability',
:inverse_of=>:commissioner, :foreign_key => "commissioner_id"

has_many :responsiblesFor, :class_name => 'Accountability',
:inverse_of=>:responsible,:foreign_key => "responsible_id"

#...

The associations from Party to Accountability, mapped by has_many, specify the
FKs, according to the join columns of the model, by the foreign_key option. This is
repeated at the other side of the relationship at the Accountability class:

class Accountability < ActiveRecord::Base
belongs_to :commissioner, :class_name => 'Party', :inverse_of=>:commissionersOf,
:foreign_key => "commissioner_id"

belongs_to :responsible, :class_name => 'Party', :inverse_of=>:responsiblesFor,
:foreign_key => "responsible_id"

belongs_to :accountabilityType
#...

The associations between AccountabilityType and PartyType are also mapped by the
has_and_belongs_to_many, but with the option join_table that specifies the name of the
table, according to what we specified at the model:

82

class AccountabilityType < ActiveRecord::Base
has_and_belongs_to_many :commissioners, :class_name => 'PartyType',
:join_table => "acctype_commissioners"

has_and_belongs_to_many :responsibles, :class_name => 'PartyType',
:join_table => "acctype_responsibles"

#...

4.4 Account Model

The Account Model was already presented at the Figure 3.3 of Chapter 3, under the
“a not so simple example” section. In this section, we will jump directly to the
implementation issues of this model.

4.4.1 Entry is a dependent entity

The Entry class has a composite PK with two columns, and each column is a FK to
another table. Entry is identified by the pair of referenced Account and Transaction
objects.

4.4.1.1 Using JPA
The PK of Entry falls in the same case examined at Telephone, but the properties

that represent the PK at Entry must also be annotated as @ManyToOne and
@JoinColumn. The later is required to enforce that the column should not accept
updates (PKs cannot be updated):

@Entity @IdClass(EntryPK.class) public class Entry {
@Id @JoinColumn(updatable = false, name = "acct_number", referencedColumnName =
"number") @ManyToOne private DetailAccount account;
@Id @JoinColumn(updatable = false, name = "id_transaction", referencedColumnName =
"id_transaction") @ManyToOne private Transaction transaction;
//methods...(get/set)

class EntryPK implements Serializable {
private int account;
private long transaction;
//methods...(get/set)

The PK properties are of the type of the destination class: account is a
DetailAccount, and transaction is a Transaction. However, the properties of the PK
class EntryPK have to be of scalar types compatible with FK types: account is an int,
and transaction a long. The @JoinColumn also tells JPA that FK references a column
named number at Account, but is named acct_number at the Entry table.

4.4.1.2 Using SQLAlchemy
SA easily maps FKs that are also PKs, all that is needed to do is to declare the

columns as FKs and PKs when instantiating the Table:
Entry_table = Table('Entry',metadata,
Column('acct_number', Integer, ForeignKey('DetailAccount.number'), primary_key=True,
autoincrement=False),

Column('id_transaction', Integer,ForeignKey('Transaction.id_transaction'),
primary_key=True, autoincrement=False), #...

4.4.1.3 Using ActiveRecord of Ruby
Once again, we have to resort to the composite_primary_keys extension. The

mapping is similar to what we have done with Telephone (at section 4.2.1.3), with a
similar migration for the PKs. The difference is that we also declares the many-to-one
associations using the belongs_to mapping:

class Entry < ActiveRecord::Base
self.primary_keys = [:acct_number, :id_transaction]
belongs_to:account, :class_name=>"DetailAccount",:foreign_key => 'acct_number',

:inverse_of=>:entries
belongs_to:transaction, :foreign_key => 'id_transaction', :inverse_of=>:entries

83

 Differently from JPA and SA, the acct_number and id_transaction are also exposed
properties of Entry instances. This means that a developer can assign the account of an
Entry and/or the acct_number of the same Entry, what may lead to an error if they do
not match the same object.

4.4.2 Account mapped by two tables

The Account class is mapped by the tables Account and Act_brief. Some properties
are persisted at Account, and others at Act_brief.

4.4.2.1 Using JPA
The @SecondaryTable(s) annotation allows the specification of one or more tables

that are joined with the main table, in order to persist the properties of a class. At the
code of Account, properties mapped to Act_brief must be annotated by @Column, or
@JoinColumn, identifying the destination table.

// omitted inheritance mappings ...
@Entity @SecondaryTable(name = "Act_Brief")
public abstract class Account {
@Id @GeneratedValue private int number;
@Column(name = "dt_calc", table = "Act_Brief") @Temporal(TemporalType.DATE)
private Date dtBalance;
// ... omitted other properties

The PK property number is persisted at the main table, with the same name of the
class. But at our model, the dtbalance is mapped as “Act_brief.dt_calc”, meaning that it
is persisted at the table Act_brief. This is implemented by the table option.

4.4.2.2 Using SQLAlchemy
SA has the concept of join object that represents a data source with multiple tables.

First we declare the Account and Act_brief tables, and then we instantiate a join named
JAC, based upon both tables:

Account_table = Table('Account',metadata,
Column('number', Integer, primary_key=True), #... other columns

)
Balance_table = Table('Act_brief',metadata,

Column('number', Integer,
ForeignKey('Account.number'),primary_key=True,autoincrement=False),

#... columns of Act_brief
)
JAC = join(Account_table, Balance_table)

The number column of the Act_brief table is the PK and a FK to Account. The JAC
join is then used as the source for the mapper. The number property is declared using a
column_property instance, that allows the mapping of one property to two columns.
This is necessary to ensure that the number, at Account and Act_brief tables, is always
the same for the same instance:

AccountMaper = mapper (Account, JAC, #...inheritance ommited
'number': column_property(Account_table.c.number, Balance_table.c.number) #...

4.4.2.3 Using ActiveRecord of Ruby
There is no way to map one class to two tables, and two tables to just one class,

using RAR. What can be done is to have two persistent classes, and make one of the two
classes reference the other, dispatching the method calls using the Bridge pattern
(GAMMA et al., 1994).

84

At our example, Account and Act_brief would be classes that inherit from
ActiveRecord::Base, and have a one-to-one association. Each property persisted at
Act_brief, would have an accessor on Account, dispatching the implementation at the
Act_brief instance. The constructor of Account will have to create an Act_brief, and the
association will have to cascade deletes.

An alternative of directly bridging each property is to resort to introspection and
meta-programming. Our solution to the problem was to create a module that deals with
the bridging automatically, by listening to the method_missing event, and trying to pass
it out to the associated class. First we declare the classes and the mappings, as bellow:

class ActBrief < ActiveRecord::Base
 belongs_to :account, :class_name =>"Account", :foreign_key => 'number'
 # … omitted other mappings
end
class Account < ActiveRecord::Base

include MixinMod # Emulating secondary table act_brief using MIX IN
@@mixin=MixInDesc.new(Account,"actbrief",nil) # Configure the mix in
self.primary_key = "number"
has_one :actbrief, :class_name =>"ActBrief", :foreign_key => 'number', :dependent =>
:destroy, :inverse_of=>:account

… omitted other mappings
end

The ActBrief has a one-to-one relationship with Account, declared by one side by
belongs_to, and the other by has_one keyword. The module MixinMod, responsible to
build the bridge, is included, and a mapping is instantiated between Account and
actbrief property, and stored at the class variable mixin. The MixinMod will listen to the
missing methods, and dispatch them to the actbrief association.

4.4.3 Vertical Inheritance of Account

The following subsections present the mappings for each studied platform.

4.4.3.1 Using JPA
When the strategy of @Inheritance is set to JOINED, each class in the inheritance

tree has (at least) one table responsible for the persistence. The discriminator column is
optional in that case, but following the specification of the model, it can assume D for
DetailAccount or S for SummaryAccount, and is similar to the Flat case of Party.

@Entity @Inheritance(strategy = InheritanceType.JOINED)
@DiscriminatorColumn(name = "type", discriminatorType = DiscriminatorType.STRING,
length = 1)
public abstract class Account implements { //... omitted
}
@Entity @DiscriminatorValue("D") public class DetailAccount extends Account {
//... omitted
}
@Entity @DiscriminatorValue("S") public class SummaryAccount extends Account {
//... omitted

4.4.3.2 Using SQLAlchemy
Each Table, of the specialization classes, is instantiated with a FK connecting the

PK to the Account table:
SummaryAccount_table = Table('SummaryAccount',metadata,

Column('number', Integer, ForeignKey('Account.number', use_alter=True,
name='fk_summary_acct'), primary_key=True))

DetailAccount_table = Table('DetailAccount',metadata,
Column('number', Integer, ForeignKey('Account.number', use_alter=True,
name='fk_detail_acct'), primary_key=True))

The mappers are instantiated in a similar way of the Flat inheritance, but it specifies
the tables that persist each subclass. The inherits option points to the general class:

85

AccountMaper = mapper (Account, JAC, polymorphic_on=Account_table.c.type #...
SummaryAccountMaper = mapper(SummaryAccount, SummaryAccount_table, inherits=Account,

polymorphic_identity='S', #...
DetailAccountMaper = mapper (DetailAccount, DetailAccount_table, inherits=Account,
polymorphic_identity='D', #...

4.4.3.3 Using ActiveRecord of Ruby
RAR does not support Verical inheritance. Once again, one possible implementation

is to declare the classes separated, without inheritance, and resort to an association
combined with the Bridge pattern. RAR offers the polymorphic association, that can deal
with objects of distinct types at the same association:

class Account < ActiveRecord::Base
#... Omitted declarations
belongs_to :impl,:polymorphic=>true,:foreign_key=>'number',:dependent=>:destroy

Now the Account instance belongs to the specializations that implement the class,
that can be of type SummaryAccount or DetailAccount. The polymorphic option tells the
framework to use a discriminator column, defined at the migration, to specify what kind
of Account is related by the impl association. However, RAR requires a column that
follows a specific name, and is not flexible about the discriminator values.

create_table :accounts, :primary_key => 'number' do |t|
 t.string :impl_type #...

The column impl_type will assume a value equal to the name of the class, and we
could not use the discriminator values entered at the model (D or S). The remaining
class will be as follows:

class DetailAccount < ActiveRecord::Base # It does not extends Account!
include MixinMod # Module that implements the bridge
@@mixin=MixInDesc.new(DetailAccount,"account","number")
self.primary_key = "number";
has_one :account, :as => :impl, :autosave => true,:foreign_key => 'number'
...omitted

class SummaryAccount < ActiveRecord::Base
include MixinMod
@@mixin=MixInDesc.new(SummaryAccount,"account","number")
self.primary_key = "number"
has_one :account, :as => :impl, :autosave => true,:foreign_key => 'number'
...omitted

Notice that if SummaryAccount or DetailAccount inherits from Account, the
framework will map all classes, its properties, and association ends, to the same table.
Therefore, the specializations could not inherit from Account.

The has_one mapping to account has the “as => :impl” mapping telling the
framework that it is the polymorphic inverse of impl. Both SummaryAccount and
DetailAccount have a reference to account, and the MixInDesc is initialized mapping
each class to the account association. The third attribute is the number key, and tells the
MixinMod that the class must first instantiate and save the Account, obtain the number,
and assign this to the key of the specialization. The implementation of MixinMod is
described at the Appendix E.

4.4.4 Properties and columns with distinct names

ENORM allows the specification of a property persisted at a column with different
name, by using the ColumnMapping applied at the property. The Account class maps
the property dtBalance to a column named dt_calc at Figure 3.3.

86

4.4.4.1 Using JPA
It is trivial to specify a scalar property with a distinct name of the column that

persists it. At the example of section 4.4.2.1, dtBalance is mapped to a column named
dt_calc by the @Column annotation.

4.4.4.2 Using SQLAlchemy
Properties with a distinct name are declared at the mapper, pointing the column at

the table object. The following snippet maps dtBalance to dt_calc at Balance_table:
AccountMaper = mapper (Account, #... omitted

properties={ #...
'dtBalance':Balance_table.c.dt_calc,#...

4.4.4.3 Using ActiveRecord of Ruby
RAR does not support the mapping of a column with a distinct property name. A

workaround would be to declare another property named dtBalance, at the Account
class, that has keeps the same value of the dt_calc:

alias_attribute :dtBalance ,:dt_calc

The alias_attribute core method declares the property as a synonym property.
However, using the alias_attribute will not hide the dt_calc property, and Account will
have two properties acessors that reflect the same value, dt_calc and dtBalance.

4.4.5 Overrides and Embedded objects referencing persistent classes

The Quantity class is not persistent, but references a persistent class that represents
its Unit. This section focus on the mappings of the embeddment of Quantity, and the
possibility of overriding its mappings.

4.4.5.1 Using JPA
The Quantity class can be annotated with @ManyToOne at the unit property, and the

ORM framework will know that should create the FK at the classes that embed
Quantity:

@Embeddable public class Quantity {
@Column(precision=20,scale=2) private BigDecimal amount;
@ManyToOne private Unit unit;
//...omitted

public class Entry { //...omitted
@Embedded private Quantity quantity;

The Entry class embeds Quantity by the quantity association end. The Account class,
at the model of Figure 3.3, also embeds Quantity by the balance association end, but
has an override section specifying that the Act_brief is responsible for the persistence of
both columns. This is implemented in JPA by the @AttributeOverride(s) and
@AssociationOverride(s) annotations:

@Embedded
@AttributeOverride(name="amount", column=@Column(name="value", table="Act_Brief"))
@AssociationOverride(name="unit",joinColumns=@JoinColumn(name="unit",table="Act_brief"
)) private Quantity balance = new Quantity();

The balance property has an override at the attribute named amount, mapping it to
the column named value at the secondary table Act_brief. It also has a mapping override
at the association named unit, to use a column with the same name, persisted at the table
Act_brief.

mailto:joinColumns%3D@JoinColumn
mailto:joinColumns%3D@JoinColumn

87

4.4.5.2 Using SQLAlchemy
The columns that persist the composite are specified at the Table instance that

persist the owner class:
Balance_table = Table('Act_brief',#...
 Column('value', Numeric(20,2), nullable=True),
 Column('unit', String(15),ForeignKey('Currency.unit'), nullable=True)#...
Entry_table = Table('Entry',metadata,#...
 Column('amount', Numeric(20,2), nullable=False),
 Column('unit', String(15),ForeignKey('Currency.unit'), nullable=False)#...
AccountMaper = mapper (Account, #...
'balance':composite(Quantity, Balance_table.c.value, Balance_table.c.unit),#...
EntryMapper = mapper (Entry, #...
'quantity':composite(Quantity, Entry_table.c.amount, Entry_table.c.unit),

However, SA does not recognize the association of a composite with a persistent
class transparently. It will instantiate the Quantity composite using the PK of Unit,
instead of the Unit itself. One solution is to create a listener method that enforces that
the value of the unit if indeed a Unit:

@event.listens_for(Entry.quantity, 'set')
@event.listens_for(Account.balance, 'set',propagate=True)
def loadUnit(target, value, oldvalue, initiator):
 if not(isinstance(value.unit, Unit)):
 session = Session.object_session(target) #get the session of the target
 value.unit = session.query(Unit).get(value.unit)

SA allows the specification of methods that are called when certain events happens.
In the above example, the set event is called anytime the specified property is changed,
including when the object is loaded. The method checks if the unit is a Unit, if not, it is
the PK of the unit, and this value is used to query the real Unit.

4.4.5.3 Using ActiveRecord of Ruby
The composed_of mapping can declare the mappings between each property of the

Embedded class, and the column that persists this property at the persistent class. But
the default behavior is to deal with the PK of the Unit, and not the Unit itself. This can
be overridden at the mapping, by defining the constructor method. This method is
responsible for the instantiation of Quantity objects:

class ActBrief < ActiveRecord::Base #...omitted mappings
composed_of :balance, :class_name => 'Quantity',
:mapping => [["value","amount"],["unit","unit"]],
:constructor => Proc.new { |amount, unit| (unit==nil) ? nil :

Quantity.new(amount, Unit.find(unit)) }
#...omitted
class Entry < ActiveRecord::Base

composed_of :quantity, :class_name => 'Quantity',
:mapping => [["amount","amount"],["unit","unit"]],
:constructor => Proc.new { |amount, unit| (unit==nil) ? nil :

Quantity.new(amount, Unit.find(unit)) }
#...omitted

The constructor takes the unit PK and queries the framework for the Unit object,
passing it to the constructor of Quantity. If the unit PK is nil, the resulting Quantity will
also be nil.

4.4.6 The Account-Entry association

The account-entry association is abstract, but at OO languages, associations are not
explicitly declared: they are implemented by association ends. Associations ends are
properties, and both properties and instance variables cannot be abstract. Abstract

88

associations can, however, be declared as abstract accessor operations, implemented at
the specialization classes. This section examines how the ORM frameworks deals with
this situation.

4.4.6.1 Using JPA
It is possible to declare an abstract operation getEntries(), that access the entries

association end, at the Account class. This operation is implemented by DetailAccount
class, that declares the instance variable named entries, mapping it as the inverse of the
account property at the Entry class:

public abstract class Account { //...omitted code
public abstract List<Entry> getEntries(); //...

}
public class DetailAccount extends Account { //...omitted code
@OneToMany(mappedBy="account") private List<Entry> entries;
@Override public List<Entry> getEntries() {
 if (entries == null)
 entries = new ArrayList<Entry>();
 return entries;
}//...

}
public class SummaryAccount extends Account { //...omitted code

@Override public List<Entry> getEntries() {
 List<Entry> listEntry = new ArrayList<Entry>();
 for (Account acct: components) {
 listEntry.addAll(acct.getEntries());
 }
 return listEntry;
}//...

}

The association summary-entries was redefined at the entries end to be readOnly
and Transient (not persistent). It is also specified as a derived union of the sum of
entries of all components. This is implemented at the class SummaryAccount by making
getEntries() a recursive method, that calls itself at each component Account. Notice that
SummaryAccount has no mapped association to Entry, and vice-verse.

4.4.6.2 Using SQLAlchemy
The properties were not declared ahead, because Python is a dynamic language. The

problem is that if we declare entries as an abstract method, the interpreter will ask for
this implementation before the instrumentation by the SA framework.

On the other hand, because Python is a dynamic language, it will not enforce if
entries was declared at the abstract super-class. Nevertheless, we declared the entries
operation as a placeholder at the super class, as a mapping at the DetailAccount, and as
an operation at SummaryAccount class:

class Account(object): #other operations are omitted
 __metaclass__ = abc.ABCMeta #This is an abstract class
 def entries(self):
 pass
#... at the mappings.py
DetailAccountMaper = mapper (#...
properties={ 'entries': relationship(lambda: Entry, backref = "account",#...
#... at SummaryAccount.py
class SummaryAccount(Account): #other operations are omitted
 def __get__entries(self):
 ret = []
 for acct in self.components:
 for ent in acct.entries:
 ret.append(ent)
 return ret

 entries = property(__get__entries)

89

The redefinition of entries at SummaryAccount used the property object of Python,
that maps a method as an accessor for a property. Notice that if we remove the entries
operation at Account, it will make absolutely no difference, as long as Account is
abstract.

4.4.6.3 Using ActiveRecord of Ruby
As a consequence to our workaround to implement Vertical inheritance, Account is

not an abstract class. The implementation of entries at Account just forwards the call to
the related specialization (impl.entries).

class Account < ActiveRecord::Base # … omitted details
def entries
 impl . entries
end

class DetailAccount < ActiveRecord::Base
has_many :entries, :foreign_key =>:acct_number, :inverse_of=>:account
… omitted details

class SummaryAccount < ActiveRecord::Base
has_and_belongs_to_many :components,:class_name=>'Account',:join_table=> "act_comps"
… omitted details
def entries
 ret = []
 components.each{|c|ret+=c.impl.entries}
 return ret
end

The DetailAccount class implements entries as the association to Entry by the
has_many mapping. The SummaryAccount implements entries as a read-only value
calculated from the recursive concatenation of the entries of all components. The
components is a many-to-many association declared by has_and_belongs_to_many to
the Account class. The returning collection (ret), at the entries method, is populated by
the sum of all entries, of every component of the components association.

4.5 Resource Allocation Model

The resource allocation pattern models the relationship between an Action, and the
resources necessary to execute this action. These resources can be allocated in a general
way, referencing the type of resource, or in a specific way, referencing a resource of
some type.

Figure 4.4 presents the conceptual model for the resource allocation pattern, based
upon the book of Fowler (FOWLER, 1996). Action relates to zero or more
ResourceAllocation objects. A ResourceAllocation can be a GeneralAllocation or a
SpecificAllocation. The GeneralAllocation will reference a ResourceType. The
ResourceType can be a ConsumableType, such as gas, or an AssetType, such as a bus.

The SpecificAllocation can be a ConsumableAllocation, or a TemporalAllocation.
The ConsumableAllocation will refer to a Holding of a specific ComsumableType, such
as gas from station five. The TemporalAllocation will refer to the specific allocation of
an Asset, such as the bus with license “AAA 5555”.

Once understood the basic model, we now expand this example a little bit to the
design presented by Figure 4.5. This design specializes assets and asset types into
equipment and human resources. The AssetType class is specialized at Post and
EquipmentType. The Asset is specialized at Employee and Equipment. The many-to-
many association assets-assetTypes has the endings redefined by employees-posts and
equipments-equipmentsTypes associations.

90

New specializations of resource allocations were created to deal with this new tree
of resource types. The GeneralAllocation now has specializations dealing with each
ResourceType, named WorkRequirement for posts, SupplyRequirement for
consumables, and EquipmentRequirement. The TemporalAllocation is specialized into
ScheduledEquipments and AssignedEmployee.

The ResourceAllocation embeds a Quantity instance, similar to the introduced by the
Account example, that refers to the Unit. The specializations later override the mappings
of Quantity, specifying adequate names and types, according to the quantitative or time
based nature of the allocation. Another examples of overrides are the Employee class,
that overrides the inherited property start with a distinct column name, and the
overriding of the association of action-allocations, to specify the FK column at the
specializations of ResourceAllocation that deals with Consumables.

Figure 4.4: Conceptual model for the Resource Allocation Pattern.

91

Figure 4.5: Resource Allocation ENORM model.

92

This design of this example uses the horizontal inheritance with abstract, non
persistent, super classes. Each leaf specialization is an independent table, a design that
reflects a legacy database being mapped to a framework, where the more general classes
were not persistent. However, the specializations should not ignore the persistence of
the inherited classes, hence the horizontal strategy is applied at the entire tree.

ResourceAllocation, GeneralAllocation, and SpecificAllocation are abstract classes
nor marked as persistent. TemporalAllocation is not abstract, but it is also not persistent.
All generalizations are not persistent.

4.5.1 Horizontal Inheritance at the Resource Allocation Tree

The application of Horizontal inheritance, with non persistent super classes, is not
the typical application of the Concrete Table pattern.

4.5.1.1 Using JPA
When the super class is persistent, the implementation uses the @Inheritance

annotation with the TABLE_PER_CLASS strategy, but if the super class is not
persistent, the @MappedSuperclass mapping is the way to declare the mappings. The
following implementation uses the annotation before the methods, instead of the
annotations before the properties, used at the previous examples.

@MappedSuperclass public abstract class ResourceAllocation {
@Embedded
public Quantity getQuantity() { //..
@ManyToOne @JoinColumn(name="id_task")
public Action getAction() { //..

@MappedSuperclass public abstract class GeneralAllocation extends ResourceAllocation {
@Transient abstract public ResourceType getResourceType(); //..

@Entity @Table(name="WORK_REQUIREMENTS") //..
public class WorkRequirement extends GeneralAllocation {

@Id @Column(name="id_requirement",precision=8)
public int getRequirementId() { //..
@ManyToOne @JoinColumn(name="id_post")
public Post getResourceType() { //..

The ResourceAllocation embeds the allocated quantity, and maps the many-to-one
association to the Action. GeneralAllocation declares the association to ResourceType
as abstract. However, the ResourceAllocation and GeneralAllocation are not persistent,
and not annotated with @Entity. Instead, they are annotated by @MappedSuperclass,
that allows the writing of mappings, on non persistent classes intended to have
persistent specializations.

The WorkRequirement class specializes GeneralAllocation, and is persistent. It first
declares its PK property, named id_requirement at the model, and then overrides the
getResourceType method that implements the generalAllocation-resourceType
association to return a Post, using the specified join column.

The super class does not need to be abstract. The TemporalAllocation class is not
abstract, and is also mapped as a @MappedSuperclass. The AssignedEmployee extends
TemporalAllocation, and is persisted, as in the next implementation:

@MappedSuperclass public abstract class SpecificAllocation extends ResourceAllocation{
@MappedSuperclass public class TemporalAllocation extends SpecificAllocation{ //..
@Entity @Table(name="ASSIGNED_EMPLOYEE")
public class AssignedEmployee extends TemporalAllocation { //..

@Id @Column(name="ID_ASSIGNMENT") public int getIdAssignment() {

93

4.5.1.2 Using SqlAlchemy
SqlAlchemy offers the polymorphic_union mapping that allows the implementation

of generalizations, and the concrete mapper option that implements the horizontal
inheritance. Non persistent concrete classes are mapped without a table. The
polymorphic_union lists the tables, assigning aliases to each table, that compose the
union to query the super classes:

Work_Requirements_table = Table('Work_Requirements',metadata,
 Column('id_requirement',Integer(8),primary_key=True),
 Column('id_post',Integer(8),ForeignKey('Post.id_post'),nullable=False),
 Column('id_task',Integer(8),ForeignKey('Task.id_task'),nullable=False)#...
)# Similar tables: Supply_Requirements, Equipment_Requirements, Supply_Required,

Scheduled_Equipment, Assigned_Employee (omitted)
Mappings:
pjoin = polymorphic_union({ # All resource allocations
 'srequirements': Supply_Requirements_table,
 'wrequirements': Work_Requirements_table,
 'erequirements': Equipment_Requirements_table,
 'consumables': Supply_Required_table,
 'sequip':Scheduled_Equipment_table,
 'aemployee':Assigned_Employee_table}, 'type', 'pjoin')

ResourceAllocationMapper = mapper(ResourceAllocation,pjoin,with_polymorphic=('*',
pjoin),polymorphic_on=pjoin.c.type,properties={

'action':relationship(Action), 'user':relationship(User)})
genJoin = polymorphic_union({ # General allocations
 'srequirements': Supply_Requirements_table,
 'wrequirements': Work_Requirements_table,
 'erequirements': Equipment_Requirements_table}, 'type', 'genJoin')
GeneralAllocationMapper = mapper(GeneralAllocation,genJoin,concrete=True,

inherits=ResourceAllocationMapper,with_polymorphic=('*',genJoin),
polymorphic_on=genJoin.c.type)

WorkRequirementMapper = mapper(WorkRequirement,Work_Requirements_table,concrete=True,
inherits=GeneralAllocationMapper,polymorphic_identity='wrequirements',properties={
'action': relationship(Action, #...
'post': relationship(Post) #...

First we declare the tables, and then the mappers for each class that participates at
the horizontal inheritance, based on unions. The leaf classes are mapped with a
polymorphic_identity that tells the framework what subset of the super class union is
identified with the source. WorkRequirement is mapped to Work_Requirements_table,
identified at the union as wrequirements.

4.5.1.3 Using ActiveRecord of Ruby
There is no horizontal inheritance on RAR. However, it is possible to declare a

mapped super class, with its specializations persisting the attributes at its own tables, by
setting the class variable abstract_class to true.

class ResourceAllocation < ActiveRecord::Base
self . abstract_class= true
attr_accessor :quantity
belongs_to :action, :foreign_key => :id_task # omitted...

class GeneralAllocation < ResourceAllocation
self . abstract_class= true
attr_accessor :resourceType # omitted...

class WorkRequirement < GeneralAllocation
self.table_name = "work_requirements"
belongs_to :post, :foreign_key => 'post_id'
composed_of :quantity, :class_name => 'Quantity',

:mapping => [["req_time","amount"],["time_unit","unit_id"]],

94

Despite the name, abstract_class does not make the class abstract, but tells the
persistence framework that it should not enforce single table inheritance. It is a property
inherited from the ActiveRecord::Base class, and not a Ruby language feature.
However, trying to instantiate a class with abstract_class=true will raise exceptions at
the framework, that will try to issue SQL commands to null tables. Concrete classes
such as TemporalAllocation are, in practice, turned abstract by this solution.

The properties of the super-classes can be declared using the attr_accessor operation
of Ruby. It is important to notice that, when there are two properties, with the same
name at the general and specialization classes, Ruby treat both as the same. Each
instance of WorkRequirement will have only one quantity, despite the declaration at the
superclass. This is distinct from Java, where there will be two quantity properties, one at
each context.

4.5.2 Overriding inherited properties and associations

The resource model overrides properties, and redefine associations at the
specializations. Moreover, the PK are not uniform among the persistent specializations.

4.5.2.1 Using JPA
The transient Asset class specifies a property named start that is persisted by

horizontal specializations such as Equipment and Employee. However, the Employee
table persists the start at a column named hire_date, what is represented, at the model,
by the override of start. The following code snippet implements this override with the
@AttributeOverride mapping referencing an inherited property:

@MappedSuperclass public abstract class Asset {
Date start;
public Date getStart() {//..

@AttributeOverride(name="start", column=@Column(name="HIRE_DATE"))
@Entity @Table(name="EMPLOYEE") public class Employee extends Asset{

//..

Usually, the override of associations of the super class, such as the action-resources
by the SupplyRequirement class, is implemented by an AssociationOverride, in a similar
way that associations belonging to embedded objects, such as the association quantity-
unit. However, when using horizontal inheritance, we may specify a composite key for
the specialization where the overwrote association participates. SupplyRequirement
overrides action to make it part of the PK:

@Entity @Table(name="SUPPLY_REQUIREMENTS") @IdClass(SupplyRequirementPK.class)
@AttributeOverride(name="quantity.ammount", column=@Column(name="QUANTITY"))
@AssociationOverride(name="quantity.unit",joinColumns=@JoinColumn(name="QTY_UNIT"))
public class SupplyRequirement extends GeneralAllocation{

ConsumableType supply;
@Id @ManyToOne
@JoinColumn(name="ID_TASK",insertable=false,updatable=false)
public Action getAction() {

return super.getAction();
}
@Id @ManyToOne
@JoinColumn(name="ID_SUPPLY")
public ConsumableType getResourceType() {

return supply;
} //.. setters and PK class omitted

95

At section 4.5.1.1, the ResourceAllocation class has a mapped association to Action,
implemented by operation getAction. The SupplyRequirement class overrides the
method with a new mapping, that makes this property part of the PK, what cannot be
achieved by a simple @AssociationOverride. The tricky part here is that this override
does not declares a new local variable action, but just passes the getter to the super
class. This only works because the mappings are on the methods, and not on the
properties.

4.5.2.2 Using SqlAlchemy
Because the table and the mappers are separated, it is easy to specify the detailed

columns for each class. The relationships can be specified as general associations at the
super class. For instance, the action-resourceAllocations association can be specified at
ResourceAllocation and refined at its subclasses:

ActionMapper = mapper(Action, Task_table, properties={
'resources':relationship(ResourceAllocation,collection_class=set,
back_populates='action') #..

ResourceAllocationMapper = #...
'action':relationship(Action),#...

WorkRequirementMapper = #...
'action':relationship(Action,primaryjoin=(Task_table.c.id_task==Supply_Required_tab
le.c.id_task),back_populates='resources') #...

The SupplyRequirement class overrides the action property to became part of its PK.
SA will not pay much attention to the super class mappings, as long as they are abstract
and, because of that, used only for queries. We just have to declare the PK at the Table
of SupplyRequirement, and write the mappings with the correct join columns:

Supply_Requirements_table = Table('Supply_Requirements',metadata,
 Column('id_supply',Integer(8),ForeignKey('Supply.id_supply'),primary_key=True),
 Column('id_task',Integer(8),ForeignKey('Task.id_task'),primary_key=True)
 Column('quantity',Numeric(8,2), nullable=False),
 Column('qty_unit',Integer(5), ForeignKey('Unit.id_unit'), nullable=False),#...

SupplyRequirementMapper = #...
'action':relationship(Action,primaryjoin=(Task_table.c.id_task==Supply_Requirements
_table.c.id_task),back_populates='resources')
'type':relationship(ConsumableType,primaryjoin=(Supply_table.c.id_supply==

Supply_Requirements_table.c.id_supply))
'__quantity':Supply_Requirements_table.c.quantity,
'__unit':relationship(Unit,primaryjoin=(Unit_table.c.id_unit==

Supply_Requirements_table.c.qty_unit)),
"quantity":composite(Quantity, Supply_Requirements_table.c.quantity,

Supply_Requirements_table.c.qty_unit), #...

Notice that when composite name conflicts with the composite columns, we have to
map the columns with distinct names. The double underscore before the property
(“__<prop name>”) tells python to obfuscate the property, since we want to access
quantity and unit only by the composite Quantity instance, and not directly from the
SupplyRequirement.

4.5.2.3 Using ActiveRecord of Ruby
The implementation can declare the properties at the super class using attr_accessor

operation, and link renamed properties at the specializations with alias:
class Asset < ActiveRecord::Base
 self.abstract_class=true
 attr_accessor :assetType,:start #...
class Employee < Asset
 alias_attribute :start, :hire_date

96

 alias_attribute :assetType, :posts
 has_and_belongs_to_many :posts, :join_table=>"employee_posts" #...

RAR can deal independently with the property mapped to columns, and associations.
The SupplyRequirement class inherits the association to Action from the
ResourceAllocation class, but it also declares the column id_task as part of the PK:

class SupplyRequirement < GeneralAllocation
 self.table_name = "supply_requirements"
 self.primary_keys = [:id_task, :supply_id]
 belongs_to :resourceType,:class_name =>:ConsumableType, :foreign_key =>:supply_id
 composed_of :quantity, :class_name => 'Quantity',
 :mapping => [["quantity","amount"],["qty_unit","unit_id"]],

4.5.3 Association to general classes with horizontal specializations

The Action class has a bidirectional association to ResourceAllocation. This
association, however, implies six different FKs from the six leaf specializations of
ResourceAllocation, all pointing to Action.

4.5.3.1 Using JPA
MappedSuperclasses cannot participate on queries, and JPA does not contains a

solution to a bidirectional mapping from Action to ResourceAllocation. It allows the
mapping of the association from the MappedSuperclass to an Entity, but not the
opposite direction.

A solution to this problem is to map each leaf association as a protected one-to-
many association at the Action class, and then expose a composite collection that
bridges, according to the object type, to the correct inner mapping. This can only work
because these mappings are not ordered. Our example uses the CompositeSet
implemented by the commons collections (APACHE FOUNDATION, 2008).

@Entity public class Action {
@Transient private CompositeSet<ResourceAllocation> resources = null;
@Transient public Set<ResourceAllocation> getResources() {

return resources; // resources is initialized with all requirements
}
@OneToMany(mappedBy="action")
protected Set<SupplyRequirement> getSupplyRequirements() //...
@OneToMany(mappedBy="action")
protected Set<ConsumableAllocation> getRequiredConsumable() //...
@OneToMany(mappedBy="action")
protected Set<EquipmentRequirement> getEquimentRequirements() //...
// the same to all scheduledEquipments, workRequirements,assignedEmployees
protected void setSupplyRequirements(Set<SupplyRequirement> supplyRequirements) {

addToResourceSet(this.supplyRequirements, supplyRequirements);
this.supplyRequirements = supplyRequirements;

} // repeat this set method for every type of resource...

The Action class exposes the composite collection resources, a transient property
that is composed of all collections of the six leaf ResourceAllocation types. The
resources variable is maintained by calling addToResourceSet for every collection
initialized by the protected setters. An inner mutator class implements the behavior of
transferring added objects to the right collections:

private class ResourceMutator<E> implements CompositeSet.SetMutator<E> {
public boolean add(CompositeCollection<? extends E> composite ,
 Collection<? extends E>[] collections, Object obj) {
if (obj instanceof SupplyRequirement) {

return getSupplyRequirements().add((SupplyRequirement) obj);
} else if (obj instanceof ConsumableAllocation) {

return getRequiredConsumable().add((ConsumableAllocation)obj);
// … and so on...

97

4.5.3.2 Using SqlAlchemy
The polymorphic_union solves maps, of all resources, transparently into the property

resources of the Action.

4.5.3.3 Using ActiveRecord of Ruby
The bidirectional mapping action-resourceAllocation is not supported by RAR. We

mapped only the direction from ResourceAllocation to Action, and as a workaround,
implemented a read-only access to the resources association end of Action:

class Action < ActiveRecord::Base
 self.table_name = "task"
 def resources
 ret = []
 ret += WorkRequirement.where(:id_task=>id)
 ret += SupplyRequirement.where(:id_task=>id)
 #(repeat to every specialization (omitted...)
 ret.freeze #make it readonly
 return ret;
 end #...

This solution, however, is not aware of changes at the other side. A better solution
would be to make resources observe changes at the specialization classes.

4.6 Remarks about implementing ENORM models

ENORM models graphically represent the mappings over the OO structure of class
models. From the implementation examples we can create a correspondence between
the concepts of ENORM, and its counterparts at each platform, presented by Table 4.1.

Table 4.1: Main correspondence of ENORM concepts.

ENORM JPA SA RAR
Persistent @Entity mapper Base
DataSource @Table,

@SecondaryTable,
@JoinTable

Table, Join create_table

PK @Id primary_key primary_key
Column @Column Column t.<column def>
AssociationDef, any
association with
persistent ends

@ManyToOne,
@OneToMany,
@ManyToMany,
@OneToOne

relationship, secondary belongs_to, has_many,
has_and_belongs_to_many,
has_one, join_table

Bidirectional assoc. mappedBy backref inverse_of
JoinColumn @JoinColumn(s) ForeignKey, primaryjoin foreign_key, t.references
Embed @Embedded,

@Embeddable
composite,
__composite_values

composed_of

Flat, Vertical,
Horizontal

@Inheritance,
@MappedSuperclass,
@DiscriminatorValue

inherits,
polymorphic_identity

sti_name, polymorphic

DiscriminatorColumn @DiscriminatorColumn polymorphic_on find_sti_class
Overrides @AttributeOverride,

@AssociationOverride
column_property alias_attribute

Often this correspondence is not straightforward, due to CoC or the specific way
each framework works. For example, a Persistent class may not have a Datasource
specified, but by convention we have to declare a Table object at SA, or the

98

implementation will not work. A @JoinTable JPA annotation is both a data source
specification and a many-to-many mapping specification, but the secondary attribute of
SA is only a mapping, the table is specified apart.

Another issue is the non-trivial mapping of UML concepts to the platform specific
concepts, summarized at Table 4.2. The first non-trivial concept is the property itself,
that can be just an instance variable, or represent secondary structures, such as access
operations (getters and setters).

At our implementation, we think the property as an abstraction, including the
instance variable and other dependent elements. Using JAVA, we follow the Java Bean
convention of private instance variable, and method based access control; for SA, the
method itself makes reference to the instance variable, because the class does not
declare instance variables. Moreover, persistent properties are automatically managed
by SA and RAR, and are not declared within the classes.

Table 4.2: UML class mappings, non trivial cases.

UML JPA SA RAR

property “Java bean” property Mapping and methods Property, if not persistent

Abstract/redefined
association/end

abstract access method abstract access method -

isOrdered x isUnique List or Set […],Set , order_by […],Set, order

leaf element final <does not apply> <does not apply>

lower card. 0 or 1 nullable=true/false nullable=true/false null=true/false

Interface Interface <does not apply> <does not apply>

aggregation - - -

composition - - -

The isOrdered and isUnique combinations, however, affects the type of collection
used to represent the association ends, if it is a set, a sequence (list) or a bag. For RAR
and SA, persistent collections are lists when the order is specified at the mapping.
Abstract associations, and redefined ends, are another issue, already discussed at the
examples.

Aggregation and composition are high level abstractions that can be implemented
with distinct strategies. We decided to not use these concepts as input to a particular
implementation. The usual implementation consequences, such as cascading and eager
fetch for composites, should be explicitly designed.

4.6.1 Guidelines for MDD

Models are abstractions of what is, or will be, implemented. Therefore, platform
specific decisions should be taken by the transformation process that turns models into
code. The example implementations at this chapter covered several situations where the
developer had to create specific elements, ranging from variable names to classes and
operations. These decisions are based upon PSI, hard coded at the transformation and/or
contained at other model.

99

The Figure 3.25 proposed the scenario where PSM is the code, and that the
transformation knows how to pick the correct decision based upon PSI, complementary
to the ENORM model. This information is updated by the code itself, when the reverse
operation is executed, in such a way that the following forward transformations would
not override specific decisions taken by the developers. Ultimately, all PSI can be
extracted by the code itself, accessible at a version controlled repository.

We identified several PSI elements, summarized by the table 4.3. The JPA, RAR,
and SA columns describes at what platforms the PSI is relevant. The Representation
column presents a list of possible information source.

Any PSI can be dealt exclusively by convention, what means that the transformation
decides, and there will not have any flexibility. Parametrized means general parameters
passed to the transformation that affects how the transformation will work, for all
elements. Marks are fine grained parameters, specified by a platform specific
complementary profile, applied at the ENORM models. Models are information
represented by other models. Finally, code is the result of the aforementioned reverse
engineering process.

Table 4.3: Platform specific information.

PSI JPA RAR SA Representation

PK class (name, properties, …). X Code, marks.

Annotation position. X Code, parametrized, marks.

Method (operation implementation). X X X Code, models.

File names. X X X Parametrized, models.

Mapping names. X Parametrized, marks.

Default PK X X Parametrized

Emulating inheritance X Parametrized

The implementation of the operations is behavior, and is better represented by other
UML models, such as activity and sequence diagrams, and by code. UML lacks an
action language (MELLOR et al., 2004), therefore it is difficult to use diagrams to
represent behavior without some extension.

File names affects secondary files derived from the classes. A convention such as
one file for each class may partially solve this problem, but there are specific situations,
such as the migrations of RAR, or the PK classes of JPA. It is difficult to track file
name changes when reverse engineering: do they represent a new concept, or an old
concept at a new artifact? UML has the component model, that can be used to specify
the artifacts that implement the classes.

The PK classes of JPA can have operations and other details, as any other class.
They can be public, or classes visible only at the package level. To achieve a finer
control of the specification, marks can be used. JPA also allows the placement of
annotations at methods or variables.

100

On the other hand, SA names each mapping and table, associating with variables.
There are distinct ways of organizing these mappings, within the classes, or at a
separated module. The way a transformation name and organize the mappings could be
parametrized, because they do not usually depends on the concept. In a similar way, the
emulation of inheritance for RAR, if supported by the transformation, is a candidate for
being parametrized.

Table 4.4: Design questions and response scope.

Domain What to observe/question during project design PIM PSM

Model If the framework has a data-model that controls persistence, how does it work with
object-oriented domain models?

X

Are operations assigned to classes that extend generated classes or domain classes do
not support operations?

X

Classes Are inheritance to ORM framework classes mandatory? X

Is there some dependency to framework classes on domain classes? Can it be
decoupled?

X

Which table(s) are mapped to that class? X

Is the identity mapping defined? one or more attributes? X

How the identity will be assigned? Will generation parameters for the identity be
necessary? (such as table of ids, sequences, auto-columns...)

X

Embedded Is it necessary to distinguish a class as embeddable? X

Is it possible to define preferred mapping for attributes? X

Is it used as identity for persistent classes? X

Should the ID class follow specific rules required by the ORM framework? X

Relationships from embeddable values to other domain classes may be unsupported. X

Attribute Does it match a database column type or should it be an embeddable value? X

If it is part of a composite Identity, does it represent an embeddable value class
containing PK fields or each attribute of the identity is an individual attribute?

X

Type parameters, such as length and precision were defined? Is the cardinality
matching NULL/NOT NULL constraints?

X

Association Should a collection type be defined? X X

How to deal with element ordering? X

Can/Should the fetch configuration be specified? X

Will the relationship attribute be loaded by a proxy? X

The collection must have a reverse attribute or collection in the opposite class that
maintains a bidirectional relationship. Is it defined and documented?

X

Is the relation Attribute-Collection-FK clear and well documented? X

Is a join table clearly defined, with FKs to the tables mapped to the related classes? X

In what cases a join table must be explicitly implemented as an association class? X

Maps and element collections. X

Inheritance What strategy will be employed? X

Is a discriminator column necessary? X

Does the persistence framework support classes in an inheritance hierarchy with
distinct Identities (PKs)?

X

101

The Default PK is a PSI that specifies how a class, without specified PK, will be
identified: what will be the name of the column, the type, and other details. RAR
already defines the default PK.

Taking the questions raised at the Table 2.3, we can now check at what abstraction
level each question can be better answered, using the ENORM model at Table 4.4. The
questions that are described by the ENORM model are marked at the PIM column, and
the questions that are platform dependent are at the PSM column.

For instance, should a class extend the framework, or there is a loose coupling
mechanism? This is a PSM detail, and therefore the ENORM model should not show if
the class extends Base::Activerecord. If operations should be placed at another class,
this also should not be presented at the ENORM model. PSM information, such as
@Embeddable annotations used by JPA, are also omitted, but the embedment can be
represented at the association.

Regarding the collection type, it is partially specified by the model (by the
isOrdered/isUnique combination), but can be further detailed at PSM level, to answer
what implementation of Set should be used, as an example.

102

5 EMPIRICAL EVALUATION

The use of a single model can be criticized because it would violate the principle of
separation of concerns, and thus decrease the quality of the resulting models
(MITCHELL, 1990). However, representing the concepts of software and persistence in
the same model, does not automatically means breaking the orthogonal representation
of concepts. ENORM models still separates tables and classes, and can be easily,
automatically in fact, transformed to pure class or relational view models. In a similar
way, aspect oriented languages, such as AspectJ, allows the writing of aspects and
classes in the same files, representing the relationship between those concepts, and
promoting a better SoC.

Moreover, one can argue that using two separated models with so many similar
concepts violates the DRY principle (HUNT and THOMAS, 1999). In that scenario,
using a single model would save time and avoid repeated work. However, the question
remains, do the notation proposed by ENORM impair system design? That is a good
question for a controlled experiment based answer.

Controlled experiments allow the evaluation of specific steps of the software
process, by controlling several input variables. They require less resources than case
studies in the industry, and may evaluate the notation independently from analysis and
development (WOHLIN et al., 2012). This chapter presents the experiment design,
execution, and the analysis of the results in order to assess that ENORM single notation
does not decrease the quality of models, and may perhaps increase its quality,
independently of MDD or code generation facilities.

5.1 Experimental Related Work

From what we could find out, there are few experiments comparing persistence and
software artifact modeling activities, and none comparing two models with one model.
In retrospect, experimental comparison between ER (CHEN, 1976) and Extended
Entity-Relationship (EER) models (TEOREY, YANG and FRY, 1986), presented
empirical evidence that EER models performed better than ER models, despite the
inclusion of concepts such as generalization, specialization, and categories (BATRA,
HOFFLER and BOSTROM, 1990). As for controlled experiments with teams, a recent
systematic review did not find any paper evaluating tools in the context of a team (KO,
LATOZA and BURNETT, 2013).

EER models with mandatory properties and subtype relationships, had also a
superior understandability over plain ER models with optional properties (GEMINO
and WAND, 2005), despite its increased grammar complexity. Another study indicated

103

that OO was preferred by more experienced designers, for the task of conceptual
modeling databases (JAIN, GORE and SINGH, 2009).

According to our research, recent experimental studies on Software Engineering and
models focus on the comprehension of models, mostly regarding the use of profiles,
such as (CRUZ-LEMUS et al., 2011; JÚNIOR, PENTEADO and DE CAMARGO,
2010); or the interference of using models in some process (ALBAYRAK, 2009;
STÅLHANE and SINDRE, 2008). Even when the focus includes maintenance, the
participants are not asked to model, but to choose between models answering a
multiple-choice questionnaire (LUCIA et al., 2010). Our experiment differ from this
trend of surveying the participants about models, by requiring the participants to
actually draw models, as in other experimental comparisons such as (BATRA,
HOFFLER and BOSTROM, 1990; JAIN, GORE and SINGH, 2009).

5.2 Planning and Design

The Goal-Question-Metric (GQM) provides a template to the experiment definition
by setting measurable goals (WOHLIN et al., 2012). The general goal is an answer to
the question:

General Goal: “Do the ENORM notation affects in a negative way the modeling
activities in comparison with the separated use of relational and class models?”

The object of evaluation is the modeling activity, regarding the quality of models
and the time spent to complete a task. However, this general goal is too wide and
ambitious to be achieved. The following constraints must be taken into account:

1. Rel. and UML are notations with a large user base. Most IT professionals have
some level of experience with, at least, one of the modeling methods. ENORM
is a new notation, and even with training, it could not (currently) compare to the
practical experience that professionals have with UML and relational models.
Not without really extensive training.

2. It is easy to find relational and class models real world use cases, but there is not
yet such use cases with the new notation.

3. Without experimental validation, it is hard to convince any organization to
invest its time and money on new tools and experiments.

4. The modeling activity, taken independently of development, is subjective to be
evaluated. Given a problem to someone model would require someone to judge
the quality for this model: does it accomplish the task? If not, how many goals
were achieved? regarding the small universe of specialists of the new notation,
all of them are somewhat connected to the research itself.

5. The modeling activity is not equals to model comprehension. Presenting models
and multiple choices questionnaire is very different from the actual work of
modeling, by hand or using a software.

The goal was constrained to fit these restrictions as follows:

To analyze the modeling activity for the purpose of comparing the use of separated
relational and class models with ENORM, with respect to the quality and time, from the

104

viewpoint of student/novice system designers, in the context of solutions using ORM
patterns or frameworks.

The following questions derive from the above goal: what method is more efficient,
and what method deliver better quality? The main candidate metrics are percentage of
success, errors, and time to finish each task.

Moreover, modeling can be evaluated individually or on team work. Therefore we
presupposed two type of experiments, one applied to evaluate individuals and another to
simulate social interaction and cooperation using distinct models, hereafter referred as
individual and group experiments. The remaining of this section details the subjects,
hypothesis, variables, design, and instrumentation of the experiments.

5.2.1 Subjects

The controlled experiments were executed at the Universidade Federal do Rio
Grande do Sul. The subjects were selected among the senior undergraduate students of
computer science, and graduate students attending software engineering or advanced
database classes. Among the undergraduate students, only those attending the advanced
software engineering class, and that were approved in the basic database and software
engineering courses were selected to participate, assuring a minimal understanding of
class models, relational models, and the IMP. The graduate students have a more
diverse academic and professional background.

With regard to the ethics of the experiment, it is important to note that the
experiments were part of a series of extra-laboratory exercises conducted within the
software engineering and databases courses and students were not evaluated (graded) on
their performances. Moreover, these laboratory exercises were not part of the courses,
the students participated at its own free will. An informed consent was presented and
signed by each participant. None of the participants had any connection to our research
until the experimental sessions.

Table 5.1 shows the distribution of the participants among the experiments. The
group experiment was executed only one time with 30 undergraduates of the software
engineering class. All other subjects participated in the individual experiments (I1 and
I2). In I1, the subjects were evenly distributed by the type of course (undergraduates,
graduates), with the same number of graduates and undergraduates at each experimental
group.

Table 5.1: Subjects and experiments.

Id Experiment Characteristics Year Subject Type Subjects

P Pilot Using paper, limited time, crossover 2011 Graduates 16

I1 Individual 1 Using tool, limited time, crossover 2012 Both 69

I2 Individual 2 Using tool, unlimited time 2013 Graduates 44

G Group Using tool, groups, auto-evaluation 2013 Undergraduates 30

All participants were trained with ORM concepts, class models, relational modeling,
and the ENORM notation. The training included a small task executed in the same way

105

as the individual experimental tasks. The material used in the training was available to
consult during the experiment2. Furthermore, the participants could use any consulting
material available in the internet.

All participants had the same training, before the beginning of the experiment,
despite being selected to the control group of the non cross-over repetition. Despite the
training focus in the new notation, the notations used by the control group were also
revisited in the training, with an ORM focus. We believe that knowledge about
ENORM could help the participants in the making of separated models by stressing the
difficulties inherent to ORM and the IMP.

In the experiment G, we explored the fact that the participants were all colleagues,
leaving to them the decision to select design partners. We also let then choose who had
a better database background to play the part of DAs.

5.2.2 Task Design

The first decision about task design is to decide its origin. The ideal setting is the
controlled experiment using a real task, in a real work place, found in a real system, but
with a controlled environment. This ideal hardly can be achieved due to the following:

- An experiment with a real problem, in a real setting would take a long time to
execute (days to weeks). Therefore it turns out to be difficult to control.

- A real problem adapted to a controlled setting is often reduced, for instance by
using the rule of seven (MILLER, 1956). Here enter the risk of the experiment designer
choosing the most convenient “seven” pieces, what may configure a threat to validity.

- A task designed solely to the experiment may also favor a treatment and presents
the additional threat of being artificial.

5.2.2.1 Individual Experiments
Without a real problem with a real base solution using ENORM, we opted to employ

tasks designed solely to the experiment. In order to alleviate the interaction of setting
and treatment threat, we decided to employ Analysis Patterns (FOWLER, 1996) as the
base theme for our individual experiments.

Analysis patterns are themselves an established way to divide complex problems in
relatively small solutions described by OO models. Therefore we can decrease the
artificiality, and avoid the rule of seven by using patterns for tasks. However, analysis
patterns are not specifically oriented to designing data persistence nor ORM, such
details had to be added to the cases.

We decided to evaluate the modeling activity, thus eliminating the perhaps easier to
analyze way of presenting models and asking objective questions to the participants.
But we had to decide to ask participants to create models, change models, or both
activities. Therefore we decided that the tasks that better reflect the designing are those
that evolve already existing models.

However, the evaluation of models is tricky, can easily became subjective, and
works better with a team of independent evaluators. We could not afford to recruit such

2 Training material, videos in Portuguese: http://www.inf.ufrgs.br/~atorres/tutorial/

106

team of evaluators, and train a crew would be another threat of validity. A solution was
to make the tasks as most objective as possible.

In that sense, the use of Analysis Patterns offered an answer in itself, because some
patterns are refinements or generalizations of others. Taking the Account pattern for
instance, we could evolve the basic model to include the Multi-legged Transaction and
the Summary patterns (FOWLER, 1996). The task would be, therefore, to present a
model of Account, and an objective description of what changes in classes and database
must be taken, to evolve the model to include the more refined patterns. The critical
point was to define a step list that is objective enough, to reach only one or very few
possible outputs.

Having a starting model, and an objective step list guiding to the resulting model,
would free our analysis of subjective measurements, by the cost of reducing the creative
liberty of the experiment. The advantage is that the models could be analyzed by a
software, with clear objectives, implemented in a programming language open for
audition, and therefore better controlling the reliability of measures threat.

5.2.2.2 Group Experiment
In the group experiment the focus was in model integration. In the first stage, each

subgroup designs a solution for an independent problem. In the second stage, groups
have to work together a solution that uses the same database, with minimal replication
and impact over the DA initial design.

We created three distinct applications with a few common requirements, one for the
DA initial design, and two for the software development designs. These tasks were
specifically created to the experiment, and the idea was to let the groups use their
creativity. To evaluate the tasks, we decided to make each group auto-evaluate their
resulting models, in order to have a distinct viewpoint of the more objective individual
experiment. This auto-evaluation included objective questions requiring each group do
explain how their solution would attend some practical cases. This would be
complementary to the evaluation employed in the individual experiments.

5.2.3 Hypothesis Formulation, Factors and Variables

The following basic hypothesis were formulated for the experiments:

Null hypothesis (Hs0): there is no difference in the rate of success, performing
changes in models using separate relational and class models, or a single ENORM
model. (misses (ENORM) = misses(Rel., UML)).

Alternative hypothesis 1 (Hs1): The rate of success, performing changes in models
using separate relational and class models, is INFERIOR than single ENORM model.
(misses(ENORM)<misses(Rel.,UML)).

Alternative hypothesis 2 (Hs2): The rate of success, performing changes in models
using separate relational and class models, is SUPERIOR than single ENORM model.
(misses(ENORM)>misses(Rel.,UML)).

The basic design for the experiments is the one factor with two treatments. The
factor of interest is the set of design notations used named method, that identifies the
treatment. The method is a two level independent variable assuming A for the use of one
class and relational models, and B for the use of one ENORM.

107

The main dependent variable is the number of unreached goals, referred here for
brevity as misses. Nevertheless, this number is actually a measure of success (KO,
LATOZA and BURNETT, 2013), evaluated by previously defined goals covering
certain features. If every model in a task achieves all goals, the task has a score of zero
misses.

The following measures were taken to control the experimental enviroment:

- Configuration: Hardware and operational system is a concern that can affect the
outcome of any experiment. Fortunately, the laboratory available for the experiment had
the exact same configuration for all participants, with same hardware, operational
systems, browsers, memory and so on.

- Sessions: The entire experiment was prepared to be executed locally and remotely,
although only the local execution was executed. The training was designed as an
individual task with fixed time frame equal to all participants on each experiment (I1,
I2, and G). Inside this time frame (1:30 hours), the participant could study the materials,
and no further explanations were given by the conductors. The experiment itself was
managed by a tool, allowing each participant to start in different times. In that sense,
participating on distinct sessions had no influence in the outcome.

- Experiment: each experiment was analyzed independently for the hypothesis due
to the distinct mechanics.

- Tasks: for the individual experiment I2, the task is a four level independent
variable. At I1, each task was analyzed independently, because they were performed at
different days, and had a greater variation of subjects. In the group experiment, every
group executes all tasks, and each group is a subject, therefore task is not a variable on
G.

- Ability and experience: the subject ability in relational and class models may vary,
but it is difficult to establish at this stage what abilities are relevant to solve ORM
problems. The crossover of I1 controls this factor by using the within-subjects technique
(ROSENTHAL and ROSNOW, 2007), although the learning effect had to be later taken
in calculation (KO, LATOZA and BURNETT, 2013). For the other experiments, no
assignment technique was adopted. Nevertheless, the ability of each participant was
surveyed, after each experiment, in terms of experience on various areas from general
system development to ORM frameworks usage.

All experiments assume results as statistically relevant at α = 0.05, meaning that the
derived p-value must be less than 0.05 to conclude that the null hypothesis can be
rejected. In the I1 experiment, the sequence of the crossover is an independent variable
that can assume two possible values. For the I2 experiment, the time is measured as a
dependent variable. The hypothesis testing of time is as follows:

Null hypothesis Ht0: there is no difference in the time necessary to perform changes,
in models using separate relational and class models, or a single ENORM model. (Time
(ENORM) = Time(Rel., UML)).

Alternative hypothesis 1 (Ht1): Time(ENORM)<Time(Rel.,UML)).

Alternative hypothesis 2 (Ht2): Time(ENORM)>Time(Rel.,UML)).

108

In the group experiment, the hypothesis is modified because one of the members of
the group uses relational models to administrate the database. Therefore the comparison
is between integrating relational and class models of developers (A) or ENORM models
of developers (B) with relational models of the DA.

The main statistical analysis test for the individual experiments is the Analysis Of
Variance (ANOVA), despite other analysis employed to check the data, such as the
linear correlation between time and missed goals. For the group experiment, the Mann-
Whitney test was employed due to the small number of subjects.

5.2.4 Tasks and Feature Coverage of the Individual Experiment

First we selected the Analysis Patterns which would form the starting point for each
experiment. Each unit begins with a diagram representing these patterns, and a set of
instructions to the application of one or more related pattern improvements over the
initial model. The participants have a fixed time to perform the modifications before
moving to the next case. Patterns, pattern improvements, and instructions were
extracted from the literature (FOWLER, 1996), although persistence details were added.
These persistence details were created to cover features of ORM, from mapping
artifacts with different names to inheritance and object embedding. It is important to
emphasize that although ENORM relates to persistence design patterns, the experiment
assess the use of ORM concepts in the design of analysis patterns.

Table 5.2: Analysis patterns and tasks.

TaskAnalysis Domain Starting Patterns Patterns for improvements

1 Accountability Address book Party

2 Accountability Accountability Knowledge level, party type

3 Accounting Account, transaction,
quantity

Multilegged transaction, summary
account

4 Planning Resource allocation Resource allocation with time period

Table 5.2 shows, for each task, what is the analysis domain, the starting patterns of
the initial model, and the patterns used to compose the list of steps presented to the
participants in order to execute the task. Figures 5.1 and 5.2 shows models presented to

Figure 5.1: Task 1 - Address Book UML and ER models.

109

the participants performing the first task, named Address Book, of the control (A) and
experimental (B) groups.

The class models are similar to the models provided in the original material of
Fowler, but complemented by relational models that represent one possible database
that could be mapped using ORM. Looking at both models it is possible to identify the
persistence patterns that were used, such as class embedding of Address and Email
along Person and Companies tables. The following list of steps was asked to each
participant with treatment A, in order to apply the Party analysis pattern:

a) Person and Company will now specialize the new abstract class Party.

b) Person and Company will now be persisted at the same table named PARTIES.
The PK of PARTIES should have the same type and length of Persons´s PK and
should be named “ID_PARTY”.

c) Move the name attribute (common on Person and Company) to the Party class.

d) PARTIES table should have a not null column named PARTY_TYPE with length of
one, discriminating party types between Person (PARTY_TYPE=”P”) and Company
(PARTY_TYPE=”C”). Specify that this column can only assume one of these two
values.

e) Relationships from Person and Company to classes Address, Telephone and Email
will be unified to relationships between Party and Address, Telephone and Email.

f) Telephone should relate to exactly one Party, but a party may have many
telephones.

The participant performing the experimental set (B) will be presented with only one
model using the ENORM notation that represents exactly the same classes and database,
but with explicit mappings, as shown by Figure 5.2. The list of steps presented to the
participant is equivalent to the control group, but referring to the notation language of
the single model:

a) Person and Company will now specialize the new abstract class Party.

b) Use the flat inheritance mapping between Party and its subclasses Person and
Company. Specify the discriminator named PARTY_TYPE assuming values P for
person or C for company.

Figure 5.2: Task 1 - Address Book ENORM model.

110

c) Move the name attribute (common on Person and Company) to the Party class.

d) Relationships from Person and Company to classes Address, Telephone and Email
will be unified to relationships between Party and Address, Telephone and Email.

e) Telephone should relate to exactly one Party, but a party may have many
telephones.

Table 5.3: Feature coverage and task goals.

Feature under evaluation Task Goals
Abstract association 3 Account to Entry is abstract
Abstract concept 1 Party should be an abstract class

2 Organization not abstract
3 Account should be abstract

Aggregation 1 Party aggregates Address
Association table 2 Correct many-to-many acctype_comissioners

2 Correct many-to-many acctype_responsibles
Class persistence 2 Party Type should be persistent

2 Party Type with correct table name
4 User is persistent

Class Removal 2 Rule concept was not removed
Create class 3 Include Summary Account

3 Include Detail Account
4 Create User class

Create embedded class 4 Create Time Period
4 start and end on Period
4 Incorrect cardinality for start or end
4 TemporalAllocation should relate to one period
4 Allocation is unidirectional to period
4 TimePeriod is Embeded on TemporalAllocation

Dependent entity 3 DetailAccount part of Entry's PK
Discriminators on inheritance 1 Discriminator name should be defined

1 Discriminator values specified
3 discriminator column type
3 type can assume S or D

Distinction between table and class 1 PARTIES table to persist Party
Flat inheritance 1 Party should be persistent

1 Person/Company should not have tables
2 Remove specializations of Organization

Join column naming 3 JoinColumn named acct_number for Entry
3 Account with joincolumn named summary

Lower cardinality 1 Party associated to one Address ? Many-to-one?
1 Party associated to ONE EMail

Many-to-Many 2 A party can have many types
2 Party type may have many parties
2 AccountabilityType can ref. many Party Types
2 Party type may reference many Accountability

Types
Many-to-one 3 Zero-Many Entries should relate to one Detail

Account
4 Resource Allocation to one User

Many-to-one/(many) 2 Every party must ref. a Party Type
2 AccountabilityType must reference a Party Type

111

Feature under evaluation Task Goals
Many-to-zero/(many) 2 Party type may have zero parties

2 Party type may have zero accountabilities
Move association to super-class 1 Person/Company should not be associated to

Telephone
1 Party should be associated to Telephone
1 Telephone should relate to at min. 1 Party

Move properties to super-class 1 Name column on Party
Multiple sub-typing 2 Definition of Party Type
Navigability 1 Party to Address is unidirectional

2 PartyType is not navigable to party
3 Account to Entry is unidirectional

Persistence of embeddment 1 Address should be embedded in Party
1 EMail should be embedded in Party

Properties 2 Description property on Party Type
2 Description column with String stype
2 Description column with correct length

Property removal 4 Schedule attribute removed
Read-only feature 3 Summary Account to Entries read only
Transient feature 3 Summary Account to entries not persistent
Upper cardinality 1 Many Telephones for Party ? One-to-many?
Use extension x association 1 Party should not be associated to Person

1 Party should not be associated to Company
Use of embeddment 1 Party associated to Address

1 Party associated to EMail
Use of extension 1 Person should extends Party

1 Company should extends Party
3 Summary Account specializes Account
3 Detail Account specializes Account

Use of PK 1 Expected PK for Party/PARTIES
4 Login is the PK of User

Vertical inheritance 3 Summary Account vertical inheritance
3 Detail Account vertical inheritance
3 Summary should be persistent
3 Detail should be persistent

Zero/one-to-many 3 Zero-one Summary to many Account
3 Summary Account to many entries

The expected correct answer for Address Book using two models or one model is the
same in terms of classes and database constructs. The models are presented in the tool
that manged the experiment, and the participant follows the steps changing the models.
The models are evaluated by a matrix of goals based upon the steps, as listed by Table
5.3.

Each goal missed counts as one. For the control group that have two models, if the
goal is missed in one of the models it counts as one, but if the same goal is missed in the
two models, it still counts only as one miss (same missed goal). Some goals can only be
missed in one model, such as direction of association, because they have no effect in the
relational model. This approach makes the maximum number of missed goals the same,
no matter the method in use.

112

5.2.5 Tasks of the Group Experiment

Each group had a total of 5 subjects and was assigned with the same tasks using
either treatment A or B. The experiment had three stages:

1. In the first stage, each group DA worked in the persistence model (and only the
persistence model) for a room´s booking application. The remaining participants
were subdivided in two subgroups of two subjects, randomly assigned to the
meeting scheduling application, and the appointment book application. For the
group experiment, the random assignment was performed by picking method
and application from pieces of paper in a bag. Each subgroup were asked to
model the applications, both classes and persistence, using the treatment
assigned to his group, but the DAs should use only relational models and care
only about the database. This stage had a time limit of 40 minutes.

2. In the second stage the entire group sits around one computer with all models
produced to each of the three applications and the task of integrate meeting
scheduling and appointment book applications using the room´s booking data
model as a legacy database. All groups were asked to find a solution with
minimal tables, sharing common information, and with minimal changes to the
database model produced by the DA. This stage had a time limit of 50 minutes.

3. In the third stage, executed in another session, each group receives a
questionnaire containing hypothetical data, and a set of thirteen yes/no
questions. The questionnaire was the same, regardless the applied treatment.
Each question asks the group to check if some functionally would work under
certain circumstances according their solution, and asks the group to show how
the data would be fetched and updated in the database. The group must discuss
and choose a consensus answer. For this last task, the groups had 1:30 hours.

The only material subject to analysis in this case was the questions resulting from
the auto-evaluation of each group, although the participants did not knew that their
explanations would not count. Moreover, a minimal survey with four questions was
presented in order to evaluate the difficulty level of the tasks.

5.2.6 Experimental Setting

We had to adapt our tasks and methodology to time constraints along each
experiment. The experimental design for I1 employed crossover, but implied a time
limit for the tasks. That was necessary due to the fact that using crossover required
twice the time, because each participant had to perform the tasks using experimental and
control methods.

The pilot experiment was performed at 2011, using paper and ink to create models.
It served to show the limitations of time and paper to our initial design. We were
already developing a design tool for ENORM, and decided to improve this tool, to
support modeling with simple class and relational models (the last using the crow´s foot
notation). Therefore, the following experiments were executed using the modeling tool,
that also managed time, the sequence of experiments, and the evenly assignment of
subjects among experimental groups.

113

The tool, based on Eclipse (ECLIPSE FOUNDATION, 2012a) and a web servlet,
provided a balanced setting for a modeling experiment: similar interface, similar
resources, same environment. Figure 5.3 shows screen shots of the tool presenting task
3 (Account) for treatments A and B. The feature set of the tool was, as much as possible,
the same for all notations, with minimal changes in the toolbar that included specific
elements for DB and ENORM. Also, eclipse allows to visualize the models side by side,
one above the other, or one at time, moving the various frames of the workspace. The
participants had the opportunity to test the tool before the experiment itself, during the
training class, with a simpler task.

The first set of experiments (I1) was performed at 2012 using the tool, in two
distinct sessions. Each participant executed tasks using one treatment, and then repeated
the tasks with the other treatment. The first treatment to be used was selected by the
order of login in the tool, that distributed evenly the methods applied to the students.
The login order was dependent on the participant arrival order, which can be considered
random in the scope of this experiment: the first receiving treatment A, followed by B;
the second receiving treatment B followed by A; the third receiving A, followed by B;
and so on.

Table 5.4: Tasks and time constraints for experiment I1.

Task Session Name Time Limit Participants Sequence

1 1 Address book 10 min.
69

1A, 2A, 1B, 2B or

1B, 2B, 1A, 2A2 1 Accountability 20 min.

3 2 Account 20 min.
35

3A, 4A, 3B, 4B or

3B, 4B, 3A, 4A4 2 Resource allocation 23 min.

Table 5.4 shows the tasks, time limits, the total number of participants for each
session, and the possible sequences of experiments. At each session, each participant
performed the tasks using one method and then repeated the tasks using the opposite
method. About half participants of I1 could not participate on more than one session.
Some did not show, but many could not participate in two sessions.

The advantage of the crossover technique is to minimize the influence of experience
background, because every participant will have to solve each task with each possible

Figure 5.3: Screen shots of treatment A (left) and B (right) using the modeling tool.

114

treatment. On the other hand, the analysis must take in account the learning effect.
Another issue was the time limit determined for each task, that affected the
measurement of the time variable. The majority of the participants used the maximum
available time, rendering the time variable useless on I1. All participants were aware of
the remaining time of each task, by a small timer presented by the tool.

The second group of experiments (I2) was performed at 2013, and employed the
same tasks and tools, but without crossover nor time limits. Each subject experienced
only one treatment, at a single session, using the same random treatment distribution. If
the time reserved for the experiment was too short, the participant could choose to stop
before completing the last task.

Table 5.5: Codes used in the group experiment for random assignment.

Code Application G1A G2A G3A G1B G2B G3B

DA Room´s booking 100A 110A 120A 100B 110B 120B

S1 Meeting scheduling 101A 111A 121A 101B 111B 121B

S2 Appointment book 102A 112A 122A 102B 112B 122B

The group experiment was also performed at 2013 using a slightly distinct version
of the same tool, capable of displaying various models at the same time. DAs were
volunteers among the subjects, and the other participants decided with who they would
work in pairs. Hence, each pair picked a random piece of paper in a bag telling what
method (A, B) to use, the application they should design, and the number of the other
pair they had to integrate (numbers ending with one and two at Table 5.5). After that,
each DA picked a piece of paper from a bag determining the pairs they would work
with in the integration stage, half to each method (numbers ending with zero).

Despite the use of a tool, the purpose of these experiments was not to evaluate a
modeling tool. This was clearly stated to the participants, and the tool features were
essentially the same for users of class, relational, or ENORM models.

5.3 Results and Analysis

Each of the three experiments (I1, I2, and G) have distinct characteristics that had to
be taken in account for the data analysis and the interpretation of experimental results.
In the next sections we explain the data analysis process and the results obtained of each
controlled experiments. All analysis were performed with Statistical Analysis System
(SAS), version 9.2, and supervision of statistics from the center for statistical advice
(Núcleo de Assessoria estatística – NAE 3) of our university.

5.3.1 Individual Experiment with Crossover (I1)

The first experiment employed a balanced crossover design, where each treatment
was applied to each subject, and the starting order was balanced so that the same
number of subjects started with treatment A and B. The analysis of variance (ANOVA)
was employed to compare treatments A (UML+Rel.) and B (ENORM) making it
possible to to verify the residual effect in the sequence of activities. In other words,

3 http://www.mat.ufrgs.br/~nae/

115

given two groups of participants seq1 and seq2, with seq1 experiencing A followed by
B, and seq2 experiencing B followed by A, test if there is a significant difference
between seq1 and seq2 executing the same methods in distinct sequence.

Table 5.6 shows the analysis results considering method (treatment), sequence (the
order starting by A or B) and period (two period design of crossover), all effects with
the Numerator Degrees of Freedom equals to 1. For each experimental task, DF is the
denominator Degrees of Freedom, f-value (F) is the Fisher statistic and P is the p-value
for the comparison of the misses variable.

Table 5.6: Results for the ANOVA of misses considering the sequence.

Addr. Book Accountability Account Resource Alloc.

Effect DF F P DF F P DF F P DF F P

Method 62 35.01 <.001 54 55.35 <.001 35 8.77 <0.01 33 101.79 <.001

Seq. 67 0.34 0.56 67 0.66 0.42 35 1.14 0.29 35 1.36 0.25

Period 62 4.17 0.045 54 0.00 0.97 35 6.68 0.01 33 2.96 0.1

For every task, according to the data of Table 5.6, there is a significant difference
between methods A and B, with method B presenting a lower mean of misses (Address
Book, F=35.01, P<0.001; Accountability, F=55.35; P<0.001; Account, F=8.77;
P<0.01; Resource allocation, F=101.79; P<0.001). The sample evidence does not
confirm the presence of residual effect, given the absence of statistical significance for
the effect of sequence (Address Book, F=0.34; P=0.56; Accountability, F=0.66;
P=0.42; Account, F=1.14; P=0.29; Resource allocation, F=1.36; P=0.25).

The analysis of the results of I1 rejected the null hypothesis (Hs0), and favored the
alternative hypothesis (Hs1) of ENORM in all four tasks. Despite the crossover setting,
the test results indicates that there is no evidence of learning from one activity to the
other. Since the design was a crossover, with all participants experiencing both
treatments for all tasks, we did not checked for the uniform distribution of experience
levels among experimental groups. The time could not be analyzed due to the high
percentage of participants using the maximum available time.

5.3.1.1 Analysis of the Feedback
After the experiment, each participant was asked to answer two questions, about his

experience using the single model and the separated models. The questions were not to
compare the methods, but instead capture the general feeling about the single model
method, after experimenting both approaches:

1. Putting aside the notation, do you think that this new approach improves the efficiency
and efficacy of software refactoring? (Yes/No/Don't Know)

2. Do you think that the proposed notation facilitates changes and refactoring of information
systems? (Yes/No/Don't Know)

For the first question, 73.6 % of the participants think that a single model approach
improves efficiency and efficacy. In the second question, 68.9% of the participants
think that ENORM facilitates the tasks of changing models. Figure 5.4 shows the results
for the questionnaire.

116

5.3.2 Individual Experiment with Time Measurements (I2)

The second experiment applied to the students was a design with random assignment
of participants between treatments A (UML+Rel.) and B (ENORM), without time
limits. In this experiment we measured non-accomplished goals (misses) and the
amount of time used by each participant performing each task (inter-subject variable),
using one method (between-subject variable).

Before analyzing the results, we tested the correlation between the variables time
and misses in order to establish if time should be a covariate of misses. The linear
correlation test of Pearson was applied to all data (N=157 measurements of subjects in
each task), yielding a result of p=0.23, indicating no significant correlation between
time and misses.

Based in this test, we performed independent ANOVA tests for repeated measured
of misses and time. Because the data presented variance heterogeneity, it was necessary
to first transform the data, with the method of minimal pondered squares, with its
variance considered in the composition.

5.3.2.1 Results Regarding the Variable “Misses”
The factors Group and Task were first tested for interaction of the variable misses,

yielding a significant interaction effect of Group*Task, with p=0.0292. Following this
result, we applied the Tukey-Kramer multiple comparisons test to compare the means of
the interaction Group*Task, and determine what tasks have a significant variance in the
mean number of misses between groups.

Table 5.7: Least square means of misses at I2, with adjustment Tukey-Kramer.

Task Group N Least square mean Pr > |t|

Addr. Book
A 21 7.8095238

0.9992
B 23 7.0869565

Accountability
A 21 9.6666667

0.0109
B 23 5.6521739

Account
A 18 14.2563014

0.4986
B 19 11.3597870

Resource
A 15 8.9046605

<.0001
B 17 3.7468807

Table 5.7 presents the results for Tukey-Kramer test. Each task is detailed in terms
of groups, number of subjects in this group (N), least square mean, and the p-value

Figure 5.4: Feedback of I1.

117

regarding the significance in the mean number of misses comparing the groups per task.
In tasks Accountability and Resource, we can conclude that the mean number of misses
is significantly distinct on groups A and B, with p=0.01 and p<0.001 respectively. The
participants using treatment B had a lesser mean number of misses in every task than the
participants using treatment A. However, in tasks Address Book and Account, the mean
number of misses is not significantly different.

5.3.2.2 Results Regarding the Variable “Time”
The factors Group and Task were again tested for interaction, but for the dependent

variable time. The ANOVA results did not showed a significant interaction effect of
Group*Task in relation to the response variable time, with p=0.5915. Therefore, we
could not make any affirmation about the significance of time for combinations of
Group and Task. The individual factor analysis showed that the Group factor did not
had a significant difference in the mean time to execute the tasks, independently of task,
with p=0.482. Table 5.8 shows the original data means and standard deviations for time.
Regarding time, the null hypothesis (Ht0) was not rejected.

Table 5.8: Original data of variable time at I2.

Task Group N Mean time Std. Dev.

Addr. Book
A 21 1585.09524 1373.42899

B 23 1660.34783 1532.10368

Accountability
A 21 1783.76190 785.01757

B 23 1482.13043 442.67753

Account
A 18 1468.05556 702.80944

B 19 1613.21053 750.29924

Resource
A 15 858.66667 388.13762

B 17 650.00000 199.35019

5.3.2.3 Experience Level Influence
In this section we check if the distribution of participants among groups A and B at

I2 was fair in terms of the experience of subjects. Each participant selected an
experience level between zero and three in nine categories of knowledge: General
computer science, OO languages, development using ORM, SQL, SQL extensions,
XML, CMs, system design, and database design and/or administration.

Table 5.9: Group statistics for experience levels.

Group N Mean Std. Deviation Std. Error Mean

A 21 14.14 7.74 1.69

B 23 14.35 6.29 1.31

118

The sum of experiences (total) of each participant is our dependent variable, as
summarized by Table 5.9. Thus, we checked if the total experience of the participants of
groups A and B are equivalent, using a t-test.

Table 5.10: T-test for Equality of Means (Equal variances assumed).

T-test for Equality of Means Value

t -0.097

Sig. (2-tailed) 0.923

Mean Difference -0.20

Std. Error Difference 2.12

95% Confidence Interval of the Difference (Lower) -4.48

95% Confidence Interval of the Difference (Upper) 4.07

We first applied the test of Levene for equality of variances, that resulted in the
assumption of equal variances (F=0.75; Sig. 0.39). Therefore, the test-t (Table 5.10) was
applied to check if there is a variation in the mean experience level of the participants.
The test showed no such variation (0.923 significance). Figure 5.5 shows a graphic of
the mean experience distribution between groups using methods A or B.

5.3.2.4 Analysis of the Feedbacks
The participants of I2 experienced only one treatment, so the questions were distinct

from I1. This time the focus was to capture difficult levels, from 1 to 5 (question 1-3),
and the preferred modeling method.

1. Indicate the difficulty level for the identification of concepts, attributes,
and relationships as database or software artifacts.

2. Indicate the difficulty level to accomplish the asked tasks.

Figure 5.5: Experience levels among groups (graphic).

119

3. Indicate the difficulty level to represent inheritance, many-to-many
relationships and primary keys.

4. Between keeping two separated models or have only one unified model,
choose the option that better reflects your preference

The results are plotted by the two graphics of Figure 5.6 The difficulty levels for
identification of concepts was higher using the method B, but not with a big difference:
the mean difficulty using relational and class models was 2.5 of 5, and using single
notation was 3 of 5, a difference of 0.5. The other difficulty levels presented differences
of 0.27 and 0.1 respectively to questions Q2 and Q3.

Figure 5.6: Mean difficulty levels (Q1-Q3, left) and preferred method (Q4, right).

However, applying the Mann-Whitney U Test over the data sets do not reject the null
hypothesis, as presented by Table 5.11. This test was not corrected for ties, and the p-
values could not be computed to exact values, but p is quite high. There is no significant
difference between the means of difficult levels for each question at different groups.

Table 5.11: Mann-Whitney U test applied to difficult levels.

Method N

Means P-values

Q1 Q2 Q3 Q1 Q2 Q3

A 204 2.50 2.95 2.25 0.09 0.34 0.82

B 23 3.00 3.22 2.35 0.09 0.34 0.82

The preferred method both for the subjects that experienced with ENORM (B) and
for the subjects that were in the control group (A) was the single model approach.
Moreover, the number of subjects that always prefer a single model is greater in the
group using ENORM than in the control group. However, the percentage of participants
preferring single modeling is greater in the group that used treatment A in comparison
with the group that used treatment B.

5.3.3 Group Experiment (G)

The group experiment response variable was the number of misses in a questionnaire
of auto-evaluation comprising thirteen yes/no questions. The total group of participants
was 30, but the questionnaire, as the task itself, was answered by groups with five

4 One of the participants did not complete this survey.

120

students each. Because of that, the effective number of subjects is the number of groups
(6). The data gathered was analyzed with Mann-Whitney U Test, and we opted for the
exact test of significance (exact significance) due to the small size of the sample.

Table 5.12: Mann-Whitney ranks, means, and deviation of G.

Method N Mean rank Sum ranks Mean Std. Deviation Total misses

A 3 3.67 11.00 5.67 2.52 17

B 3 3.33 10.00 5.33 2.08 16

Total 6 – – – – –

Table 5.12 shows the parameters of the test, with N referring to the number of
subjects (groups of five students) assigned to each treatment, along with ranks, mean,
and deviation. The result of the test with p>0.99 shows that there was no significant
difference between the means of different methods. We could not reject the null
hypothesis, and the small sample size makes difficult to generalize that there are no
differences in using A nor B.

5.3.4 Analysis Summary

This section analyzed the data obtained in three experiments comparing the notation
ENORM with the use of separated relational and class notations. The first two
experiments compared the use of a single model against two independent models by
individual subjects, the first with a within-subjects design. The third experiment
compared the use of ENORM and relational models with class and relational models by
groups of individuals simulating the integration of applications and legacy databases.

The I1 experiment obtained the better results for ENORM by rejecting the null
hypothesis for all tasks. In I2, half the tasks rejected the null hypothesis favoring
ENORM, and half the tasks could not reject the null hypothesis regarding the missed
goals. Regarding the time variable, we could not find a correlation between the method
and the measured time at I2. In the group experiment, we could not reject the null
hypothesis regarding the missing goals.

Finally, regarding the surveys of the individual experiments, the participants had a
positive opinion about the new notation. Regarding the opinion about the difficult level
of the I2 experiment, there was no significant difference between the mean values.

A complete report about the experiments can be found at our website5. Appendixes
A, B, C, and D presents further material describing the experimental tasks and
presenting supplementary graphical view of the results. Annexes A and B includes the
reports, in Portuguese, produced by the NAE.

5.4 Validity Evaluation

In this section we discuss the threats to validity that affect our study, following
(WOHLIN et al., 2012).

5 http://www.inf.ufrgs.br/~atorres/experiments/

121

5.4.1 Internal Validity

Internal validity is concerned with the relationship between treatment and outcome.
The main internal validity threats to our experiments are maturation, imitation of
treatments, compensatory rivalry, resentful demoralization, and instrumentation.

The maturation threat happens due to the growing lack of interest or the learning
effect. We addressed this threat by offering a training with small scale experiment and
by constructing a set of cases with growing difficult level. At I1, we addressed the
testing threat by not presenting the correct answers to the participants.

The imitation of treatments happens when subjects did not use the treatment they are
expected. Because all participants had training with ENORM, we had to control this
threat by limiting the available notations to the subject according to his group (I2, G), or
sequence (I1).

Compensatory rivalry and resentful demoralization are opposite reactions due to the
same factor, a subject that ended at an unpleasant group. This threat is stronger at I2,
because participants experienced only one treatment. This may explain the higher
preference of ENORM in the group that did not use the notation.

Finally, instrumentation threat is also a problem when we create models, the tools
must present a similar productivity. To face this threat, we developed a tool that could
be used to create all models with similar features and limitations. This, however, may
introduce problems in the data collection to people used to commercial modeling tools.

5.4.2 Construct Validity

Construct validity is a matter of judging if the treatment reflects the cause construct
and the outcome provides a true picture of the effect construct. The main construct
validity threats are mono-method and operation bias, hypothesis guessing, and
interaction of different treatments.

We assumed risks regarding mono-method and operation bias. The first due to the
use of a single modeling tool, the second by having one (two, considering the time at I2)
dependent variable.

The hypothesis guessing threat was alleviated by instructing the subjects about the
importance of a fair dedication, despite they liking or not the new approach. It was just
not possible to hide the hypothesis due to the fact that one of the treatments is new.

The interaction of different treatments threat is present in the cross-over experiment
(I1), because each task is repeated using each treatment. The learning effect in this
situation is inevitable, and the treatments interact. The analysis had to take in account
the sequence variable, and check for the learning effect.

5.4.3 External Validity

External validity is concerned with generalization of experiment results. The main
external validity threats are interaction of setting and treatment and interaction of
selection and treatment.

The interaction of setting and treatment threat happens when we try to generalize a
toy-problem to the real world. We addressed this by choosing problems that reflect
Analysis Patterns as replacement to a real problem.

122

The interaction of selection and treatment threat is an effect of having subjects that
are not representative of the population we want to generalize. By using graduate and
undergraduate students, we assume a risk of using inexperienced subjects. Nevertheless,
the majority of these students have work experience, and at least are in the final stage of
the undergraduate course.

5.4.4 Conclusion Validity

Conclusion validity is concerned with our ability to draw the right conclusions about
the relationship between the treatment and the outcome. In other words, it concerns if
our data analysis is consistent with our conclusions. The main conclusion validity
threats are reliability of measures, random heterogeneity/homogeneity of subjects,
random irrelevancies in experimental setting, and low statistical power.

The reliability of measures threat is a major risk in this set of experiments. By taking
models as the input of users, and setting ourselves the goals, we trade construct and
external validity for less reliable measures. It is difficult to track, in an objective way,
models to problems. But they reflect more closely what designers do in comparison
with answering objective questions. The measures taken to check the reliability are
automate and double check the achieved goals, because completely independent
evaluators would not be available.

The random heterogeneity of subjects threat is also present, specially when using
students from the same region, due to the higher homogeneity of the group. This is
another threat that we have to assume at this moment, and is only alleviated by the
presence of undergraduates and graduates.

The random irrelevancies in experimental setting threat was addressed by choosing
the correct tests and performing the necessary tests to assure their validity. The
population experience was also tested for the mean experience level variation at each
group, checking that the participants were randomly distributed.

The low statistical power is a problem that mainly affects the group experiment (G).
By taking each group as a subject, this experiment would require a great number of
participant, or smaller groups, to perhaps reject the null hypothesis. The results strongly
indicates (p~1) no difference between the treatments.

123

6 CONCLUSION

This thesis presented ENORM, a single model notation to represent objects,
relations, and its mappings. ENORM extends UML with a small set of new visual
elements, and a meta-model comprehending the essential patterns of ORM, in the
context of the most expressive ORM solutions, among popular development platforms,
such as Java, Ruby, Python, and Microsoft.net.

At first we presented a survey relating the ORM patterns identified by the literature,
and current practices among ORM tools. This survey addressed the relevant patterns,
organizing in several criteria, and presenting examples and specific cases for JPA, RAR,
SA, Entity Framework, Cayenne, and MyBatis. At the end, we summarized a set of
design decisions related to the use of ORM.

At chapter 3 we presented the ENORM notation, explaining its visual elements,
meta-model, special cases, limitations, and related notations. This chapter also explains
the modeling tool that implements ENORM, and the future road to MDD tools
employing ENORM.

At chapter 4 we focused in the proof by code of ENORM, by discussing the
implementation of four domain models using JPA, RAR, and SA frameworks. At the
end of the chapter, we summarize the concepts, identifying what are the platform
specific information left out of ENORM, and what steps may be taken to implement
MDD transformations.

At chapter 5 we presented the results of three controlled experiments to assess that
ENORM single notation does not decrease the quality of models, independently of
MDD or implementation. All experiments were focused at the modeling activity, two
evaluating individuals, and one experiment evaluating groups. None of the experiments
had significant disadvantage for ENORM at missed goals, or time necessary to perform
the tasks. Moreover, ENORM had significant less missed goals at all tasks of the first
experiment, and half the tasks on the second experiment.

Concerning the future work, in order to be considered as a complete solution,
ENORM still needs a MDD tool, and there are still open questions about what is the
best way to deal with code generation, round-trip engineering, and what are the MDD
techniques best suited to implement such tool. Moreover, the empirical evaluation of
ENORM would be stronger if a case study could be performed with real projects.

We can identify the following themes for future work:

• Empirical evaluation of ENORM with other experiments and a case study.

124

• Formalization of the ENORM constraints, according to the distinct frameworks
constraints.

• Specification of queries and data access operations, such as finders, by models.

• Systematically identify differences between ORM frameworks, patterns, and
ENORM.

• Transformations and/or code generation from/to ORM frameworks.

Despite these elements, left for future work, ENORM is a comprehensive platform
independent notation for ORM design, with an original single model approach, focused
at practical ORM tools, and a ready to use modeling tool for the developer community.
Moreover, the feedback from the participants was positive regarding its DRY
characteristics, and the maintenance of ORM systems.

125

REFERENCES

ADYA, A. et al. Anatomy of the ADO.NET entity framework. In: ACM SIGMOD
INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2007.
Proceedings... Beijing, China: ACM, 2007, p. 877–888.

ALBAYRAK, O. An experiment to observe the impact of UML diagrams on the
effectiveness of software requirements inspections. INTERNATIONAL SYMPOSIUM
ON EMPIRICAL SOFTWARE ENGINEERING AND MEASUREMENT, 3RD, 2007.
Proceedings... Washington DC: IEEE Computer Society, 2009. p. 506-510

AMBLER, S. Agile database techniques: Effective strategies for the agile software
developer. New York: John Wiley, 2002.

AMBLER, S.; HARTFORD, E.; RUECKERT, A. A UML Profile for Data Modeling.
Available at: <http://www.agiledata.org/essays/umlDataModelingProfile.html>.
Accessed on: apr. 2014.

AMBLER, S. W. Agile modeling: Effective practices for eXtreme programming
and the unified process. 1st edition. New York: J. Wiley, 2002.

AMERICAN NATIONAL STANDARDS INSTITUTE. ANSI/X3/SPARC Study
Group on Data Base Management Systems; Interim Report. FDT (Bulletin of
ACM SIGMOD) [S.l.:s.n], 1975.

APACHE FOUNDATION. CompositeSet (Commons Collections 3.2.1 API). Available
at: <http://commons.apache.org/proper/commons-collections/javadocs/api-
3.2.1/org/apache/commons/collections/set/CompositeSet.html>. Accessed on: jan. 2014.

APACHE FOUNDATION. Apache Cayenne. Available at:
<http://cayenne.apache.org/>. Accessed on: apr. 2014.

ATKINSON, M. P.; BUNEMAN, O. P. Types and persistence in database programming
languages. ACM Computing Surveys, v. 19, n. 2, p. 105–170. New York: ACM, 1987.

ATZENI, P.; JENSEN, C. S.; ORSI, G.; et al. The relational model is dead, SQL is
dead, and I don’t feel so good myself. SIGMOD Rec., v. 42, n. 1, p. 64–68. New York:
ACM, 2013.

BATRA, D.; HOFFLER, J. A.; BOSTROM, R. P. Comparing representations with
relational and EER models. Commun. ACM, v. 33, n. 2, p. 126–139. New York: ACM,
1990.

BAUER, C.; KING, G. Hibernate in Action. 2nd edition. New York: Manning
Publications, 2004.

126

BAYER, M. SQLAlchemy - The Database Toolkit for Python. Available at:
<http://www.sqlalchemy.org/>. Accessed on: apr. 2014.

BEGIN, C.; GOODIN, B.; MEADORS, L. iBatis in Action. 1st edition. New York:
Manning Publications, 2007.

BERLER, M.; EASTMAN, J.; JORDAN, D.; et al. The object data standard: ODMG
3.0 (R. G. G. Cattell & D. K. Barry, Eds.) Morgan Kaufmann Publishers Inc., 2000.

BERNSTEIN, P. A.; MELNIK, S. Model management 2.0: manipulating richer
mappings. In: ACM SIGMOD INTERNATIONAL CONFERENCE ON
MANAGEMENT OF DATA, 2007. Proceedings… New York: ACM, 2007. p. 1-12..

BEYDEDA, S.; BOOK, M.; GRUHN, V. Model-Driven Software Development. 1st
edition. New York: Springer, 2005.

BORK, M.; GEIGER, L.; SCHNEIDER, C.; ZÜNDORF, A. Towards Roundtrip
Engineering - A Template-Based Reverse Engineering Approach. In: I. Schieferdecker;
A. Hartman (Eds.); Model Driven Architecture – Foundations and Applications,
Lecture Notes in Computer Science.Springer Berlin Heidelberg, 2008, p. 33–47.

BROWN, K.; WHITENACK, B. G. Crossing chasms: a pattern language for object-
RDBMS integration: the static patterns. In: Pattern languages of program design 2.
Boston: Addison-Wesley, 1996. p. 227-238.

CARBONNELLE, PI. PYPL PopularitY of Programming Language index - pyDatalog.
Available at: <https://sites.google.com/site/pydatalog/pypl/PyPL-PopularitY-of-
Programming-Language>. Accessed on: feb. 2014.

CHEN, N. Convention over Configuration. Available at:
<http://softwareengineering.vazexqi.com/files/pattern.html>. Accessed on: feb. 2014.

CHEN, P. P.-S. The entity-relationship model - toward a unified view of data. ACM
Trans. Database Syst., v. 1, n. 1, p. 9–36. New York: ACM, 1976.

COPELAND, G.; MAIER, D. Making smalltalk a database system. SIGMOD Rec., v.
14, n. 2, p. 316–325. New York: ACM, 1984.

CRUZ-LEMUS, J. A.; GENERO, M.; CAIVANO, D.; et al. Assessing the influence of
stereotypes on the comprehension of UML sequence diagrams: A family of
experiments. Information and Software Technology, v. 53, n. 12, p. 1391–1403.
Newton, MA, USA: Butterworth-Heinemann, 2011.

DAYAL, U.; BERNSTEIN, P. A. On the correct translation of update operations on
relational views. ACM Trans. Database Syst., v. 7, n. 3, p. 381–416. New York:
ACM, 1982.

DEMICHIEL, L. JSR-000338 Java Persistence 2.1 - Final Release. Available at:
<https://jcp.org/aboutJava/communityprocess/final/jsr338/index.html>. Accessed on:
apr. 2014.

DERSTADT, J.; VEGA, D. POCO Proxies Part 1 - ADO.NET team blog - Site Home -
MSDN Blogs. Available at: <http://blogs.msdn.com/b/adonet/archive/2009/12/22/poco-
proxies-part-1.aspx>. Accessed on: oct. 2012.

127

DISKIN, Z.; XIONG, Y.; CZARNECKI, K. From State- to Delta-Based Bidirectional
Model Transformations. In: L. Tratt; M. Gogolla (Eds.); Theory and Practice of
Model Transformations, Lecture Notes in Computer Science.Springer Berlin
Heidelberg, 2010, p. 61–76.

DR NIC WILLIAMS; CHARLIE SAVAGE. Composite Primary Keys. Available at:
<http://compositekeys.rubyforge.org/>. Accessed on: feb. 2014.

ECLIPSE FOUNDATION. Eclipse.org home. Available at: <http://www.eclipse.org/>.
Accessed on: jan. 2014a.

ECLIPSE FOUNDATION. GEF. Available at: <http://www.eclipse.org/gef/>. Accessed
on: apr. 2014b.

ELMASRI, R.; NAVATHE, S. B. Fundamentals of Database Systems. 4th edition.
Boston, MA, USA: Addison Wesley, 2003.

FOWLER, M. Analysis Patterns: Reusable Object ModelsBoston, MA, USA:
Addison-Wesley Professional, 1996.

FOWLER, M. Martin Fowler Bliki: POJO. Available at: <http://www.martinfowler.com
/bliki/ POJO.html>. Accessed on: apr. 2014.

FOWLER, M. Patterns of Enterprise Application Architecture. Boston,
Massachusetts, USA: Addison-Wesley Longman Publishing Co., Inc., 2002.

GAMMA, E.; HELM, R.; JOHNSON, R.; VLISSIDES, J. M. Design Patterns:
Elements of Reusable Object-Oriented Software. 1st edition. Boston, MA, USA:
Addison-Wesley Professional, 1994.

GARCIA-MOLINA, H.; ULLMAN, J. D.; WIDOM, J. Database Systems: The
Complete Book. 2nd edition. Upper Saddle River, New Jersey, USA: Prentice Hall,
2008.

GEMINO, A.; WAND, Y. Complexity and clarity in conceptual modeling: Comparison
of mandatory and optional properties. Data & Knowledge Engineering, v. 55, n. 3, p.
301–326. Amsterdam, The Netherlands: Elsevier Science Publishers, 2005.

GOSLING, J.; JOY, B.; STEELE, G.; BRACHA, G. Java(TM) Language
Specification, The (3rd Edition). 3rd edition. USA: Addison Wesley, 2005.

HARTFORD, E. XMI2SQL. Available at: <http://xmi2sql.sourceforge.net/>. Accessed
on: apr. 2014.

HEINEMEIER HANSSON, D. Active Record - Object-relation mapping put on rails.
Available at: <http://ar.rubyonrails.org/>. Accessed on: apr. 2014.

HOFMANN, M.; PIERCE, B.; WAGNER, D. Symmetric lenses. In: ANNUAL ACM
SIGPLAN-SIGACT SYMPOSOUM ON PRINCIPLES OF PROGRAMMING
LANGUAGES, 38th, 2011. Proceedings... New York: ACM, 2011. p. 371-384.

HUNT, A.; THOMAS, D. The Pragmatic Programmer: From Journeyman to
Master. 1st edition. Boston, MA, USA: Addison-Wesley Professional, 1999.

128

ISO. ISO/IEC 14977:1996 - Information technology -- Syntactic metalanguage --
Extended BNF. Available at: <http://www.iso.org/iso/home/store/catalogue_tc/
catalogue_detail.htm?csnumber=26153>. Accessed on: feb. 2014.

JAIN, S. K.; GORE, M. M.; SINGH, G. An Experimental Study to Compare ER/EER
and OO Models. TECHNIA - International Journal of Computing Science and
Communication Technologies, p. 221–228. [S.l.:s.n].

JOUAULT, F.et al. ATL: a QVT-like transformation language. In: COMPANION
ACM SIGPLAN SYMPOSIUM ON OBJECT-ORIENTED PROGRAMMING
SYSTEMS, LANGUAGES AND APPLICATIONS, 21st, 2006. Proceedings...
Portland, Oregon, ACM, 2006. p. 719-720.

JÚNIOR, J. U.; PENTEADO, R. D.; DE CAMARGO, V. V. An overview and an
empirical evaluation of UML-AOF: an UML profile for aspect-oriented frameworks. In:
ACM SYMPOSIUM ON APPLIED COMPUTING, 2010. Proceedings... New York:
ACM, 2010. p. 2289-2296.

KELLER, A. M. Algorithms for translating view updates to database updates for views
involving selections, projections, and joins. In: ACM SIGACT-SIGMOD
SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS, 4th, 1985.
Proceedings... New York: ACM, 1985. p. 154-163.

KELLER, W. Mapping objects to tables: a pattern language. In: EUROPEAN
PATTERN LANGUAGES OF PROGRAMMING CONFERENCE, 1997. Siemens
Technical Report 120/SW1/FB 1997. Irrsee, Germany: [s.n.], 1997.

KO, A. J.; LATOZA, T. D.; BURNETT, M. M. A practical guide to controlled
experiments of software engineering tools with human participants. Empirical
Software Engineering, p. 1–32. New York: Springer Science, 2013.

LUCIA, A. D.; GRAVINO, C.; OLIVETO, R.; TORTORA, G. An experimental
comparison of ER and UML class diagrams for data modelling. Empirical Software
Engineering, v. 15, n. 5, p. 455–492. New York: Springer Science, 2010.

MARTIN, J. Managing the data-base environment. 1st edition. Englewood Cliffs,
NJ, USA: Prentice-Hall, 1983.

MELLOR, S. J.; SCOTT, K.; UHL, A.; WEISE, D. MDA Distilled: Principles of
Model-Driven Architecture. 1st edition. Reading, Massachusetts: Addison-Wesley
Professional, 2004.

MICROSOFT. ADO.NET Entity Framework. Available at:
<http://msdn.microsoft.com/en-us/library/bb399572.aspx>. Accessed on: jan. 2014a.

MICROSOFT. EntityObject Class (System.Data.Objects.DataClasses). Available at:
<http://msdn.microsoft.com/en-
us/library/system.data.objects.dataclasses.entityobject.aspx>. Accessed on: apr. 2014b.

MILLER, G. A. The magical number seven, plus or minus two: some limits on our
capacity for processing information. Psychological Review, v. 63, n. 2, p. 81–97.
Washington, DC, USA: American Psychological Association, 1956.

MITCHELL, R. J. Managing complexity in software engineering. v. 17. London,
UK: Peter Peregrinus Ltd., 1990.

129

DE MONTMOLLIN, G. The Transparent Language Popularity Index. Available at:
<http://lang-index.sourceforge.net/>. Accessed on: feb. 2014.

O’GRADY, S. The RedMonk Programming Language Rankings: January 2013 –
tecosystems. Available at: <http://redmonk.com/sogrady/2013/02/28/language-
rankings-1-13/>. Accessed on: feb. 2014.

OMG. OMG’s Model Driven Architecture. Available at: <http://www.omg.org/cgi-
bin/doc?omg/03-06-01>. Accessed on: apr. 2014.

OMG. Request For Proposal Information Management Metamodel (IMM). Available at:
<http://www.omgwiki.org/imm/lib/exe/fetch.php?
id=welcome_to_imm&cache=cache&media=05-12-02.pdf>. Accessed on: apr. 2014.

OMG. XML Metadata Interchange. Available at:
<http://www.omg.org/spec/XMI/Current/>. Accessed on: apr. 2014.

OMG. QVT 1.1. Available at: <http://www.omg.org/spec/QVT/1.1/>. Accessed on: apr.
2014a.

OMG. UML 2.4.1 Superstructure. Available at:
<http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/>. Accessed on: apr. 2014b.

OMG. Welcome to IMM - Information Management Metamodel. Available at:
<http://www.omgwiki.org/imm/doku.php>. Accessed on: apr. 2014.

ORACLE. What is Java Web Start and how is it launched? Available at:
<http://www.java.com/en/download/faq/java_webstart.xml>. Accessed on: apr. 2014.

PRESSMAN, R. Software Engineering: A Practitioner’s Approach. 5th edition. New
York, NY: McGraw-Hill Science/Engineering/Math, 2001.

PRESSMAN, R. S. Software engineering: a practitioner’s approach. New York:
McGraw-Hill Higher Education, 2010.

RED HAT MIDDLEWARE. Hibernate Tools - JBoss Community. Available at:
<http://hibernate.org/tools/>. Accessed on: apr. 2014.

ROSENTHAL, R.; ROSNOW, R. L. Essentials of behavioral research: methods and
data analysisBoston: McGraw-Hill, 2007.

RUBYONRAILS.ORG. ActiveRecord::NestedAttributes::ClassMethods. Available at:
<http://api.rubyonrails.org/classes/ActiveRecord/NestedAttributes/ClassMethods.html>.
Accessed on: apr. 2014.

SNEED, T. What’s New and Cool in Entity Framework 4.0 - DevelopMentor. Available
at: <http://www.develop.com/entityframework4>. Accessed on: apr. 2014.

STÅLHANE, T.; SINDRE, G. Safety hazard identification by misuse cases:
experimental comparison of text and diagrams. In: MODEL DRIVEN ENGINEERING
LANGUAGES AND SYSTEMS, 2008. Proceedings... Heidelberg: Springer, 2008. p.
721-735. Lecture Notes in Computer Science, v. 5301.

TEOREY, T. J.; YANG, D.; FRY, J. P. A logical design methodology for relational
databases using the extended entity-relationship model. ACM Comput. Surv., v. 18, n.
2, p. 197–222. New York: ACM, 1986.

130

TIOBE. TIOBE Software: Tiobe Index. Tiobe index. Available at:
<http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html>. Accessed on: apr.
2013.

WOHLIN, C.; RUNESON, P.; HÖST, M.; et al. Experimentation in Software
Engineering. Electronic edition. New York, NY, USA: Springer, 2012.

131

A APPENDIX A – CROSSOVER EXPERIMENT (I1)

The graphics presented at this section were produced using R version 3.0.2. The
statistical analysis was performed using Statistical Analysis System (SAS), version 9.2.

A.1 Address Book Task graphics

Figure A.1: Box-plot of misses ~method*sequence for address book at I1.

Where methods are A (control) and B (ENORM), and sequence can assume SA
when the participant performs first the task A, and SB when the participant performs
first the task B. A.SA are the results of method A when the subject starts with A, B.SA
are the results of method B when the subject starts with A, and so on.

132

Figure A.2: Normal q-q plot for address book at I1.

Figure A.3: Misses x method, given the sequence, for address book at I1.

133

A.2 Accountability Task Graphics

Figure A.4: Box-plot of misses ~ method*sequence for Accountability I1.

Where methods are A (control) and B (ENORM), and sequence can assume SA
when the participant performs first the task A, and SB when the participant performs
first the task B. A.SA are the results of method A when the subject starts with A, B.SA
are the results of method B when the subject starts with A, and so on.

Figure A.5: Normal q-q plot for Accountability I1.

134

Figure A.6: Misses x method, given the sequence, for Accountability I1.

A.3 Account

Figure A.7: Box-plot of misses ~ method*sequence for Account I1.

Where methods are A (control) and B (ENORM), and sequence can assume SA
when the participant performs first the task A, and SB when the participant performs
first the task B. A.SA are the results of method A when the subject starts with A, B.SA
are the results of method B when the subject starts with A, and so on.

135

Figure A.8: Normal q-q plot for Account I1.

Figure A.9: Misses x method, given the sequence, for Account I1.

136

A.4 Resources

Figure A.10: Box-plot of misses ~ method*sequence for Resource Allocation I1.

Where methods are A (control) and B (ENORM), and sequence can assume SA
when the participant performs first the task A, and SB when the participant performs
first the task B. A.SA are the results of method A when the subject starts with A, B.SA
are the results of method B when the subject starts with A, and so on.

Figure A.11: Normal q-q plot for Resource Allocation I1.

137

Figure A.12: Misses x method, given the sequence, for Resource Allocation I1.

138

B APPENDIX B – NON-CROSSOVER EXPERIMENT (I2)

The graphics presented at this section were produced using R version 3.0.2. The
statistical analysis was performed using Statistical Analysis System (SAS), version 9.2.

Figure B.1: Box-plots of mixes by group, for each task of I2.

139

Figure B.2: Box-plots of time (in seconds) by group, for each task of I2.

140

Figure B.3: Quantiles of misses, for each task of I2.

141

Figure B.4: Quantiles of time, for each task of I2.

142

C APPENDIX C – TASKS (INDIVIDUAL EXPERIMENTS)

All instructions were translated from the original in Portuguese. The tasks were
originally presented by the modeling tool to the participants.

C.1 Address Book

Instructions for treatments A and B.

C.1.1 Instructions - Treatment A

Figure C.1: Initial Address Book UML and ER models.

a) Person and Company will now specialize the new abstract class Party.

b) Person and Company will now be persisted at the same table named PARTIES. The
PK of PARTIES should have the same type and length of Persons´s PK and should be
named “ID_PARTY”.

c) Move the name attribute (common on Person and Company) to the Party class.

d) PARTIES table should have a not null column named PARTY_TYPE with length of
one, discriminating party types between Person (PARTY_TYPE=”P”) and Company
(PARTY_TYPE=”C”). Specify that this column can only assume one of these two
values.

e) Relationships from Person and Company to classes Address, Telephone and Email
will be unified to relationships between Party and Address, Telephone and Email.

f) Telephone should relate to exactly one Party, but a party may have many telephones.

C.1.2 Instructions - Treatment B

a) Person and Company will now specialize the new abstract class Party.

b) Use the flat inheritance mapping between Party and its subclasses Person and
Company. Specify the discriminator named PARTY_TYPE assuming values P for
person or C for company.

143

Figure C.2: Initial Address Book ENORM model.

c) Move the name attribute (common on Person and Company) to the Party class.

d) Relationships from Person and Company to classes Address, Telephone and Email
will be unified to relationships between Party and Address, Telephone and Email.

e) Telephone should relate to exactly one Party, but a party may have many telephones.

C.1.3 Expected Results

Figure C.3: Expected models (UML and database).

144

Figure C.4: Expected ENORM model.

C.2 Accountability

C.2.1 Instructions - Treatment A

Figure C.5: Initial Accountability persistence model.

Purpose: To represent all responsibility relationships between two "parties" such as who
is the chief of John Doe, who manages the division of Minas Gerais or offices that are
under the supervision of Serra Gaucha division.

145

Figure C.6: Initial Accountability UML class model.

Description of the concepts represented in the model:

Party = Legal party, general concept that encompasses entities such as persons and
organizations.

Accountability = Responsibility between two parties. The “Responsible” association
identifies who is the responsible for the entity represented by the “Commissioner”
association.

AccountabilityType = A type of responsibility registered. For instance: the
accountability of a division over a sales office; the accountability of a person as
manager of divisions, sales offices, or regions.

Rule = Rule that determines what type of Party can assume the positions of
Commissioner and Responsible. The rules are previously implemented and identified
by this relation. For example, an instance of Rule named “SalesOfficeToDivision”
restricts the relation for the accountability of one Division relating to one commissioned
sales office.

Task:

The current model has a limited number of organization classifications, demanding the
creation of new classes to represent each type of “Party”. The goal is to refactor the
model, allowing the dynamic registration of the existing types of parties. Another goal
is to register how the types of Party affect the accountability types
(AccountabilityType). Create a new model with mapped classes that includes all of
the following changes:

1. Remove the subtypes of Organization. Organization is no longer abstract.

2. Create a persistent class named PartyType that represents the types of Party. Add a
mandatory property named description, with String type and maximum length of 50.

3. Create a unidirectional association between Party and PartyType. One Party will
have one-to-many “PartyType”. One PartyType will have zero/one-to-many “Party”.

4. Remove the Rule class.

5. Create an association between AccountabilityType and PartyType classes, named
commissioners. This relation should be of zero/one-to-many AccountabilityType to

146

one-to-many PartyType. To persit this relation, define a join table with the name
ACCTYPE_COMISSIONERS.

6. Create an association between classes AccountabilityType and PartyType named
responsibles. This relation should be of zero/one-to-many AccountabilityType to one-
to-many PartyType. To persist this relation, define a join table named
ACCTYPE_RESPONSIBLES.

7. Name the ends so that associations of steps 5 and 6 could be distinguished.

8. Perform the necessary changes on the database mappings reflecting the required
changes, with the following guidelines:

 a) Specify the name of the join column attribute when there is two or more one-to-
many relationships between two classes.

 b) Specify a name for the join tables when there is two or more relationships many-to-
many between two classes. By standard, two instances (a1,b1) can only relate at most
one time, but may relate to any other instances as well, for example (a1,b2; a5,b1).

Guideline:

- The models should contain the minimal necessary changes (and nothing more) to meet
the requirements.

C.2.2 Instructions - Treatment B

Figure C.7: Initial Accountability ENORM model.

Purpose: To represent all responsibility relationships between two "parties" such as
who is the chief of John Doe, who manages the division of Minas Gerais or offices that
are under the supervision of Serra Gaucha division.

Description of the concepts represented in the models:

Party = Legal party, general concept that encompasses entities such as persons and
organizations.

Accountability = Responsibility between two parties. The “Responsible” association
identifies who is the responsible for the entity represented by the “Commissioner”
association.

147

AccountabilityType = A type of responsibility registered. For instance: the
accountability of a division over a sales office; the accountability of a person as
manager of divisions, sales offices, or regions.

Rule = Rule that determines what type of Party can assume the positions of
Commissioner and Responsible. The rules are previously implemented and identified
by this relation. For example, an instance of Rule named “SalesOfficeToDivision”
restricts the relation for the accountability of one Division relating to one commissioned
sales office.

Task:

The current models have a limited number of organization classifications, demanding
the creation of new classes to represent each type of “Party”. The goal is to refactor the
models, allowing the dynamic registration of the existing types of parties. Another goal
is to register how the types of Party affect the accountability types
(AccountabilityType). Create new class and database models that includes all of the
following changes:

1. Remove the subtypes of Organization. Organization is no longer abstract.

2. Create a class named PartyType that represents the types of Party. It will be
persisted at a table named PARTYTYPE. Add a mandatory property named
description, with String type and maximum length of 50.

3. Create a unidirectional association between Party and PartyType. One Party will
have one-to-many “PartyType”. One PartyType will have zero/one-to-many “Party”.
This association should be persisted at the database.

4. Remove the Rule class.

5. Create an association between AccountabilityType and PartyType classes, named
commissioners. This relation should be of zero/one-to-many AccountabilityType to
one-to-many PartyType. To persist this relation, define a table with the name
ACCTYPE_COMISSIONERS.

6. Create an association between classes AccountabilityType and PartyType named
responsibles. This relation should be of zero/one-to-many AccountabilityType to one-
to-many PartyType. To persist this relation, define a table named
ACCTYPE_RESPONSIBLES.

7. Name the ends so that associations of steps 5 and 6 could be distinguished.

8. Perform the necessary changes on the database model reflecting the required changes
at class model, with the following guidelines:

a) Remove unused tables.

b) Create necessary new tables for new classes of relationships.

c) Create, alter, or remove columns and primary keys (PKs) as a consequence of the
changes.

d) Create, alter, or remove columns with integrity references (Fks).

Guideline:

- The primary keys of the original tables should not be changed. New tables should
follow the pattern ID_#TABLE_NAME#.

148

- Join tables follows the standard name as a concatenation of the related tables. Their
PKs are composites of the FKs with name FK_ID_#FOREIGN_KEY#. By standard,
two instances (a1,b1) can only relate at most one time, but may relate to any other
instances as well, for example (a1,b2; a5,b1).

- The models should contain the minimal necessary changes (and nothing more) to meet
the requirements.

C.2.3 Expected Results

Figure C.8: Expected response for Accountability persistence model.

Figure C.9: Expected response for Accountability UML model.

149

Figure C.10: Expected response for Accountability ENORM model.

C.3 Account Task

C.3.1 Instructions - Treatment A

Figure C.11: Initial Account persistence model.

Figure C.12: Initial Account UML class model.

150

Accounts and transactions

The Account pattern models one account as a set of value entries (Entry).

Transaction) between two accounts register entries on the origin account, with positive
value, and destination account, with negative value. For example, when transferring 50
Reais from account A to account B, it is created a transaction with two entries, one
related to account A with value of R$ -50.00, and another to account B with value of R$
50.00.

At the presented model, accounts and transactions can represent different types of
things, with the type specified by the Unit associated to the registered Quantity.
Continuing the example, the entry of A is represented with a Quantity instance with
amount of -50 and unit R$. The relation quantity of Account is the value of the last
balance, IE, is calculated by the sum of all entries related to that account. The balance is
calculated by demand, and stored by the account with the balance date.

Task:

1. Implement multiple leg transactions. For inventory accounts, it is common the
scenery where the transaction involves several accounts. For example, when transferring
to the central depot 100 sacks of tobacco, we can registry that 70 sacks are from the
Santa Cruz unit account, and 30 from the Venâncio Aires unit account. This transaction
relates to three entries, one positive related to the central deposit account, and two
negatives related with Santa Cruz and Venâncio Aires. The sum of entries at one
transaction must always be zero, and the minimal number of entries is 2.

2. Implement summary accounts.

One SummaryAccount is a virtual account that represents a set of other accounts. The
“psychical” accounts are the detail accounts (DetailAccount) that relates with the
entries of distinct transactions. The balance of summary account is the sum of balances
of all their component accounts. The summary account can contain detail and other
summary accounts.

Changes in the class model.

To implement the summary accounts, create two specializations of Account:
SummaryAccount and DetailAccount. The relation entries between Account and
Entry should now be abstract and unidirectional from Account to Entry.
DetailAccount now implements entries, with a bidirectional relation between one
DetailAccount and zero or more entries.

Zero/One SummaryAccount relates to zero or more elements of the general Account,
by the bidirectional association components. SummaryAccount should implement the
relation entries, but as a derivative union of components.entries (just draw the relation
and mark the entries end as read-only). Finally, the Account class should now be
abstract, and continues to relate to its quantity.

Changes in the mappings.

SummaryAccount and DetailAccount should use the vertical inheritance strategy, at
which each class is stored in its own table with the same name. Define a discriminator

151

column at the specialization with name type and discriminator values S
(SummaryAccount) and D (DetailAccount).

The persistent relation between Entry and Account should now be between Entry and
DetailAccount. This relation is part of the primary key of Entry. The join column
name (acct_number) should be moved from the relation Entry and Account to the new
relation. The old relation is now abstract, and should not have any mappings.

Between the SummaryAccount and Entry, the entries relation must be marked as not
persistent and read-only. The relation components between Account and
SummaryAccount should be mapped with one join columns named summary at the
SummaryAccount end.

C.3.2 Instructions - Treatment B

Figure C.13: Initial Account ENORM model.

Accounts and transactions

The Account pattern models one account as a set of value entries (Entry).

Transaction) between two accounts register entries on the origin account, with positive
value, and destination account, with negative value. For example, when transferring 50
Reais from account A to account B, it is created a transaction with two entries, one
related to account A with value of R$ -50.00, and another to account B with value of R$
50.00.

At the presented model, accounts and transactions can represent different types of
things, with the type specified by the Unit associated to the registered Quantity.
Continuing the example, the entry of A is represented with a Quantity instance with
amount of -50 and unit R$. The relation quantity of Account is the value of the last
balance, IE, is calculated by the sum of all entries related to that account. The balance is
calculated by demand, and stored by the account with the balance date.

Task:

1. Implement multiple leg transactions. For inventory accounts, it is common the
scenery where the transaction involves several accounts. For example, when transferring
to the central depot 100 sacks of tobacco, we can registry that 70 sacks are from the
Santa Cruz unit account, and 30 from the Venâncio Aires unit account. This transaction
relates to three entries, one positive related to the central deposit account, and two

152

negatives related with Santa Cruz and Venâncio Aires. The sum of entries at one
transaction must always be zero, and the minimal number of entries is 2.

2. Implement summary accounts.

One SummaryAccount is a virtual account that represents a set of other accounts. The
“psychical” accounts are the detail accounts (DetailAccount) that relates with the
entries of distinct transactions. The balance of summary account is the sum of balances
of all their component accounts. The summary account can contain detail and other
summary accounts.

Changes in the class model.

To implement the summary accounts, create two specializations of Account:
SummaryAccount and DetailAccount. The relation entries between Account and
Entry should now be abstract and unidirectional from Account to Entry.
DetailAccount now implements entries, with a bidirectional relation between one
DetailAccount and zero or more entries.

Zero/One SummaryAccount relates to zero or more elements of the general Account,
by the bidirectional association components. SummaryAccount should implement the
relation entries, but as a derivative union of components.entries (just draw the relation
and mark the entries end as read-only). Finally, the Account class should now be
abstract, and continues to relate to its quantity.

Changes in the database.

SummaryAccount and DetailAccount are persisted at its own tables, with a
many(summary/detail)-to-zero/one Account. The primary key will be the account
number, overriding the relationship to zero/one-to-one. Create a discriminator attribute
at Account, named type, with char (1) type, and that can assume the values S or D.

The relationship components should be implemented as a many-to-zero/one
relationship between Account and SummaryAccount, with a foreign key named
summary.

The relationship entries should be moved to be between the table DetailAccount and
Entry, and continues to define the primary key of Entry.

Do not forget to alter the class and database models.

153

C.3.3 Expected Results

Figure C.14: Expected response for Account persistence model.

Figure C.15: Expected response for Account UML class model.

Figure C.16: Expected response for Account ENORM model.

154

C.4 Resource Allocation

C.4.1 Instructions - Treatment A

Resource allocation for action (tasks)

A legacy resource allocation system was integrated with another, object oriented
framework based system, specializing the classes of the basic pattern to reflect the
database structure at use. The goal of the system is to specify the necessary resources to
perform tasks (actions), before and/or after its execution. The resources are allocated in
a generic way, by referencing its type, or at a specific way, referencing the
consumed/allocated elements.

Classes of the resource allocation pattern:

Action: Action or task. Lists a set of resource allocations necessary for the execution.

ResourceAllocation: a general resource allocation related to one Action and one
Quantity.

Quantity: represents a pair (quantity, unit) specified for each resource allocation. All
resource allocations have quantity/unit of resources.

Unit: Measure units for supplies and time.

GeneralAllocation: a generic resource allocation that specified only the resource type
at use.

ResourceType: resource type, can be allocated in generic way.

AssetType: a non consumable resource type, such as teacher, car or computer.

ComsumableType: a non consumable resource type, such as ink, paper, or gas.

SpecificAllocation: a specific resource allocation: what teacher, what car, or what and
where came from the ink and paper.

TemporalAllocation: specific allocation of asset resources, allowing to register the
time of utilization (past or future).

Asset: a non consumable resource, reusable and measured by time of use. Ex. Professor
Gary Booch.

ComsumableAllocation: allocation of consumable resources, specifying its source.

Holding: Identified the source for a specific consumable resource type
(ComsumableType).

155

Figure C.17: Initial Resource allocation persistence model.

156

Figure C.18: Initial Resource allocation UML class model.

157

The following classes distinguishes non consumable resources that are human and
psychical.

EquipmentType: types of equipments.

Equipment: available equipments. An equipment can be of more than one type of
equipment.

Post: Posts or functions that can be exercised by employees to accomplish an action.

Employee: Employee or consultant, able to exercise one or more functions.

SupplyRequirement: generic allocation for supplies, specifying only the type of supply
at use.

EquipmentRequirement: generic allocation of an equipment type.

WorkRequirement: generic allocation of one type of function requiring an employee.

ScheduledEquipment: allocation for one specific equipment, at an action.

AssignedEmployee: allocation for one specific employee, at an action.

Task

1. Change the specification of the TemporalAllocation class, in such way that it stores
the resource's period of use, in the context of the task. For this, create a new class
named TimePeriod with two attributes of the timestamp type (date+hour): start [1] and
end [0..1]. TemporalAllocation will uni-directionally relate with one, and only one,
Time Period.

TimePeriod should not be persisted at its own table, but have its attributes embedded at
the persistence of TemporalAllocation. The schedule attribute should be erased.

2. Create a persistent class named User, with login as the primary key. Relate
ResourceAllocation and User in such a way that each resource allocation always
identify a responsible user (Horizontal inheritance implies at all relationships of the
transient super class with persistent classes being implicit persisted).

C.4.2 Instructions - Treatment B

Resource allocation for action (tasks)

A legacy resource allocation system was integrated with another, object oriented
framework based system, specializing the classes of the basic pattern to reflect the
database structure at use. The goal of the system is to specify the necessary resources to
perform tasks (actions), before and/or after its execution. The resources are allocated in
a generic way, by referencing its type, or at a specific way, referencing the
consumed/allocated elements.

Classes of the resource allocation pattern:

Action: Action or task. Lists a set of resource allocations necessary for the execution.

ResourceAllocation: a general resource allocation related to one Action and one
Quantity.

158

Figure C.19: Initial Resource allocation ENORM model.

159

Quantity: represents a pair (quantity, unit) specified for each resource allocation. All
resource allocations have quantity/unit of resources.

Unit: Measure units for supplies and time.

GeneralAllocation: a generic resource allocation that specified only the resource type
at use.

ResourceType: resource type, can be allocated in generic way.

AssetType: a non consumable resource type, such as teacher, car or computer.

ComsumableType: a non consumable resource type, such as ink, paper, or gas.

SpecificAllocation: a specific resource allocation: what teacher, what car, or what and
where came from the ink and paper.

TemporalAllocation: specific allocation of asset resources, allowing to register the
time of utilization (past or future).

Asset: a non consumable resource, reusable and measured by time of use. Ex. Professor
Gary Booch.

ComsumableAllocation: allocation of consumable resources, specifying its source.

Holding: Identified the source for a specific consumable resource type
(ComsumableType).

The following classes distinguishes non consumable resources that are human and
psychical.

EquipmentType: types of equipments.

Equipment: available equipments. An equipment can be of more than one type of
equipment.

Post: Posts or functions that can be exercised by employees to accomplish an action.

Employee: Employee or consultant, able to exercise one or more functions.

SupplyRequirement: generic allocation for supplies, specifying only the type of supply
at use.

EquipmentRequirement: generic allocation of an equipment type.

WorkRequirement: generic allocation of one type of function requiring an employee.

ScheduledEquipment: allocation for one specific equipment, at an action.

AssignedEmployee: allocation for one specific employee, at an action.

The following tables were defined for persistence

TASK: Register an action or task. Each action relates with various necessary resources
to its execution.

SUPPLY_REQUIRED: Register the quantity of one supply relating to its source.

SUPPLY_REQUIREMENTS: Register the quantity of one supply without informing
its source.

SUPPLY: Register the supply types (ink, gas, coffee …)

SUPPLY_ACCOUNT: Identify a supply source (consumable).

160

EQUIPMENT_REQUIREMENTS: Register the equipment type, and requested time,
for a task.

SCHEDULED_EQUIPMENT: Register an equipment allocated to one task, informing
the equipment, how much time of use and an optional start date/time (START).

EQUIPMENT_TYPE: Types of available equipments, such as a car and a computer.

EQUIPMENT: The available equipments. One equipment is related to various types of
equipments by the EQUIP_EQUIP_TYPES table.

ASSIGNED_EMPLOYEE: Register one employee allocated, indicating the dedication
time, and an optional date/time (START).

WORK_REQUIREMENTS: Register one type of employee (labor) necessary to the
task, and the required time.

POST: Post or function, exercised by employees to execute a task.

EMPLOYEE: Each employee is related to one of more functions, listed by the
EMPLOYEE_POSTS table.

UNIT: Measure units for supplies and time. Examples: liters, hours, packages, days…

Relationship between tables and classes:

Action = TASK.

Unit = UNIT.

Holding = SUPPLY_ACCOUNT.

ConsumableType = SUPPLY.

ConsumableAllocation = SUPPLY_REQUIRED.

EquipmentType = EQUIPMENT_TYPE.

Equipment = EQUIPMENT.

Post = POST.

Employee = EMPLOYEE.

SupplyRequirement = SUPPLY_REQUIREMENTS.

EquipmentRequirement = EQUIPMENT_REQUIREMENTS.

WorkRequirement = WORK_REQUIREMENTS.

ScheduledEquipment = SCHEDULED_EQUIPMENT.

AssignedEmployee = ASSIGNED_EMPLOYEE.

Task

1. Change the specification of the TemporalAllocation class, in such way that it stores
the resource's period of use, in the context of the task. For this, create a new class
named TimePeriod with two attributes of the timestamp type (date+hour): start [1] and
end [0..1]. TemporalAllocation will uni-directionally relate with one, and only one,
Time Period.

TimePeriod should not be persisted at its own table, but have its attributes embedded at
the persistence of TemporalAllocation. The schedule attribute should be erased.

161

Execute all necessary changes at the affected tables.

2. Create a persistent class named User, with login as the primary key. Relate
ResourceAllocation and User in such a way that each resource allocation always
identify a responsible user.

Execute the necessary changes in the database model in a way that all the distinct
resource allocations always identify one User.

C.4.3 Expected Results

Figure C.20: Expected changes on the response for Account persistence model
(only affected tables are depicted).

162

Figure C.21: Resource allocation expected UML response model.

163

Figure C.22: Resource allocation expected ENORM response model.

164

D APPENDIX D – TASKS (GROUP EXPERIMENT)

The task descriptions were translated from the original Portuguese.

D.1 Meeting Scheduling System – description

Using the <models>, design the following system:

a) One meeting occurs at one place, at a date and time, with a maximum duration,
participants (some participants have mandatory presence for the success of the meeting,
while others may have an optional presence) and can have a defined agenda (optional).

b) The participant that creates the meeting informs at what times he is available within
the time period when the meeting can occur.

c) He/She lists the participants, informing their emails.

d) Each participants informs what times he/she is availble, within the time period when
the meeting can occur.

e) The creator participant can, from the responses of the other participants, close the
meeting, choosing a time where all have availability, and choosing a place for the
meeting.

f) The place can be chosen from an internal list, or may be an external place informed
by the creator participant.

g) The place, if internal, must be free in the time period designated for the meeting.

h) Each internal place has the following information: name, location, number of seats, if
have projector, if have air-conditioning, if have sound system, if have computer, if have
teleconference system, and how many computers are availble. The only necessary
information about external places are a name and an optional description (examples:
pub, parking lot A, campus porch).

i) For each appointed meeting, it should be possible to query the system about the
following:

1. If all participants entered their timetable.

2. What are the common time at which all, or the majority, agree – There may be
zero or more times.

3. What are the common times at which all obligatory participant can meet.

4. What paces are available at some specific time, with parameter such as: it has air-
conditioning? projector? Etc...

165

D.2 Appointment Book System – description

Using the <models>, design the following system:

a) The appointment book allows the user to register appointments. An appointment has
a name, an optional description, start, end (if not punctual) and may repeat at some
frequency.

b) Regarding the duration, with precision of minutes, there are the following types of
appointment:

1) Punctual appointments last just an instant and are like reminders. Example: turn
off the oven.

2) Normal appointments last some time period no longer than a day.

3) Full day appointments last for one or more days. However, they can start at any
time in one day, and end at any time in another day. Examples: vacations,
conferences, academic week.

c) It is possible to create appointments that contain another appointments, as long as the
it is inside the time period of the parent appointment. Example: courses in the academic
week.

d) It is possible to create appointments that repeat. The frequency can be daily, weekly,
monthly or annual. Examples: birthdays, regular meetings, and classes.

e) The cancellation of an appointment that repeats should not erase its history, only the
future repetitions.

f) An appointment can be created as public or private. If it is private, the user can
inform for what groups of contacts the appointment is visible. It is the user himself that
creates these groups, informing the group name and the member´s emails.

g) It should be possible to query the system about:

1) What are the appointments at a given time period?

2) If some user can see the appointment.

3) Given an appointment, what other appointments occur inside it.

4) When, and how many times, a canceled appointment happened.

D.3 Room´s Booking Database – description

1) Create the database model necessary to control the following booking of rooms:

a) The goal of the model is to store the booking of rooms for users. Each user,
identified by his name and email, chooses a room from a list and enters the start
and end times for a reservation.

b) Each reservation must have a name and can have an optional description.

c) It must be possible to query, by the reservations, what rooms were/will be
occupied at some time period.

d) The rooms are stored at the system, maintained by an administrator.

e) Each room has the following information: name, capacity, and description.

166

2) Describe in the following space, using your language or SQL, the following
queries for your model:

1. What rooms are occupied at some time period.

2. What rooms with some capacity are occupied at some time period.

3. If there are conflicting reservations.

D.4 Database Integration Stage Instructions

The model create by the DA as a simple booking system will be discarded and
replaced by the new systems. Based upon the models that you created for the meetings
and appointments systems, the DA and other participants must reach a common
database model that meets the following priorized list:

1. Allows both systems to attend their requirements.

2. Cause the least possible impact at the starting model for the DA (Consider
impact as exclusion, modification, or creation of new tables, attributes, and
relationships).

The DA will serve as mediator of the integration model, reponsible to keep the
model simple to migrate the old data. The other participants should guarantee that the
integration model can be adapted to his own system, demanding changes in the data
model when necessary to fulfill the requirements.

The participants (responsible for the meeting and appointments systems) can
(and should) make the necessary modifications at their application models (using
assigned the notation), adapting the system to the new integrated database system.

D.5 Auto-evaluation survey

Answer the following questionnaire trying to find a consensus at your group.
Answer the questions at following THE ORDER, in a cumulative way (it should take in
account all that happened before).

Considering the following initial data for the meeting and appointment systems:

João, Maria, José, Rafael and Ana are system users.

The meeting places are:

Sala verde, with capacity for six people, air-conditioning, one computer, projector,
and teleconference.

Sala azul, with capacity for four people, air-conditioning, and projector.

Auditório, with capacity for eighty people, air-conditioning, projector, and sound
system.

Laboratório, with capacity for twenty five people, air-conditioning, twenty
computers, and projector.

Shifts defined at this survey: Morning 8-12h / Afternoon: 13-17h / Night 18-22h

João is a teacher, and teaches (every) Monday, Wednesday, and Friday in the
morning and at night, creating those appointments as repetitive at the system.

167

Maria is a teacher and will teach this week only on Monday, during all day.
Between Tuesday and Friday of this week, she will be involved with the organization of
a conference at his university (this is an appointment with various days).

José is the director of a TI company, working between 9:00 and 19:00 every
business day of the week.

Rafael is a student, and employee of José, working between 9:00 and 18:00 hours.

Ana is a visiting researcher, participates in the conference (between Tuesday and
Friday), and is busy at Monday.

Considering that both systems work in an independent way, only sharing the data by
the database, but not necessarily interfering with the data of the other system. In other
words, one meeting confirmed does not necessarily creates an appointment, and the
times in the appointment does not necessarily are used for sugesting times for meetings.
It is up to you to decide if (and how) the system were integrated, and stick to this
decision to the entire survey.

--

1. Is it possible to represent the above agendas at the appointments system? Describe
how these objects would be instantiated by the system, and stored in the database, to
justify your answer.

() Yes () No

2. João wants to invite José and Ana to a lecture at his night class, between 19:00
and 22:00 hours, using the meeting system. The lecture will last one hour. Each
participant informs the times, and Ana chooses Wednesday and Friday nights (despite
her conference appointment, it would fit as a child appointment).

a) Describe how these objects would be instantiated by the system, and stored in the
database. It is possible to select a time (by query) compatible for the three, by the
system?

() Yes () No

b) Check if the meeting times stored at the database interfere in the query of the
times stored at the appointment system in such a way that it would return incorrect
results.

() Don´t interfere () Interfere

c) When querying for places with capacity for more than forty people, only the
Auditório is selected?

() Yes () No

3. Ana wants to create a child appointment at her agenda for the lecture at the João´s
class. Describe how these objects would be instantiated by the system, and stored in the
database.

a) Check if these new objects/rows are correctly stored.

() Yes () No

b) Considering all the data so far, it is possible to correctly query the appointments
of Ana? Describe how it would be.

168

() Yes () No

4. João creates a punctual appointment (child) inside his Wednesday´s class for
remembering to take his students to the correct lecturing room. Describe this
appointment as objects in the system and rows in the database. This appointment can be
properly created?

() Yes () No

5. Rafael will present a paper Friday morning, and receives clearance from his boss.
Rafael try to reserve a half hour meeting between 8:00 e 12:00 hours of Friday, inviting
Maria (obligatory, his adviser), and optionally João, Ana and José. José accepts with
the condition of being a teleconference. João is not available Friday morning. Ana has
appointments between 10:00 and 12:00 hours, and a meeting reserving the green room
at this period. Maria has an appointment between 8:00 and 10:00 horas. Describe how
these objects would be instantiated by the system, and stored in the database. Each
participant will inform the times according to his appointments.

a) Check if these new objects/rows are correctly represented.

() Yes () No

b) When querying for the possible meeting times, check if the system responds
correctly: for all participants, no time is selected. Excluding João, neither time is
possible. Excluding Maria, it would be possible between 8 e 10 at the Sala Verde (the
only one with teleconference), but her presence is obligatory, this is not an option.
Between 10:00 and 12:00, all obligatory participants can attend, but not at the Sala
Verde, which has teleconference (the system will probably not know that José cannot be
present in a room without teleconference, but this does not configures an error in the
system because was not in the requirements).

() Yes () No

6. Maria wants to create a meeting between Tuesday and Friday to talk with João
about the conference. The two enter their possible times, and Maria chooses as an
external place a coffee shop in the neighborhood. Describe the objects, rows, and check
if they are correctly represented by the models.

() Yes () No

7. Rafael creates a private appointment that repeats every Wednesday night, football
with friends. Only a few friends and colleagues, such as José, can see the appointment.
Describe the objects and database rows, and check if Jose can see the description of the
appointment, but Maria can´t.

() Yes () No

8. At the end of semester, João changes his classes, and no longer minister classes at
Wednesdays. When canceling his repeating appointment of Wednesday, describe how
would be the objecys and rows that store the history of appointments.

a) It is still possible to know that João had classes Wednesday?

() Yes () No

b) It is still possible to know that João had a punctual appointment in that
Wednesday with a lecture?

169

() Yes () No

D.6 Results of the Group Experiment (G)

Table 1: Missed goals according to the questionnaire.

Group 1 2.a 2.b 2.c 3.a 3.b 4.a 5.a 5.b 6 7 8.a 8.b Sum

A 1 2 1 0 1 2 1 2 2 0 1 2 2 17

B 1 1 0 0 1 2 1 3 1 2 2 1 1 16

170

E APPENDIX E – EXTENSIONS TO ACTIVE RECORD

The following Ruby class emulates the inheritance and joined sources by capturing
the method missing listener and forwarding to a related active record.

MixinMod is a workaround to both the absence of JOINED inheritance
and secondary tables.
This workaround includes another activeRecord related with
belongs_to or has_one as a Mixin.
This mixin will allow access to the properties of the related
activerecord, simulating inheritance
To make use of this module do as Follows:
1-declare the relationship to the referenced activerecord (the
parent class)
2-include MixinMod, BEFORE the relationship
3-create a MixInDesc descriptor:
MixInDesc.new(<nome of your class>,<relationship
variavle>,<primary_key or NIL>)
If the primary key is informed, the MIXIN will try to save the
related object when creating the object,
and use its primary key to initialize the descendent object. For
instance, if Worker descends from Person
and you inform pk as "person_id", when you creare am Worker, the
MixIn will create a Person, save, and
copy the person_id value from Person to Worker
module MixinMod
 class MixInDesc
 @@mixins = {}
 attr_reader :attr,:key
 def initialize(clazz,attr,key)
 @attr, @key = attr,key
 @@mixins[clazz] = self
 end
 # getter
 def self.mixins
 @@mixins
 end
 end
 def method_missing(sym, *args, &block)
 eval(MixInDesc.mixins[self.class].attr).__send__(sym, *args,
&block)
 end
 def initialize (attr = nil, options = {})
 super(attr,options)
 mixin = MixInDesc.mixins[self.class]
 if (eval(mixin.attr)==nil)
 eval("build_"+mixin.attr) #build_<attributename>
 if (mixin.key!=nil)
 eval(mixin.attr).save

171

 eval("self."+mixin.key+" = "+mixin.attr+"."+mixin.key)
 end
 end
 end
end

The next code exemplifies the use within the Accounting example. The Account
class is the join of ActBrief and Account tables by instantiating MixInDesc and including
the MixinMod. The specializations of Account also declare their relationship to Account
with the same module, but informing the PK field.

class ActBrief < ActiveRecord::Base
 belongs_to :account, :class_name =>"Account", :foreign_key =>
'number'#, :inverse_of=>:actbrief
 composed_of :balance, :class_name => 'Quantity',
 :mapping => [["value","amount"],["unit","unit"]],
 :constructor => Proc.new { |amount, unit| (unit==nil) ? nil :
Quantity.new(amount,Unit.find(unit)) }
end
There is no vertical inheritance on active record. Emulating
inheritance with a one-to-one relationship and implementing as Adapter
class Account < ActiveRecord::Base
 include MixinMod # Emulating secondary table act_brief
 @@mixin =MixInDesc . new (Account , "actbrief" , nil)
 self.primary_key = "number"
 alias_attribute :dtBalance ,:dt_calc
 belongs_to :impl, :polymorphic => true, :foreign_key => 'number',
:dependent => :destroy
 has_one :actbrief, :class_name =>"ActBrief", :foreign_key =>
'number', :dependent => :destroy, :inverse_of=>:account
 belongs_to :summary, :class_name =>"SummaryAccount", :foreign_key =>
'summary', :inverse_of=>:components
 # Operations –-------------
 def calc_balance
 impl.calc_balance
 end
 def entries
 impl.entries
 end
end
class DetailAccount < ActiveRecord::Base
 include MixinMod # Mixin that implements an adapter
 @@mixin =MixInDesc . new (DetailAccount , "account" , "number")
 self.primary_key = "number";
 has_one :account, :as => :impl, :autosave => true,:foreign_key =>
'number'
 has_many :entries, :foreign_key =>:acct_number,
:inverse_of=>:account

 # Operations –-------------
def calc_balance

 if (balance==nil || balance.unit==nil)
 firstEntry = entries.find(:first)
 if (firstEntry==nil || firstEntry.quantity==nil)
 return nil
 end
 u = firstEntry.quantity.unit
 balance=Quantity.new(0.0,u)
 end
 account.dt_calc = DateTime.now
 am = entries.sum(:amount)

172

 account.balance = Quantity.new(am,balance.unit)
 return self.balance
 end
end
class SummaryAccount < ActiveRecord::Base
 include MixinMod # Mixin that implements an adapter
 @@mixin=MixInDesc.new(SummaryAccount,"account","number")
 self.primary_key = "number"
 has_one :account, :as => :impl, :autosave => true,:foreign_key =>
'number'
 has_and_belongs_to_many :components, :class_name =>
'Account',:join_table=>"act_comps"
 # Operations –-------------
 def entries
 ret = []
 components.each{|c|ret+=c.impl.entries}
 return ret
 end
 def calc_balance
 qty = nil
 sum = 0
 for acct in components
 q = acct.calc_balance
 if (qty==nil)
 qty = q
 end
 if (q!=nil)
 sum = sum + q.amount
 end
 end
 if (qty!=nil)
 qty = Quantity.new(sum,qty.unit)
 balance = qty
 dt_calc = DateTime.now
 end
 return qty
 end
end

173

F APPENDIX F – RELATED PUBLICATIONS

Papers covering Chapter 2, surveying patterns and ORM frameworks:

TORRES, A.; GALANTE, R.; PIMENTA, M. A synergistic model-driven approach for
persistence modeling with UML. Journal of Systems and Software, v. 84, n. 6, p.
942–957. New York: Elsevier Science Inc. , 2011.

TORRES, A.; GALANTE, R.; PIMENTA, M; MARTINS, A. Relations are from Mars,
objects are from Venus: a survey on O-R mapping patterns and frameworks.
Computing Surveys, submitted, partially accepted at April 2012, awaiting final
decision.

Papers covering Chapter 3, presenting the ENORM notation:

TORRES, A.; GALANTE, R.; PIMENTA, M. ENORM: An Essential Notation for
Object-Relational Mapping. SIGMOD Record, accepted with changes at December
2013, awaiting final decision.

Papers covering Chapter 5, focused at the empirical evaluation:

TORRES, A.; GALANTE, R.; PIMENTA, M. Comparing ENORM, an Object-
Relational Mapping notation, with separated relational and class modeling: an
experimental study. Empirical Software Engineering, submitted by January, 2014.

174

G ANNEX A – EXPERIMENTAL REPORT – EXPERIMENT I1

Author: NAE/UFRGS – Núcleo de Acessoria Estatística.

SOFTWARE

Todas as análises foram executadas utilizando-se o software SAS Enterprise Guide 4.2.

METODOLOGIA

Para a comparação entre os métodos A e B foi utilizada a análise de variância
(ANOVA) para dados coletados num delineamento crossover, que possibilita,
adicionalmente, verificar o efeito residual na seqüência (ou ordem) das atividades.

RESULTADOS

ACCOUNTABILLITY

Type 3 Tests of Fixed Effects
Effect Num DF Den DF F Value Pr > F
Método 1 54 55.35 <.0001
Sequencia 1 67 0.66 0.4201
Período 1 54 0.00 0.9706

Least Squares Means
Effect Método Estimate Standard Error DF t Value Pr > |t|
Método A 11.1839 0.5617 54 19.91 <.0001
Método B 6.4634 0.5424 54 11.92 <.0001

Verifica-se diferença significativa entre os métodos A e B (F=55,35; p<0,0001),
apresentando o método B um menor número médio de erros. As evidências amostrais
não comprovam a presença de efeito residual, dada a não significância estatística para o
efeito de seqüência(F=0,66, p=0,4201), indicando que não há evidência de aprendizado
de uma atividade para a outra.

175

ACCOUNT

Type 3 Tests of Fixed Effects
Effect Num DF Den DF F Value Pr > F

Método 1 35 8.77 0.0055
Período 1 35 6.68 0.0141
Sequencia 1 35 1.14 0.2923

Least Squares Means
Effect Método Estimate Standard Error DF t Value Pr > |t|

Método A 13.0868 0.7732 35 16.93 <.0001
Método B 10.7309 0.7732 35 13.88 <.0001

Verifica-se diferença significativa entre os métodos A e B (F=8,77; p=0,0055),
apresentando o método B um menor número médio de erros. As evidências amostrais
não comprovam a presença de efeito residual, dada a não significância estatística para o
efeito de seqüência(F=1,14, p=0,2923), indicando que não há evidência de aprendizado
de uma atividade para a outra.

ADDRBOOK

Type 3 Tests of Fixed Effects
Effect Num DF Den DF F Value Pr > F

Método 1 62 35.01 <.0001
Sequencia 1 67 0.34 0.5636
Período 1 62 4.17 0.0455

Least Squares Means
Effect Método Estimate Standard Error DF t Value Pr > |t|

Método A 16.6384 0.7775 62 21.40 <.0001
Método B 11.6054 0.7911 62 14.67 <.0001

Verifica-se diferença significativa entre os métodos A e B (F=35,01; p<0,0001),
apresentando o método B um menor número médio de erros. As evidências amostrais
não comprovam a presença de efeito residual, dada a não significância estatística para o
efeito de seqüência(F=0,34; p=0,5636), indicando que não há evidência de aprendizado
de uma atividade para a outra.

RESOURCE

Type 3 Tests of Fixed Effects
Effect Num DF Den DF F Value Pr > F

Método 1 33 101.79 <.0001
Sequencia 1 35 1.36 0.2512
Período 1 33 2.96 0.0945

176

Least Squares Means
Effect Método Estimate Standard Error DF t Value Pr > |t|

Método A 7.4587 0.3871 33 19.27 <.0001
Método B 2.4159 0.3888 33 6.21 <.0001

Verifica-se diferença significativa entre os métodos A e B (F=101,79; p<0,0001),
apresentando o método B um menor número médio de erros. As evidências amostrais
não comprovam a presença de efeito residual, dada a não significância estatística para o
efeito de seqüência(F=1,36; p=0,2512), indicando que não há evidência de aprendizado
de uma atividade para a outra.

177

H ANNEX B – EXPERIMENTAL REPORT – EXPERIMENT I2

Universidade Federal do Rio Grande do Sul

Instituto de Matemática

Departamento de Estatística

http://www.mat.ufrgs.br/~nae/

Relatório de Assessoria Estatística
“Análise de Variância para Medidas Repetidas das Variáveis Respostas “Erros”

e “Tempo”, com “Grupo” e “Tarefa” como Fatores.

Pesquisador(a):

Alexandre Torres

Equipe de Assessoria:

Profa. Jandyra Fachel e Gilberto P. Mesquita

178

Porto Alegre, 12 de novembro de 2013.

1) Análise Estatística: Análise de Variância para Medidas Repetidas da Variável Resposta ”Erros”.
Como os dados apresentaram heterogeneidade de variâncias foi necessário transformar os dados.
A transformação utilizada foi pelo Método dos Mínimos Quadrados Ponderados, cuja variância dos
Tratamentos entrou na composição da ponderação.

Anova MR para Erros - Dados Ponderados

The GLM Procedure

Class Level Information

Class Levels Values

Grupo 2 A B

Rep 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Tarefa 4 Account Accountability AddrBook Resources

Number of Observations Read 176

Number of Observations Used 157

The GLM Procedure

Dependent Variable: Erros Erros

Weight: ivar_erros ivar_erros

Source DF Sum of Squares Mean Square F Value Pr > F

Model 49 171.8137472 3.5064030 7.11 <.0001

Error 107 52.7425019 0.4929206

Corrected Total 156 224.5562491

179

R-Square Coeff Var Root MSE Erros Mean

0.765126 10.97749 0.702083 6.395662

Source DF Type III SS Mean Square F Value Pr > F

Grupo 1 13.68312835 13.68312835 27.76 <.0001

Rep(Grupo) 42 96.25749814 2.29184519

Tarefa 3 32.61088567 10.87029522 22.05 <.0001

Grupo*Tarefa 3 4.60819414 1.53606471 3.12 0.0292

Tests of Hypotheses Using the Type III MS for Rep(Grupo) as an Error Term

Source DF Type III SS Mean Square F Value Pr > F

Grupo 1 13.68312835 13.68312835 5.97 0.0188

Através da Análise de Variância acima, podemos concluir que o efeito da Interação Grupo*Tarefa é
significativo, p= 0,0292, em relação à Variável Resposta Erros.

2) Teste de Comparações Múltiplas de Tukey-Kramer para Comparar Médias da Interação
Grupo*Tarefa.

Anova MR para Erros - Dados Ponderados

The GLM Procedure

Least Squares Means

Adjustment for Multiple Comparisons: Tukey-Kramer

Grupo Tarefa Erros LSMEAN LSMEAN Number

A Account 14.2563014 1

A Accountability 9.6666667 2

A AddrBook 7.8095238 3

180

Grupo Tarefa Erros LSMEAN LSMEAN Number

A Resources 8.9046605 4

B Account 11.3597870 5

B Accountability 5.6521739 6

B AddrBook 7.0869565 7

B Resources 3.7468807 8

Least Squares Means for effect Grupo*Tarefa
Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: Erros

i/j 1 2 3 4 5 6 7 8

1 0.0466 0.0014 0.0007 0.4986 <.0001 <.0001 <.0001

2 0.0466 0.9010 0.9980 0.9155 0.0109 0.3769 <.0001

3 0.0014 0.9010 0.9877 0.2136 0.6232 0.9992 0.0163

4 0.0007 0.9980 0.9877 0.4062 0.0058 0.5458 <.0001

5 0.4986 0.9155 0.2136 0.4062 <.0001 0.0097 <.0001

6 <.0001 0.0109 0.6232 0.0058 <.0001 0.7322 0.1626

7 <.0001 0.3769 0.9992 0.5458 0.0097 0.7322 0.0030

8 <.0001 <.0001 0.0163 <.0001 <.0001 0.1626 0.0030

Através do Teste de Comparações Múltiplas de Tukey-Kramer, podemos concluir, por exemplo,
que dentro da Tarefa “Accountability”, o número médio de erros do Grupo A difere
significativamente do número médio de erros do Grupo B, p= 0,0109. Por outro lado, podemos
concluir, por exemplo, que dentro do Grupo A, o número médio de erros da Tarefa “Account”
difere significativamente do número médio de erros das demais Tarefas (“Accountability”,
“AddrBook” e “Resources”), p= 0,0466, p= 0,0014 e p= 0,0007, respectivamente.

181

3) Estatísticas Descritivas: Média e Desvio Padrão da Variável Resposta “Erros”. Dados
Ponderados.

Anova MR para Erros - Dados Ponderados

The GLM Procedure

Level of
Grupo

N Sum of
Weights

Erros

Mean Std Dev

A 75 3.2428303131 8.74054697 1.05523665

B 82 6.1630818149 5.16185376 1.19123774

Level of
Tarefa

N Sum of
Weights

Erros

Mean Std Dev

Account 37 0.9997840367 11.9633064 1.00132736

Accountability 44 2.1517496097 6.6332952 1.06097622

AddrBook 44 1.4748550267 7.2992554 0.99018169

Resources 32 4.779523455 4.8452071 1.32092096

Level of
Grupo

Level of
Tarefa

N Sum of
Weights

Erros

Mean Std Dev

A Account 18 0.4306826179 13.1666667 1.00000000

A Accountability 21 0.5258764608 9.6666667 1.00000000

A AddrBook 21 0.433330058 7.8095238 1.00000000

A Resources 15 1.8529411765 7.6666667 1.00000000

182

Level of
Grupo

Level of
Tarefa

N Sum of
Weights

Erros

Mean Std Dev

B Account 19 0.5691014188 11.0526316 1.00000000

B Accountability 23 1.6258731489 5.6521739 1.00000000

B AddrBook 23 1.0415249687 7.0869565 1.00000000

B Resources 17 2.9265822785 3.0588235 1.00000000

4) Estatísticas Descritivas: Média e Desvio Padrão da Variável Resposta “Erros”. Dados Originais.

Anova MR para Erros - Dados Originais

The GLM Procedure

Level of
Grupo

N Erros

Mean Std Dev

A 75 9.58666667 6.30763873

B 82 6.76829268 5.09732145

Level of
Tarefa

N Erros

Mean Std Dev

Account 37 12.0810811 6.12997362

Accountability 44 7.5681818 5.47041824

AddrBook 44 7.4318182 5.82854933

Resources 32 5.2187500 3.48021482

183

Level of
Grupo

Level of
Tarefa

N Erros

Mean Std Dev

A Account 18 13.1666667 6.46483702

A Accountability 21 9.6666667 6.31928266

A AddrBook 21 7.8095238 6.96145852

A Resources 15 7.6666667 2.84521319

B Account 19 11.0526316 5.77805892

B Accountability 23 5.6521739 3.76114943

B AddrBook 23 7.0869565 4.69925568

B Resources 17 3.0588235 2.41015011

1) Análise Estatística: Análise de Variância para Medidas Repetidas da Variável Resposta
”Tempo”. Como os dados apresentaram heterogeneidade de variâncias foi necessário transformar
os dados. A transformação utilizada foi pelo Método dos Mínimos Quadrados Ponderados, cuja
variância dos Tratamentos entrou na composição da ponderação.

Anova MR para Tempo - Dados Ponderados

The GLM Procedure

Class Level Information

Class Levels Values

Grupo 2 A B

Rep 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Tarefa 4 Account Accountability AddrBook Resources

Number of Observations Read 176

Number of Observations Used 157

The GLM Procedure

184

Dependent Variable: Tempo Tempo

Weight: ivar_tempo ivar_tempo

Source DF Sum of Squares Mean Square F Value Pr > F

Model 49 185.8142314 3.7921272 4.34 <.0001

Error 107 93.4004656 0.8729015

Corrected Total 156 279.2146970

R-Square Coeff Var Root MSE Tempo Mean

0.665489 0.097186 0.934292 961.3448

Source DF Type III SS Mean Square F Value Pr > F

Grupo 1 0.43455598 0.43455598 0.50 0.4820

Rep(Grupo) 42 55.59953439 1.32379844

Tarefa 3 69.01792245 23.00597415 26.36 <.0001

Grupo*Tarefa 3 1.67360985 0.55786995 0.64 0.5915

Tests of Hypotheses Using the Type III MS for Rep(Grupo) as an Error Term

Source DF Type III SS Mean Square F Value Pr > F

Grupo 1 0.43455598 0.43455598 0.33 0.5697

Através da Análise de Variância acima, podemos concluir que o efeito do Fator Tarefa é significativo, p<
0,0001, em relação à Variável Resposta Tempo.

2) Teste de Comparações Múltiplas de Tukey-Kramer para Comparar Médias de Tempo.

Anova MR para Tempo - Dados Ponderados

The GLM Procedure

185

Least Squares Means

Adjustment for Multiple Comparisons: Tukey-Kramer

Tarefa Tempo LSMEAN LSMEAN Number

Account 1561.19145 1

Accountability 1632.94617 2

AddrBook 1622.72153 3

Resources 791.78629 4

Least Squares Means for effect Tarefa
Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: Tempo

i/j 1 2 3 4

1 0.9623 0.9937 <.0001

2 0.9623 1.0000 <.0001

3 0.9937 1.0000 0.0011

4 <.0001 <.0001 0.0011

Através do Teste de Comparações Múltiplas de Tukey-Kramer, podemos concluir, por exemplo,
que o tempo médio da Tarefa “Resources” difere significativamente do tempo médio das demais
Tarefas (“Account”, “Accountability” e “AddrBook”), p< 0,0001, p< 0,0001 e p= 0,0011,
respectivamente.

3) Estatísticas Descritivas: Média e Desvio Padrão da Variável Resposta “Tempo”. Dados
Ponderados.

Anova MR para Tempo - Dados Ponderados

The GLM Procedure

Level of
Grupo

N Sum of
Weights

Tempo

Mean Std Dev

A 75 0.0001812194 1199.79319 1.15362311

186

Level of
Grupo

N Sum of
Weights

Tempo

Mean Std Dev

B 82 0.0005886932 887.94240 1.43697444

Level of
Tarefa

N Sum of
Weights

Tempo

Mean Std Dev

Account 37 0.0000701924 1537.85086 0.99120010

Accountability 44 0.0001514458 1550.00077 1.01618021

AddrBook 44 0.0000209312 1620.32253 0.98865086

Resources 32 0.0005273432 689.39849 1.03980154

Level of
Grupo

Level of
Tarefa

N Sum of
Weights

Tempo

Mean Std Dev

A Account 18 0.0000364416 1468.05556 1.00000000

A Accountability 21 0.0000340769 1783.76190 1.00000000

A AddrBook 21 0.0000111329 1585.09524 1.00000000

A Resources 15 0.000099568 858.66667 1.00000000

B Account 19 0.0000337508 1613.21053 1.00000000

B Accountability 23 0.0001173689 1482.13043 1.00000000

B AddrBook 23 9.7983179E-6 1660.34783 1.00000000

B Resources 17 0.0004277752 650.00000 1.00000000

4) Estatísticas Descritivas: Média e Desvio Padrão da Variável Resposta “Tempo”. Dados
Originais.

187

Anova MR para Tempo - Dados Originais

The GLM Procedure

Level of
Grupo

N Tempo

Mean Std Dev

A 75 1467.34667 962.178939

B 82 1389.97561 986.662437

Level of
Tarefa

N Tempo

Mean Std Dev

Account 37 1542.59459 721.20337

Accountability 44 1626.09091 640.40277

AddrBook 44 1624.43182 1442.13847

Resources 32 747.81250 315.81604

Level of
Grupo

Level of
Tarefa

N Tempo

Mean Std Dev

A Account 18 1468.05556 702.80944

A Accountability 21 1783.76190 785.01757

A AddrBook 21 1585.09524 1373.42899

A Resources 15 858.66667 388.13762

B Account 19 1613.21053 750.29924

B Accountability 23 1482.13043 442.67753

B AddrBook 23 1660.34783 1532.10368

188

Level of
Grupo

Level of
Tarefa

N Tempo

Mean Std Dev

B Resources 17 650.00000 199.35019

OBS: Os programas estatísticos utilizados nas análises estatísticas foram o “Statistical Analysis
System” (SAS),versão 9.2 e o “Statistical Package For The Social Sciences” (SPSS /
PASWSTAT), versão 18.

	abstract
	Resumo
	List of abbreviations
	List of figures
	List of tables
	1 Introduction
	2 ORM Patterns and frameworks
	2.1 Survey organization
	2.1.1 Object-Relational Patterns
	2.1.2 Selected Frameworks for the Survey
	2.1.3 About the examples

	2.2 Transparency and Coupling
	2.2.1 Discussion

	2.3 Mapping Type
	2.3.1 Mapping Classes to Many Tables
	2.3.2 Discussion

	2.4 Model-based Mapping
	2.4.1 Discussion

	2.5 Identity
	2.5.1 Discussion

	2.6 Foreign Key
	2.6.1 Fetch Strategy
	2.6.2 Discussion

	2.7 Association table
	2.7.1 Discussion

	2.8 Embedded Values Support
	2.8.1 Discussion

	2.9 Inheritance Mapping
	2.9.1 Discussion

	2.10 Summary

	3 Essential Notation for ORM (ENORM)
	3.1 Overview
	3.2 A Simple Example
	3.3 A not so Simple Example
	3.4 ENORM Meta-model
	3.5 Special Mapping Cases
	3.5.1 Embedded Values
	3.5.2 Maps
	3.5.3 Inheritance
	3.5.4 Auto-generated Columns
	3.5.5 Constraints and Indexes

	3.6 Limitations
	3.6.1 Flexible Data Sources
	3.6.2 Qualified Associations
	3.6.3 Multiple Inheritance, Multiple Types
	3.6.4 Association Class and “n-ary”
	3.6.5 Generics and Template Parameters

	3.7 ENORM Notation Reference
	3.8 Modeling Tool
	3.8.1 Modeling Tool for the Experiments
	3.8.2 Future Steps

	3.9 Other Class Models and Persistence Extensions
	3.9.1 A UML Profile for Data Modeling
	3.9.2 Information Management Meta-model (IMM)

	4 ENORM in practice: Application examples
	4.1 ENORM and ORM Frameworks
	4.2 Party Pattern for Accountability
	4.2.1 Mapping Persistent class Telephone
	4.2.1.1 Using JPA
	4.2.1.2 Using SqlAlchemy
	4.2.1.3 Using ActiveRecord of Ruby

	4.2.2 Embedded classes
	4.2.2.1 Using JPA
	4.2.2.2 Using SqlAlchemy
	4.2.2.3 Using ActiveRecord of Ruby

	4.2.3 Party, Person, Company, and Flat inheritance
	4.2.3.1 Using JPA
	4.2.3.2 Using SqlAlchemy
	4.2.3.3 Using ActiveRecord of Ruby

	4.3 Accountability Type Model
	4.3.1 Implementing the Associations
	4.3.1.1 Using JPA
	4.3.1.2 Using SqlAlchemy
	4.3.1.3 Using ActiveRecord of Ruby

	4.4 Account Model
	4.4.1 Entry is a dependent entity
	4.4.1.1 Using JPA
	4.4.1.2 Using SQLAlchemy
	4.4.1.3 Using ActiveRecord of Ruby

	4.4.2 Account mapped by two tables
	4.4.2.1 Using JPA
	4.4.2.2 Using SQLAlchemy
	4.4.2.3 Using ActiveRecord of Ruby

	4.4.3 Vertical Inheritance of Account
	4.4.3.1 Using JPA
	4.4.3.2 Using SQLAlchemy
	4.4.3.3 Using ActiveRecord of Ruby

	4.4.4 Properties and columns with distinct names
	4.4.4.1 Using JPA
	4.4.4.2 Using SQLAlchemy
	4.4.4.3 Using ActiveRecord of Ruby

	4.4.5 Overrides and Embedded objects referencing persistent classes
	4.4.5.1 Using JPA
	4.4.5.2 Using SQLAlchemy
	4.4.5.3 Using ActiveRecord of Ruby

	4.4.6 The Account-Entry association
	4.4.6.1 Using JPA
	4.4.6.2 Using SQLAlchemy
	4.4.6.3 Using ActiveRecord of Ruby

	4.5 Resource Allocation Model
	4.5.1 Horizontal Inheritance at the Resource Allocation Tree
	4.5.1.1 Using JPA
	4.5.1.2 Using SqlAlchemy
	4.5.1.3 Using ActiveRecord of Ruby

	4.5.2 Overriding inherited properties and associations
	4.5.2.1 Using JPA
	4.5.2.2 Using SqlAlchemy
	4.5.2.3 Using ActiveRecord of Ruby

	4.5.3 Association to general classes with horizontal specializations
	4.5.3.1 Using JPA
	4.5.3.2 Using SqlAlchemy
	4.5.3.3 Using ActiveRecord of Ruby

	4.6 Remarks about implementing ENORM models
	4.6.1 Guidelines for MDD

	5 Empirical Evaluation
	5.1 Experimental Related Work
	5.2 Planning and Design
	5.2.1 Subjects
	5.2.2 Task Design
	5.2.2.1 Individual Experiments
	5.2.2.2 Group Experiment

	5.2.3 Hypothesis Formulation, Factors and Variables
	5.2.4 Tasks and Feature Coverage of the Individual Experiment
	5.2.5 Tasks of the Group Experiment
	5.2.6 Experimental Setting

	5.3 Results and Analysis
	5.3.1 Individual Experiment with Crossover (I1)
	5.3.1.1 Analysis of the Feedback

	5.3.2 Individual Experiment with Time Measurements (I2)
	5.3.2.1 Results Regarding the Variable “Misses”
	5.3.2.2 Results Regarding the Variable “Time”
	5.3.2.3 Experience Level Influence
	5.3.2.4 Analysis of the Feedbacks

	5.3.3 Group Experiment (G)
	5.3.4 Analysis Summary

	5.4 Validity Evaluation
	5.4.1 Internal Validity
	5.4.2 Construct Validity
	5.4.3 External Validity
	5.4.4 Conclusion Validity

	6 Conclusion
	References
	A Appendix A – Crossover experiment (I1)
	A.1 Address Book Task graphics
	A.2 Accountability Task Graphics
	A.3 Account
	A.4 Resources

	B Appendix B – Non-crossover experiment (I2)
	C Appendix C – Tasks (Individual Experiments)
	C.1 Address Book
	C.1.1 Instructions - Treatment A
	C.1.2 Instructions - Treatment B
	C.1.3 Expected Results

	C.2 Accountability
	C.2.1 Instructions - Treatment A
	C.2.2 Instructions - Treatment B
	C.2.3 Expected Results

	C.3 Account Task
	C.3.1 Instructions - Treatment A
	C.3.2 Instructions - Treatment B
	C.3.3 Expected Results

	C.4 Resource Allocation
	C.4.1 Instructions - Treatment A
	C.4.2 Instructions - Treatment B
	C.4.3 Expected Results

	D Appendix D – Tasks (Group Experiment)
	D.1 Meeting Scheduling System – description
	D.2 Appointment Book System – description
	D.3 Room´s Booking Database – description
	D.4 Database Integration Stage Instructions
	D.5 Auto-evaluation survey
	D.6 Results of the Group Experiment (G)

	E Appendix E – Extensions to active record
	F Appendix F – Related publications
	G Annex A – Experimental report – Experiment I1
	ACCOUNTABILLITY
	ACCOUNT
	ADDRBOOK
	RESOURCE

	H Annex B – Experimental report – Experiment I2

