UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMATICA

PROGRAMA DE POS-GRADUACAO EM COMPUTACAO

ALEXANDRE TORRES

Essential Notation for Object-Relational
Mapping

Thesis presented in partial fulfillment of the
requirements for the degree of Doctor in
Computer Science.

Prof. Dr. Renata Galante
Adviser

Prof. Dr. Marcelo S. Pimenta
Co-adviser

Porto Alegre, Abril, 2014.

CIP - CATALOGACAO NA PUBLICACAO

Torres, Alexandre

Essential Notation for Object-Relational Mapping / Alexandre
Torres. —2014.

188 f.:il.

Orientadora: Renata Galante.

Co-orientador: Marcelo Pimenta.

Tese (Doutorado) — Universidade Federal do Rio Grande do
Sul, Instituto de Informatica, Programa de Po6s-Graduag¢do em
Computagdo. Porto Alegre, BR — RS, 2014.

1. Object-Relational Mapping. 2. Model-Driven Development.
3. Patterns. 4. UML. 5. Relational Model. 1. Galante, Renata,
orient. II. Pimenta, Marcelo, coorient. I1I. Titulo.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos Alexandre Netto

Vice-Reitor: Prof. Rui Vicente Oppermann

Pro-Reitor de P6s-Graduagao: Prof. Vladimir Pinheiro do Nascimento
Diretor do Instituto de Informatica: Prof. Luis da Cunha Lamb
Coordenador do PPGC: Prof. Luigi Carro

Bibliotecaria-Chefe do Instituto de Informatica: Beatriz Regina Bastos Haro

Essential Notation for Object-Relational Mapping

ABSTRACT

This thesis presents the Essential Notation for Object-Relational Mapping
(ENORM), a general purpose notation that represents structural concepts of Object-
Relational Mapping (ORM). The goal of ENORM is to facilitate the design by the clear
application of ORM patterns, document mappings with a platform independent notation,
and became a repository for model-driven transformations, partial code generation, and
round-trip engineering tools. ENORM is a UML profile based notation, designed to
represent patterns within a domain modeling logic, with objects of the domain
incorporating both behavior and data.

The notation represents patterns adopted by widespread ORM frameworks in the
market (Active Record, of Ruby; SQLAlchemy, of Python; Entity Framework, of
Microsoft .net; JPA, Cayenne, and MyBatis, of Java), following the Don’t Repeat
Yourself and Convention over Configuration principles. ENORM was evaluated by
controlled experiments, comparing the modeling by students with the use of separated
UML and relational models, achieving significantly more goals in the majority of the
scenarios, without being significantly different in the worst experimental scenarios.

Keywords: Object-Relational Mapping, Model-Driven Development, Patterns, UML,
Relational Model.

RESUMO

Esta tese apresenta a Notacdo Essencial para Mapeamento Objeto-Relacional (em
inglés, ENORM), uma notacdo de proposito geral que representa os conceitos
estruturais do Mapeamento Objeto-Relacional (MOR). O objetivo de ENORM ¢
facilitar o projeto através da aplicagdo clara dos padroes MOR, documentagdo dos
mapeamentos com uma notacao independente de plataforma, e tornar-se um repositério
para transformacgdes dirigidas por modelos, geragdo parcial de codigo e ferramentas de
engenharia round-trip. ENORM ¢ uma notagdo baseada em perfil UML, projetada para
representar padrdes pertencentes a logica de modelo do dominio, com objetos do
dominio incorporando tanto comportamento como dados.

A notacdo representa padroes adotados por frameworks MOR difundidos no
mercado (Active Record, do Ruby; SQLAlchemy, do Python; Entity Framework, da
Microsoft .net; JPA, Cayenne, and MyBatis, do Java), seguindo os principios Nao se
repita e Convencdo sobre Configuragdo. ENORM foi avaliado por experimentos
controlados, comparando a modelagem de estudantes com modelos UML e relacionais
separados, atingindo um numero significativamente maior de objetivos na maioria dos
cenarios, sem ser significativamente diferente nos piores cenarios experimentais.

Palavras-chave: Mapeamento Objeto-Relacional, Desenvolvimento Dirigido por
Modelos, Padroes, UML, Modelo Relacional.

ANOVA
AST
BNF
CoC
DA
DRY
EBNF
EER
ER
FK
IMP
JPA
MDD

SoC
UML

LIST OF ABBREVIATIONS

Analysis of Variance

Abstract Syntax Tree
Backus—Naur Form
Convention over Configuration
Data Administrator

Do not Repeat Yourself principle
Extended Backus—Naur Form
Extended Entity-Relationship
Entity-Relationship

Foreign Key

Impedance Mismatch Problem
Java Persistence API
Model-Driven Development
Object-Oriented
Object-Relational Mapping
Platform Independent Model
Primary Key

Platform Specific Information
Platform Specific Model
Ruby’s Active Record
Relational Data Base
Relational model
SQLAlchemy

Separation of Concerns

Unified Modeling Language

LIST OF FIGURES

FIGURE 1.1: TEXT ORGANIZATION......coocitircetrrnre e sssss s s 19

FIGURE 2.1: JAVA EXAMPLES OF TABLE MODULE PATTERN (LEFT) AND

DOMAIN MODEL PATTERN (RIGHT).....cciirimineemnre s 21
FIGURE 2.2: ACTIVE RECORD EXAMPLE.......cccccociimrrmnnere s 23
FIGURE 2.3: INHERITANCE TO GENERATED CLASSES.........cccccceiiniinnnnn 24

FIGURE 2.4: INSTANTIATED MAPPING EXAMPLE FOR SQLALCHEMY

LOOSE COUPLING APPROACH.cccirerrisrr s ssss s ssssns s 24
FIGURE 2.5: JPA LOOSE COUPLING OVERVIEW..........ccccouirinmrerinnnnnnsinnnnns 25
FIGURE 2.6: DATA MAPPER SUCH AS IN MYBATIS.........ccceiiimrrernnninnnnee 27

FIGURE 2.7: ENTITY DATA MODEL FOR MS ENTITY FRAMEWORK
(SNEED, 2012).....ceueeeeeeeeeseeesessssesessessessssesessssessssssasssssessssssasssesessesassasssessaseens 29

FIGURE 2.8: CAYENNE MODELS DOMAIN AND DATABASE ELEMENTS
SEPARATED.......cccoiiiiiie s s s 30

FIGURE 2.9: PRIMARY KEY FIELDS (A) AND PRIMARY KEY CLASS (B).. 31
FIGURE 2.10: ASSOCIATION RELATIONSHIP BETWEEN CLASSES.......... 33
FIGURE 2.11: ASSOCIATION TABLE EXAMPLE..........ccoocmmmrmmmnnnnnnnnnns 36

FIGURE 2.12: UML MODEL (LEFT) AND TABLES (RIGHT) OF THE
ASSOCIATION TABLE EXAMPLE.........coociimirinerer s nnsssssssssssssss e 37

FIGURE 2.13: DEPENDENT MAPPING PATTERN EXAMPLE: CLASS
MODEL (UPPER) AND DATABASE MODEL (LOWER).......ccosemrmnnnniiinssnnnnes 38

FIGURE 2.14: INHERITANCE EXAMPLE FOR ACCOUNT.......ccccciunnniniinnnnns 40

FIGURE 2.15: SINGLE-TABLE APPROACH FOR ACCOUNT EXAMPLE.....40

FIGURE 2.16: CLASS-TABLE APPROACH FOR ACCOUNT EXAMPLE...... 40

FIGURE 2.17: CONCRETE-TABLE APPROACH FOR ACCOUNT EXAMPLE.

.. 41
FIGURE 2.18: INDEPENDENT KEYS IN CLASS-TABLE INHERITANCE
| T 42
FIGURE 3.1: MAIN VISUAL ELEMENTS AND THEIR MEANING................... 47
FIGURE 3.2: SIMPLE TRANSACTION EXAMPLE.........cccoocinrnnmrennnnnneennnans 48
FIGURE 3.3: SUMMARY ACCOUNT EXAMPLE..........ccoorimmrrrrnnne s 48
FIGURE 3.4: DATABASE MODEL OF ACCOUNT EXAMPLE.............cccoounuee 49
FIGURE 3.5: MAIN ELEMENTS OF THE ENORM PROFILE.........c.cccccuniueenns 51
FIGURE 3.6: A CLASS EMBEDDED BY TWO PERSISTENT CLASSES....... 54
FIGURE 3.7: EMBEDDED CLASSES REFERENCING PERSISTENT
CLASSES. ...t 55
FIGURE 3.8: TRANSITIVITY OF EMBEDMENT.........cocooiiirrnrenee e 55
FIGURE 3.9: USING <<EMBED>> FOR DEPENDENT MAPPING.................. 56
FIGURE 3.10: TWO COLLECTION-EMBEDMENTS EXAMPLE..................... 57

FIGURE 3.11: TWO DEPENDENT COLLECTIONS TO THE SAME CLASS.. 57

FIGURE 3.12: MAP WITH KEY REFERENCE..........cccooiiirnee s 58

FIGURE 3.13: THREE DIFFERENT INHERITANCE EXAMPLES WITHOUT
PARENT TABLE........ e aassssnes 58

FIGURE 3.14: INHERITED ASSOCIATION WITH PERSISTENT CLASS....... 59

FIGURE 3.15: ALTERNATIVE WAY TO EXPRESS MAPPED
SPECIALIZATIONS WITH ENORM.........cciiierrrinnne e s ssssns e 59

FIGURE 3.16: ENORM PROFILE MODEL OF GENERATORS...........cccoiuuneee 60

FIGURE 3.17: PROFILE MODEL OF TABLE DEFINITIONS, FOR INDEXES
AND CONSTRAINTS......oiiiicetr s s aasssees 60

FIGURE 3.18: DEFINITION EXAMPLE WITH UNIQUE INDEX CONSTRAINT
DEFINITION... .ottt s s 61

FIGURE 3.19: A SKETCH OF META-MODEL WITH FLEXIBLE DATA

SOURGCES.......c oottt 62
FIGURE 3.20: TEMPLATE PARAMETER EXAMPLE........ccccioinmrrernnnnnnen 63
FIGURE 3.21: EBNF SPECIFICATION FOR ENORM LABELS...............cceeuee 64

FIGURE 3.22: VISUAL DISTRIBUTION OF THE ENORM NON-TERMINALS.

.. 65
FIGURE 3.23: MODELING TOOL SCREEN SHOT.........cccesimrmnnnninnrnennnnannnes 66
FIGURE 3.24: EXPERIMENTAL TOOL ARCHITECTURE.........cccccviiiiiiinnnnnes 67
FIGURE 3.25: MDD SCENARIO FOR ENORM MODELS...........ccccocmriiniiunnnnn 67

FIGURE 3.26: UML PROFILE FOR DATA MODELING EXAMPLE (AMBLER,

HARTFORD AND RUECKERT, 2003).......c.cocemmmmmmmnssremssssssnsssmssssssssssnnssseees 69
FIGURE 4.1: PARTY PATTERN DESIGNED WITH ENORM..........ccccccciiinnnnnee 72
FIGURE 4.2: ACCOUNTABILITY, FIRST MODEL.......cccconirrrinrnereennnnnne 78

FIGURE 4.3: ACCOUNTABILITY WITH PARTY TYPE PATTERN AND
KNOWLEDGE LEVEL........iiiiietcisie s ssss s s ssssssssssssnnas 79

FIGURE 4.4: CONCEPTUAL MODEL FOR THE RESOURCE ALLOCATION

PATTERN. ...t 90
FIGURE 4.5: RESOURCE ALLOCATION ENORM MODEL............ccceiiinnnnnnes 91
FIGURE 5.1: TASK 1 - ADDRESS BOOK UML AND ER MODELS.............. 108

FIGURE 5.2: TASK 1 - ADDRESS BOOK ENORM MODEL..........ccoccvriiinnnns 109

FIGURE 5.3: SCREEN SHOTS OF TREATMENT A (LEFT) AND B (RIGHT)

USING THE MODELING TOOL.......cccciimtmrnniemnsnrsnsse s s ssssssssssss s 113
FIGURE 5.4: FEEDBACK OF ..ot nsnanns 116
FIGURE 5.5: EXPERIENCE LEVELS AMONG GROUPS (GRAPHIC).......... 118

FIGURE 5.6: MEAN DIFFICULTY LEVELS (Q1-Q3, LEFT) AND PREFERRED
METHOD (Q4, RIGHT).cceurvereeeeeeeeeeesessesesesesesssessesssesssesasesssesssesseessesasesensenns 119

LIST OF TABLES

TABLE 2.1: SUMMARY OF FRAMEWORKS..........cccocinimmmnnnreennnsnse s 22

TABLE 2.2: ORM FRAMEWORKS SUPPORT FOR EACH PROPOSED
08 I = 30] 44

TABLE 2.3: SUMMARY OF DESIGN DECISIONS BASED UPON ORM

FRAMEWORKS....... .ottt s ssss s s s s sssss s s s ssnnnnes 45
TABLE 4.1: MAIN CORRESPONDENCE OF ENORM CONCEPTS................ 97
TABLE 4.2: UML CLASS MAPPINGS, NON TRIVIAL CASES...........ccccecerrnnee 98
TABLE 4.3: PLATFORM SPECIFIC INFORMATION.......ccttmmremiiiininnnnnnes 99
TABLE 4.4: DESIGN QUESTIONS AND RESPONSE SCOPE..........cccccteern. 100
TABLE 5.1: SUBJECTS AND EXPERIMENTS.......ccccoiiiimrnnrre e 104
TABLE 5.2: ANALYSIS PATTERNS AND TASKS.......cooovnmrrneeinsnereeenns 108
TABLE 5.3: FEATURE COVERAGE AND TASK GOALS.........ccccoeeeriniiinnnne 110
TABLE 5.4: TASKS AND TIME CONSTRAINTS FOR EXPERIMENT I1...... 113

TABLE 5.5: CODES USED IN THE GROUP EXPERIMENT FOR RANDOM
ASSIGNMENT ... 114

TABLE 5.6: RESULTS FOR THE ANOVA OF MISSES CONSIDERING THE
SEQUENGCE.......... it e n e 115

TABLE 5.7: LEAST SQUARE MEANS OF MISSES AT 12, WITH
ADJUSTMENT TUKEY-KRAMER........cccconrmrnteinnnsnsse s ssssssss s snans 116

TABLE 5.8: ORIGINAL DATA OF VARIABLE TIME AT I2.........cooociviiiiinnnnnn. 117

TABLE 5.9: GROUP STATISTICS FOR EXPERIENCE LEVELS.................. 117

TABLE 5.10: T-TEST FOR EQUALITY OF MEANS (EQUAL VARIANCES
ASSUMED)......ccotiiiiinte s s s s s s s 118

TABLE 5.11: MANN-WHITNEY U TEST APPLIED TO DIFFICULT LEVELS.

TABLE 5.12: MANN-WHITNEY RANKS, MEANS, AND DEVIATION OF G. 120

CONTENTS

S 8 2 - Y O 3
RESUMO........oeeeieeieeneennnnnnnnnnnnnnnnnsnnnsnnnsnnnssnnnnnsnnnnnnnnsnnnnnnnnnsssssssssnnnnnssssssnns 4
LIST OF ABBREVIATIONS..........ccooiiiiirr s 5
LIST OF FIGURES........co oo ssss s s s ss s s s s ss s s s s s s s s e nmmssssssnnnes 6
LIST OF TABLES......... s e r s s s mmmn e 10
U LI 200 1 18 Lo I L0 16
2 ORM PATTERNS AND FRAMEWORKS..........cccccirimrinnnnssnnneennnees 20
2.1 Survey organization 20
2.1.1 Object-Relational Patterns..........coeruerierieieieieieieiteicnt ettt ettt e 20
2.1.2 Selected Frameworks for the SUIVEY........cccooiiiiiieiieeeee e 21
2.1.3 ADOUL the EXAMPIES.....cceeiiiiiieieiieieeieeeteee ettt ettt sttt et stesaesseesbesseessesseensesseeenneennses 22
2.2 Transparency and Coupling 22
2.2.1 DISCUSSION. ¢..cetttietiteetteteete et etet et et e et et et ea e eateb e ebeebeeb e et e eb e et e et et e b et entemtenteneenbeambeemteenseeseenees 26
2.3 Mapping Type 26
2.3.1 Mapping Classes to Many TabIes..........cccoriiiiiiiiiiiiiee e 27
2.3.2 DISCUSSION. ...viviiiuietieteste sttt ettt et ettt ettt eb et sae et be s b sa et e s e e et esne s eneenaeeeneeaneenneenseenaee 28
2.4 Model-based MAaPPINg......cccoveereessencsnecssrncsancssisssecssssssesssnsssssessassssssssssssssessssssssessssssssasssssssasssssns 28
O B 111 1) 10 o VST SR 30
2.5 Identity 30
2.5.1 DISCUSSION. c..cevetititietieterte sttt ettt et ea e eat et ebe bt e bt bt et e b e st e sa et et et ea b et et entenbesateeateembeebeeneee 32
2.6 Foreign Key 32
2.6.1 FOLCR SHIAtCEY...uvievieiieiiitieiecieeie ettt ettt ettt et e e teesaesseesesse e beesaesseessasseessesseensesseenseensses 34
2.6.2 DISCUSSION. . .ueuiuiruirtietente sttt ettt et et eat et et et s uesae et e be s b e sae b et e s essemnensententesaneemneenneenseennee 35
2.7 Association table 35
B R T 1) 10 o VPSSR 37
2.8 Embedded Values Support 37

2.8.1 DISCUSSION.uvviieeeeieeeteeeeeeeeeeeee et e eeee e e e e e eaeeeeereeeeaseeeeteeeenareeeennees

2.9 Inheritance Mapping 39

B B D 111 1) 10 o OSSR 43
2.10 Summary 43
3 ESSENTIAL NOTATION FOR ORM (ENORM)........ccccoeimmmmrrrerrrsnsssnmnnnns 46
3.1 Overview 46
3.2 A Simple Example 47
3.3 A not so Simple Example 48
3.4 ENORM Meta-model 50
3.5 Special Mapping Cases 53

3.5.1 EMDBEAded ValUES.c.coiuiiieiieieiiee ettt ettt et e saeeeesneenaesnnee s 53

I I 1 -1 oL OO OO PR PR PP PR UPPI 57

3.5.3 INRETILANCE. ...ttt ettt ettt eb e bbbt bbbt e b e aeas 58

3.5.4 Auto-generated COIUMMNS..........cc.covieriiiiiiiieieiteciece ettt ae et eseesteeaesaeessesseessesssesseesseas 59

3.5.5 Constraints and INAEXES.........c.eeiriririiriirieee ettt ettt eaes 60
3.6 Limitations 61

3.6.1 Flexible Data SOUICES.......cecuiiieriiiierieeiieieeitert ettt ettt ettt ettt et b et e st e e b et eneees 61

3.6.2 QUAlified ASSOCIATIONS. ... ecueetieieeieiesieerteetesteste e e ete bt eeee st eneesaeesseeseensesseenseenseeesnseesnseeennneens 62

3.6.3 Multiple Inheritance, MUltiple TYPeS......cceeoerieiirieiieieeeere et 62

3.6.4 Association Class and “Neary”.......ccccceeceeriieiienieiienieie et esteeee e eee e e aesreessesteesessaenseensens 62

3.6.5 Generics and Template Parameters.........c.ccveverieieniieieneeie ettt eeaeeseeesnee s 62
3.7 ENORM Notation Reference 63
3.8 Modeling Tool 65

3.8.1 Modeling Tool for the EXPeriments.cceeveririenieienieie sttt 66

3.8.2 FULUIE STOPS. . euteeutetieiietiete ettt ettt ettt ettt b ettt et e bt e bt e st e sbeemtesbeemtesbeenbesbeenteeseenteeenneeas 67
3.9 Other Class Models and Persistence Extensions ...68

3.9.1 A UML Profile for Data MOdeling.........c.cceeuerieieiriininininenineneneerenieseeseeteeeeeeeeeeeneenee 68

3.9.2 Information Management Meta-model (IMM)..........cccovviiriiiienieiieeceeeeeee e 69
4 ENORM IN PRACTICE: APPLICATION EXAMPLES............ccoimmuniinnns 71
4.1 ENORM and ORM Frameworks 71
4.2 Party Pattern for Accountability 72

4.2.1 Mapping Persistent class Telephone...........coveoirieiiiiereiieeeieeeee e 73

G2 1T USINZ JPA ...ttt ettt ettt ettt e s aeesbesseesbessaesseesaenseeseenseessennseeenseas 73
4.2.1.2 USING SQLAICREIMNYeevieiieiieieiietertt ettt sttt ebesseesseesaesseenaessaensennne 73
4.2.1.3 Using ActiveRecord Of RUDY........c.coiiiiiiiiiiicii ettt 74
4.2.2 EMDEAAEA CLASSES....ueueiuieuienieiieiieiietteteet ettt ettt ettt sttt ettt eeee e 75
422 1 USING JPA ..ottt ettt ettt s bt et s b et e e bt e et e st e bt eneeenbeeeanees 75
4.2.2.2 USING SQLAICREINY ...c..eiiiitieiiitieeeee ettt s 75
4.2.2.3 Using ActiveRecord of RUDY.......cccouiiiiiiiiiiiiinicneeccceeteeee et 75
4.2.3 Party, Person, Company, and Flat inheritance.............cccccecveverinienieninienienencnenec e 75
423 T USINZ JPA ...ttt ettt ettt et e sae s ae e b e saaesbesseesseesaenseesaenseassennseeenses 75
4.2.3.2 USING SQLAICREIMNY......eetieiieiieiieieeierit ettt ebessaesseesaesseensessaensennne 76

4.2.3.3 Using ActiveRecord Of RUDY.......cc.ooiiiiiiiieiiiiiic ettt e e 77

4.3 Accountability Type Model 78

4.3.1 Implementing the ASSOCIAIONS.ccueeuieiiirieieeiieie ettt et e e e e e e 79
4311 USING JPA .ttt a et b et bt b et bt et eaeesnbeeeeees 80
4.3.1.2 USING SQIAICREIMIY ...ttt ettt et 80
4.3.1.3 Using ActiveRecord of RUDY.......cocoueiiiiiiiiiiiiinncrcccceeetee e 81

4.4 Account Model 82

4.4.1 Entry is @ dependent @NtitY.........ccoccveririereriesieeiesieetesieete e eaesteeae e esaesseesesraenseeneeenneennnes 82
44T T USING JPA. .ttt a bt ae bt be s bt et eebeeteseeeneeeneeans 82
4.4.1.2 USING SQLAICHEIMY...c..ieiiiieiiiiieieeieetcete ettt ettt be e taeesebeesnbeeennees 82
4.4.1.3 Using ActiveRecord of RUDY........cooiiiiiiiiiic e 82

4.4.2 Account mapped by tWo tables........ooeiiiiiiiiiieiee e e 83
4421 USING TPA .ottt ettt sttt st bt 83
4.4.2.2 USINg SQLAICREMY......coiriiriiiinieiiieietetete ettt ettt s s 83
4.4.2.3 Using ActiveRecord Of RUDY.......cccoiiiiiiiiiiice ettt 83

4.4.3 Vertical Inheritance 0f ACCOUNL.........ccueoieiiiiiiiiirerer ettt 84
43T USING JPA. .ttt et a st ae bt e bt s bt et eebeabeseeeneeeneeans 84
4.4.3.2 USING SQLAICHEIMY...c..eciiiieiiiiieieeiieteete ettt sttt esa e be et eeseseesnbeeennneas 84
4.4.3.3 Using ActiveRecord of RUDY........cooiiiiiiiiiie e 85

4.4.4 Properties and columns with diStinct NAMES...........cccooieriiiiiiiiieieeeee e 85
4441 USING TPA .ottt sttt sttt st b 86
4.4.4.2 USINg SQLAICREMY......ccuiriiriiitiniiiiieietetete ettt 86
4.4.4.3 Using ActiveRecord Of RUDY.......ccooieiiiiiiiiieie ettt 86

4.4.5 Overrides and Embedded objects referencing persistent classes.........ccocveeververvrenveenneeennen. 86
AAS5. T USINZ JPA.c..oeeee ettt ettt et e st e b e e st e et e e st e snbeeseesnbeensnasnseensnaesensseeas 86
4.4.5.2 USING SQLAICHEIMY...c..iciiiieiiiiieieeieeicee ettt sttt ettt eesebeesnbeeesnneas 87
4.4.5.3 Using ActiveRecord Of RUDY........cooiiiiiiiiii e 87

4.4.6 The Account-Entry asSOCIAtION.ccuevuieiiiiieiieicete ettt ettt st eebee e 87
44.6.1 USING JPA. ..ottt sttt sttt et sbe e 88
4.4.6.2 USINg SQLAICREMY......coirtiriiiiniiiiieietetete ettt st s s s 88
4.4.6.3 Using ActiveRecord Of RUDY.......cc.ooiiiiiiiiiiiicie et 89

4.5 Resource Allocation Model 89

4.5.1 Horizontal Inheritance at the Resource Allocation TTee.........cceceveririnerenienienieneeeee e 92
4.5 1.1 USINZ JPA....oo ettt ettt ettt et st e e s ae e s b e s aeesbessaesbeesaesseeseessesseensseeensnas 92
4.5.1.2 USING SQLAICREINY ..ottt e 93
4.5.1.3 Using ActiveRecord of RUDY........cooiiiiiiiiiiiiii e 93

4.5.2 Overriding inherited properties and asSOCIAIONS.c.erveruerrerierierieieieenenenestesesee e 94
4521 USING TPA oottt sttt et 94
4.5.2.2 USING SQLAICREIMNYeocvieiieiieiieii ettt ettt sb e e bessaesseesaesseensessaensennns 95
4.5.2.3 Using ActiveRecord Of RUDY........ccocieiiiriiiiiiiee e 95

4.5.3 Association to general classes with horizontal specializations.............c..cceeeveeeevveerveeenneeennne. 96
453 T USINZ JPA....oi ettt ettt ettt et st esae s ae e s b e s aeesbessaesbeessesseesaesbesseensseeensnas 96
4.5.3.2 USING SQLAICREINY ..ottt 97
4.5.3.3 Using ActiveRecord of RUDY........c.ooiiiiiiiiiiiici e 97

4.6 Remarks about implementing ENORM models 97

4.6.1 Guidelines fOr MDDc.oiiiiiiiet ettt ettt sne e sae e e e 98

5 EMPIRICAL EVALUATION..... oo r s s 102
5.1 Experimental Related Work 102
5.2 Planning and Design 103

5.2.1 SUDJEOES..cueuteuteiteitetiettee ettt ettt ettt sttt ettt b bt ae et saeeea 104

RN T BT ¥ s S 105
5.2.2.1 Individual EXPEriMENLS.......c.ceververieerieriieiieiesieetesteeeesteetesseessesseessessaessesseessesseesenseenns 105

5.2.2.2 Group EXPEriMENL.........ccvecieriiiieriieiesieeiesieeiesteeteeseesseeseesesseessesseessesssessseessseesnsneensnes 106

5.2.3 Hypothesis Formulation, Factors and Variables.............ccccccevirvieniicieneecieseeiee e 106

5.2.4 Tasks and Feature Coverage of the Individual Experiment..............cccoeeerinienienncrenenenne. 108
5.2.5 Tasks of the Group EXPeriment...........cccuevuiriiriieiinieieniee st 112
5.2.6 EXperimental SEtHNE........coueoueriiriiiriiiiieir ettt ettt ettt st et 112
5.3 Results and Analysis 114
5.3.1 Individual Experiment with CroSSOVer (I1)........cccoevieriirieriiiieniesieiesiesie e 114
5.3.1.1 Analysis 0f the FEedbacK..........ccoecuiririiiriiiiciee ettt 115

5.3.2 Individual Experiment with Time Measurements (I2)...........cccoevveeveneeciinreerieeeereeee e 116
5.3.2.1 Results Regarding the Variable “MiSSes”.........cecvuerieieiiierienieieeiereeee e 116
5.3.2.2 Results Regarding the Variable “Time”...........ccoooieiiriiiinieniriee e 117
5.3.2.3 Experience Level INfIUCNCE........cccueiuiiiiiiieiiiieccet e e 117
5.3.2.4 Analysis 0f the FEedbacks..........cccrriririmininiiniiieiitciceteeteeeeeese e 118

5.3.3 Group EXPeriment (G).......ccceeereririinienerienieienieteteteteiteie ettt sttt st eenees 119
5.3.4 ANALYSIS SUMIMATYcueeiiieiieiieieieeiesteetesteete st eaesseessesseessesseessesseesseesaessessessssseessseensesensses 120
5.4 Validity Evaluation 120
5.4.1 Internal Validity......c.ooieviiiieiiiiesie ettt ettt ae e be e e saeesaesteesseeeasaeeeseesnseeenens 121
5.4.2 CONSIUCT VAIAILY.....eoiviieiiiieieiieeiecieetesteet ettt ettt sae e ste s e sbeesbesaeessesbaessaeessneenssaeenseas 121
5.4.3 EXternal Validity.......cooeeriiieiieeeee ettt ettt e e 121
5.4.4 Conclusion Validity.......ccoeouirieiiieeie ettt sttt st s ae st 122

6 CONCLUSION.......ooooiiieiiccccsmerrr e e e s s ssmmnr e s e s s s mmm s e e e e e s e e s s smmmnnnnnes 123
REFERENCES..........ooo i s s s s s s s s s 125
APPENDIX A — CROSSOVER EXPERIMENT (I1)..cceeeeciiiiiireeencnineeenennns 131
APPENDIX B — NON-CROSSOVER EXPERIMENT (12)......ccccvvvrrrrrrrennnns 138
APPENDIX C — TASKS (INDIVIDUAL EXPERIMENTS).......cccccceeiiiirnnnns 142
APPENDIX D — TASKS (GROUP EXPERIMENT).....cccoomimiiiirrereeereeeeennnns 164
APPENDIX E — EXTENSIONS TO ACTIVE RECORD..........ccceeeueeiiiiennens 170
APPENDIX F — RELATED PUBLICATIONS..........cccoorrrrreresemmnnmmnnnnes 173
ANNEX A — EXPERIMENTAL REPORT — EXPERIMENT H................... 174

ANNEX B — EXPERIMENTAL REPORT - EXPERIMENT I2................... 177

16

1 INTRODUCTION

Relational Databases (RDBs) are the backbone of information systems, and nobody
knows when (or if) this will change (ATZENI et al., 2013). However, the Impedance
Mismatch Problem (IMP) (ATKINSON and BUNEMAN, 1987; COPELAND and
MALIER, 1984) continues to haunt object oriented designs that tend to underestimate the
Object-Relational Mapping (ORM) difficulties.

In the past decade we saw a growing adoption of ORM frameworks by information
system developers of distinct platforms such as Java, C#, Python, and Ruby on Rails.
These frameworks have most of their resources based upon established patterns
(BROWN and WHITENACK, 1996; FOWLER, 2002; KELLER, 1997), and its use
spread a more standardized approach for the IMP. Nevertheless, mappings scattered in
the code, annotations and/or XML files are difficult to read, understand, and reason
about changes.

The Model-Driven Development (MDD) proposes that models take on the main role
on the system development process (BEYDEDA, BOOK and GRUHN, 2005; OMG,
2001). For an effective MDD approach, the information represented by models should
be coherent, integrated, and computable, so that automatic transformations could turn
models into executable system (MELLOR et al., 2004). The UML notation lacks a
specific notation for persistence, or to map classes to database. The absence of mapping
information poses a challenge for developing transformations.

The problem under study at this thesis is the lack of a persistence notation that
serves both to document and communicate the mappings between relations and classes,
and as an artifact with the necessary information for MDD. One of the roots of IMP is
the conceptual miscommunication (AMBLER, 2003), and we believe that an adequate
persistence notation will contribute solving this problem.

This thesis presents a general purpose notation named Essential Notation for Object-
Relational Mapping (ENORM). ENORM extends the UML class model, by a profile,
and offers a concise set of new visual elements specific to represent the structural
concepts of ORM. These essential concepts are based upon persistence patterns, and the
way these patterns are adopted by distinct ORM frameworks in the market.

The goal of ENORM is to facilitate the design by the clear application of ORM
patterns, document mappings with a platform independent notation, and be a repository
for MDD transformations, partial code generation, and round-trip engineering tools.
ENORM is designed to represent patterns within a domain modeling logic, with objects
of the domain incorporating both behavior and data (FOWLER, 2002). Therefore, this

17

study does not encompasses the design of queries, nor the specification of models that
describe the behavior of the systems.

In a nutshell, the contributions here presented are a survey relating ORM patterns
and frameworks; the ENORM notation, comprising graphical elements, the profile and
the modeling tool; a set of examples using ENORM and implemented by selected
frameworks, summarizing the mappings from model to implementation; and
comparative experiments evaluating the modeling activity with ENORM.

The main modeling principle of the ENORM approach is the Don 't Repeat Yourself
(DRY) (AMBLER, 2002; HUNT and THOMAS, 1999), avoiding the duplication of
domain concepts, such as separated class and table specifications for the same element.
ORM providers, such as the Ruby’s Active Record (RAR), and JPA, detected that
classes and tables are often very similar, and that the ORM could be very
straightforward most of the time. They adopted the Convention over Configuration
(CoC) design pattern (CHEN, 2006), reducing the amount of configuration, and
therefore code, to realize what would be an obvious mapping.

At a higher abstraction level, when modeling information systems with separated
class and relational models, the designer often have to deal with duplicate definitions of
the same domain objects. For instance, a class that represents a telephone, and the table
that stores this information, may have a trivial mapping, predicted by convention: same
names for class and table, properties and columns; or computable names, such as the
table name being the plural of the class name. At a scenario that offen can be predicted
by convention, having two separated models seems to be a waste of effort and time. On
the other hand, if all elements have one straightforward mapping, ENORM would not
be needed, because no mapping would be necessary.

ENORM has a single model approach, and is focused at the class model. If the class
can be mapped by convention, or in other words, without additional mapping
information, it is not necessary to specify this information. Conversely, if this mapping
is not trivial, the meta-model supports the detailing of this mapping. ENORM was
designed to be easily understood by developers and rich enough for MDD tools,
allowing the specification of the relevant persistence details, or hiding what can be
inferred.

Database design concerns, such as data normalization, Primary Key (PK) and
relationships are distinct from the behavior oriented forces of high cohesion and low
coupling of OO design (AMBLER, 2003). The single model approach is strong when it
is necessary to link the RDB specification, and the domain specification, because it
enforces the habit of reasoning about the two domains together. In other words, it is a
synergistic modeling, because it shows the cooperation between database and classes.

However, another principle to consider is the violation of the Separation of
Concerns (SoC), by specifying two traditionally separated viewpoints, such as database
and OO, together. Nevertheless, the SoC applies ideally when each concern delivers
distinct functionality, that can be developed and validated independently (PRESSMAN,
2010). This rarely fully applies to applications and databases.

Moreover, SoC is not the same of ignoring the mappings between software and
database. ENORM main audience are the software developers and designers that need

18

to understand, evaluate, and document this information, in order to deliver software that
deal with both viewpoints, taking in account database and software forces.

The database model may be independent of the system, shared among various
distinct systems; or serve only one system. If the database is exclusive to the system,
and its design is entirely under the responsibility of the same team of this system, the
mappings tend to be more conventional. This, however, depends on the performance
requirements, the amount of data, and the model itself: if the database performs poorly,
and the model have to change, the mapping may not be the obvious one. This is what
makes all database and class models hardly ever the same, and hardly ever
automatically mapped by convention.

Moreover, if the database is independent, the mappings tend to be more
complicated, because changes in the RDB are complicated, involving various parties
and Data Administrators (DA) (AMBLER, 2003). At this scenario, ENORM is
appropriate for developers understand the connections between their particular domain
and the database, and also to communicate their needs to the DA or external parties.
However, ENORM diagrams are not appropriate for the DA tasks at the production
database, and are not intended to replace ER models for database design.

The scenario where a system access multiple databases is a variation of the shared
database scenario, but with added complexity. ENORM meta-model allows the
specification of the schema and catalog, that can be used to filter the models according
to a certain database.

ENORM meta-model contains all mapping information, by convention or
configuration, and it is easy, for a tool, to transform ENORM models to the database
viewpoint, presenting a relational model. It is also easy to present a pure class
viewpoint, removing the elements introduced by ENORM.

The essential elements, contained at the ENORM meta-model, are the result of a
survey relating six commercial ORM tools, and the ORM pattern literature. This survey
includes representatives of four Object-Oriented (OO) programming languages, selected
among the top ten most popular OO languages of 2013: Java, C#, Ruby, and Python
(CARBONNELLE, 2014, DE MONTMOLLIN, 2013; O’GRADY, 2013; TIOBE,
2013).

In order to evaluate our meta-model, we followed two strategies. The first is by
implementing application examples for the models, following the prove it with code
approach of agile modeling (AMBLER, 2002). Despite the name, it is not a formal
proof, but based at the comparative implementation of a set of example models, using
three distinct frameworks of three distinct OO languages. The goal is to capture, by
examples, how the notation, and its meta-model, relates to practical implementation.

The second strategy focus at the empirical evaluation of ENORM single notation
approach, in comparison with using separated class and relational models. The main
issue under evaluation is if ENORM models are hard to understand and modify, due,
perhaps, to a possible lack of SoC. The hypothesis tested was that ENORM single
notation does not decrease the quality of models, and may perhaps increase its quality,
independently of MDD, ORM framework, or actual implementation.

19

Two controlled experiments were performed, with computer science students,
individually performing changes in models; and one experiment was performed with
groups of students creating and integrating models, simulating database sharing among
different systems. None of the results showed a decrease of quality, in terms of achieved
goals and time, by using ENORM. In fact, in most studied scenarios, ENORM achieved
significantly more goals, although no significant difference in time.

The last evaluation step would be a case study (WOHLIN et al., 2012), involving
professionals and a real project, with modeling and development. This case study,
unfortunately, could not be executed, and depends on establishing partnerships with the
industry.

As the last contribution of this thesis, a modeling tool is under development. This
tool allows the modeling using the notation, integrated with the Eclipse software
development tool. Code generation, reverse engineering, and round-trip engineering are
the next steps towards a MDD tool.

Figure 1.1: Text organization.

Thesis Chapter 4:
ENORM in practice

i
Chapter 3. $| Application Examples |>
Metamodel -
@®—= survey > ENORM notation %[Chapter 5: iﬂ%@
-/ S Compare ENORM with

Conclusion

separated maodeling.

Chapter 2: S
ORM Patterns and tools .. .
(Bibliographic Review) %| Empirical evaluation }—

The text is organized as shown by Figure 1.1. Chapter 2 presents a bibliographic
review surveying ORM patterns and tools, and organizing the knowledge in pattern
based criteria and characteristics. Chapter 3 presents the ENORM notation, its meta-
model, special cases, limitations, and tools under development. Chapter 4 present the
application examples, based upon analysis patterns, and guidelines for developers in the
context of MDD. Chapter 5 presents the empirical evaluation of the notation, in
comparison with separated modeling. Chapter 6 presents the conclusion of this work.

20

2 ORM PATTERNS AND FRAMEWORKS

This chapter presents a bibliographic review relating ORM patterns and practices,
based upon the study of representative ORM frameworks and tools. This review,
presented in the format of a survey, has the purpose of conceptual organization,
identifying the essential concepts necessary for our notation, and the consequences of
ORM decisions at the OO design.

At the first section we explain the survey organization, introducing the domain
patterns and frameworks under study. The following sections presents the survey,
criteria by criteria. The last section presents a short summary relating patterns,
frameworks, and design decisions.

2.1 Survey organization

At this first section we discuss the three basic patterns that guide the organization of
the domain logic; the selection of ORM tools for this survey; and the examples used at
this and the following chapters.

Each of the following sections describes a criteria proposed for characterizing and
assessing ORM frameworks. After introducing some unifying terminology from
patterns, we present and discuss the criteria in the context of the studied ORM
frameworks. Some criteria are identified as coarse patterns such as Embedded Values or
Association Table, but others encompass different patterns that operate over the same
problem. For instance, Coupling and Model Based criteria are more architectural design
oriented, while identity/foreign key are very close to the implementation patterns.

Under each criterion, one or more common characteristics are identified relating
patterns and frameworks. The inheritance mapping criterion, for example, has each
strategy as a characteristic, that may be available on each framework. After presenting
and discussing all criteria, a short summary is presented in the end of the chapter.

2.1.1 Object-Relational Patterns

When developing enterprise applications with large and/or complex domain logic
persisted by RDBs, there are different approaches on how to organize this domain logic,
according to the pattern literature. The simplest Transaction Script pattern has a
procedural approach, implementing a script for each action, business transaction,
identified on the system. Conversely, the Domain Model pattern assigns the domain
logic to the object model, hence each domain object incorporates both behavior and data
(FOWLER, 2002).

21

A third pattern in this category is the Table Module pattern, that proposes a structure
similar to the RDB schema. Each table, or view, has a singleton (a class that has just
one instance object) that handles the persistence and business logic, for all rows of its
table. This pattern is a middle term, between the hard to reuse transactional/procedural
approach and the difficult to implement object-oriented Domain Model pattern.

The difference between Table Module and Domain Model may not be clear at first
sight. Figure 2.1 exemplifies a simple case for a Person object that only has an id and a
name. In the Table Module approach the Person class has one instance that deals with
all persons, and thus has an insert method that deals with Person creation. There is no
specific class representing the data of Person, hence the general purpose DataRow class
is used to store the data for the retrieved person. In the Domain Model example, the
code first instantiate a person object with its data, and then asks the object to insert
itself. This is a very simple example, and the precise way to retrieve and insert
information may change among different platforms, but the key difference is the general
DataRow against the actually instantiation of Person/Other specific class objects.

Figure 2.1: Java examples of Table Module pattern (left) and Domain Model pattern

(right).
int id=l: int id=l:
String name="Boh"; String name="Boh";
Person. instance. insertiid, name); Person person = new Person(id, name);
DataRow row = Person.instance.retrieveByIdiid);| person.insert():
assertEquals(rov. get3tring| "name"), "Bob"): person = Person. retrieveByldiid):
assertEquals (person. getMName |), "Bobk")

The Domain Model pattern is the best approach in terms of an OO solution, because
it deals with typed instances in a transparent way, better organizing complex logic. It
gives access to resources such as polymorphism, relationships and inheritance, although
when dealing with relational persistence, it may require more work and had a steeper
learning curve (FOWLER, 2002).

The ORM solutions here studied, and our notation, are focused on the application of
the Domain Model pattern. Several other patterns deal with how to read/persist objects
within this approach, and will be identified in the following sections that analyze each
ORM solution.

2.1.2 Selected Frameworks for the Survey

Due to the large number of ORM solutions in the market, we decided to select a
small set of tools for our analysis, based in the access to documentation,
distinguishing/unique approach to a given problem and maturity/insertion in the market.
Of this list, we left out low level persistence layers that did not accomplish a minimum
ORM such as JDBC, ADO (ActiveX Data Objects) and other Record Set layers, but
included the most important tools, of four of the most popular programming languages
(DE MONTMOLLIN, 2013; O’GRADY, 2013; TIOBE, 2013).

The JPA specification (DEMICHIEL, 2013) was the first obvious choice,
encompassing a significant number of ORM solutions for the Java platform. The MS
Entity Framework (MICROSOFT, 2012a) is both a major persistence layer, and an
example of model based ORM tool. The Ruby Active Record is the major ORM solution
for the Ruby platform (HEINEMEIER HANSSON, 2012).

22

Table 2.1: Summary of frameworks.

Framework Platform URL
ActiveRecord Ruby http://ar.rubyonrails.org/
Cayenne Java http://cayenne.apache.org

Entity Framework [MS .net http://msdn.microsoft.com/en-us/library/bb399572.aspx

JPA 2 Java http:/jcp.org/aboutJava/communityprocess/final/jsr317/index.html

MyBatis Java http://www.mybatis.org/

SQLAIchemy Python http://www.sqlalchemy.org/

The MyBatis (formerly known as iBatis) is probably the most known solution with
the data mapping approach to the ORM (BEGIN, GOODIN and MEADORS, 2007).
The SQLAlchemy is a well known solution to the Python platform, and presents a hybrid
approach to the coupling problem (BAYER, 2012). The Apache Cayenne is a
model/generation based solution that allows some degree of organized customization
(APACHE FOUNDATION, 2012). Table 2.1 presents a summary of frameworks and
standards, their programming language platform, and their respective internet resources.

2.1.3 About the examples

The majority of the examples presented at this thesis were based upon Analysis
Patterns (FOWLER, 1996). The models are variations of the Party, Accountability,
Knowledge level, Party Type, Account, Transaction, Quantity, Multilegged transaction,
Summary Account, and Resource Allocation analysis patterns, focusing at the
Accountability, Accounting, and Planning analysis domains.

All model elements are in italic. References to patterns, frameworks, and tools are
also in italic. Reference to meta-model elements, such as stereotypes or meta-classes,
are in sans serif (Arial). Classes always starts with uppercase, while properties are
written starting with lowercase.

Sometimes, an example database model will present tables that do not follow any
naming convention. This is deliberate, because it is not uncommon to find databases
that do not follow a convention, due to the schema longevity and resistance of the
administrators to refactoring. For example, some tables are plural, other are not.

2.2 Transparency and Coupling

Coupling is a measure of interconnection among modules in a software. Software
with low coupling levels tends to be easier to understand and less prone to the
propagation of errors (PRESSMAN, 2001). In ORM frameworks, transparency is
commonly referred to as the ability to keep a loose coupling between application and
the persistence framework, mainly by keeping the domain level classes unaware of the
persistence framework (BAUER and KING, 2004). Transparency is usually achieved
by having object-relational mapping information isolated in external configuration files
or annotations. Under transparency/coupling criterion, loose coupled frameworks are
those that do not impose coupling between the domain classes and the persistence
framework.

23

Lets take the Domain Model pattern as our context and the Active Record pattern as
the starting point for our discussion of an ORM solution (FOWLER, 2002). Each class
of the domain is responsible for retrieving and maintaining its data in the database and
each instance of the domain class represents one row (or record) in the database. This
frequently means implementing an interface of common CRUD (MARTIN, 1983)
methods, or extending an abstract super class, responsible for encapsulating the
common services among all persistent classes.

The Ruby platform can be used as an example of Active Record implementation for
ORM (HEINEMEIER HANSSON, 2012), although it uses a Metadata Maper as it will
be examined in the mapping criteria. The persistence framework provides a base
abstract class named ActiveRecord.::Base that implements most of the SQL conversation
with the database. By extending ActiveRecord, the classes of the domain will be
automatically persisted according to the mapping contract defined within the
framework.

Figure 2.2: Active Record example.

domain
ORM Framework
Account
[1] FFlontries -~ ActiveRecord
Entry

Figure 2.2 depicts an Active Record example on Ruby consisting of the Account to
Entry relationship. Each class of the domain must specialize ActiveRecord, and
optionally override its methods and properties, to represent persistent objects. Ruby is
interpreted, dynamic typed, and highly reflective, characteristics that help with adopting
conventions that represent mapping constructions, without losing the ability to override
most of these conventions. For example, the PK in Ruby is, by convention, a column
named “ID”, and the name of the table is the plural of the name of the class. However,
the developer can override the super-class replacing the convention for one or more
classes. Nevertheless, some complex mappings such as of compound keys are not
supported by the Active Record framework of Ruby and difficult to override.

In order to allow further flexibility for the Active Record pattern, one solution is to
introduce an intermediary abstract class. The intermediary class generalizes each
domain class, encapsulating the database access details. This intermediary class can
then specialize the ActiveRecord base class, that keeps the common database logic, and
acts as a femplate method class for the domain (GAMMA et al., 1994).

It is common to have the intermediary classes automatically generated by the
framework, from models or configuration files for instance. Figure 2.3 presents the
Account domain example in this scenario. The Cayenne framework is an example of
this approach, in which the ActiveRecord class is called CayenneDataObject. The
intermediary, underscored classes, contains the implementation of the mapping between
the domain and the database accessing the persistence layer, including the properties

24

and its accessors methods. The domain classes, implemented by the developer, may
then override these properties and implement the domain logic.

Figure 2.3: Inheritance to generated classes.

R generated ORM Framework
Account [~ _Account
[*]entries [*]_entries —— ActiveRecord
Entry ~| _Entry

Both approaches to the ActiveRecord pattern leaded to concerns, about the high
coupling to the persistence framework. The inheritance relationship imposes a strong
coupling to the general classes (PRESSMAN, 2001), but there are other approaches to
persistence, based on domain classes being loosely coupled to ORM framework classes,
that can avoid this problem.

The SQLAlchemy persistence framework for the Python platform presents a hybrid
example of the previous Active Record examples, and a loosely coupled solution based
on the Mediator pattern. The developer can choose among inheritance from base class,
configuring a strong/tight coupling, or the loose coupled, dynamic instantiation of
mapping objects that link domain classes to table definition objects.

Figure 2.4: Instantiated mapping example for SOLAIchemy loose coupling approach.

application
accountMapping : Mapper 'accountTable : Table
table name = Accounts
entryMapping : Mapper entryTable : Table
LA name = Acct_Entries
i «import» ! «import»
domain | \/ [galalchemy \/
Account
Mapper toble Table
[*] | entries class: Class [1] —————=| name: String [1]

—— Entry [0.1]

25

Figure 2.4 shows a simplified example of the transparent mapping, achieved in
SQOLAlchemy. The framework provides classes to specify the table (with attributes such
as name, column, column types...) and mappings (Mapper class) between a Table and
any class. In the application package, some class will instantiate the tables with its
metadata, and the mappers binding each Table to the corresponding domain class. For
example, the instance accountMapping is a Mapper that refers to the instance
accountTable as its Table and to the domain class Account as its mapped class. The
accountTable contains information about the database table, such as the name of the
table being Accounts. This example is simplified, usually accountTable would contain
all data necessary to create the table and its constraints. The Entry class is mapped in a
similar way, by the entryMaping instance to the entryTable, with table named
Acct_Entries. The framework can then use the Mapper instances to access the database
and factory instances of the domain classes, based on application requests. This kind of
loose coupling by instantiating mapping classes is named /nstantiated mapping.

A slightly variation of the Instantiated mapping approach has became part of the
JPA specification: instead of instantiating the mapping on some application class, as
with SOLAlchemy, the mapping is done on independent files and/or code annotations,
achieving a better SoC. This mapping artifact (file or annotation) is accessed by the
framework, that internally builds the necessary metadata on memory. As in
SQLAlchemy, the domain knows nothing about its persistence, and the persistence can
be applied to any domain package, even without its original source code (Figure 2.5).

Figure 2.5: JPA loose coupling overview.

. «?rtifacr & domain
onfiguration
—————————————— = | Account

class: Account <<refers>>

fable: Accounts; 1]
class: Entry _ [*]entries

fable: Acct_Entries, Entry

i <<reads>> i «mport»

JPA application

.;-'_’5: _____________

«import»

An additional advantage is that the JPA acts as an abstract factory (GAMMA et al.,
1994) to one among various JPA frameworks, making it possible reduce or eliminate
the coupling between the application and the implementing framework. In Java, domain

classes with no coupling to the persistence framework are commonly referred as POJO
(Plain Old Java Object) classes (FOWLER, 2000).

26

The MS Entity Framework uses an ActiveRecord coupled approach, like the one
shown in Figure 2.2, combined with a configuration as its default solution
(MICROSOFT, 2012a). The domain classes specialize the EntityObject abstract class
(MICROSOFT, 2012b). Recently it was introduced the concept of POCO (Plain Old
CLR Objects) classes which allows persistence ignorance on the domain classes
(DERSTADT and VEGA, 2009).

Finally, Mybatis also employs external configurations for ORM. It achieves a loose
coupling between the domain and the framework, encapsulating framework access at
the application level.

2.2.1 Discussion

A framework that requires subclass coupling will introduce “alien” elements from
the framework into the domain classes. If the platform does not support multiple
inheritance, it will be impossible to have inheritance between persistent and transient
application domain classes, given that each domain class already specializes its
persistent counterpart and cannot inherit from another class.

On the other hand, a framework that allows a loosely coupled domain model still
have restrictions, mapping requirements and limitations. The naive assumption that any
model can be persisted may lead to a domain model that cannot be implemented (or is
unpractical) with the chosen framework or technology. If legacy databases are present
(and they often are), chances are great that the design freedom on the domain model
will be severely limited.

2.3 Mapping Type

An ORM framework has the responsibility of mapping data among domain objects
and database tables. The mapping type criteria defines how a framework perform this
mapping: the Data Mapper knows how to map the sets of data from SQL statements;
the Metadata Mapper builds this SQL from metadata informed by the developer and/or
extracted from the system. For example, this extraction may be performed by
introspection and querying the database for metadata. Both mapping types were
identified in previously published patterns with the same name (FOWLER, 2002).

Figure 2.6 illustrates how the Data Mapper works on environments such as the
MpyBatis framework. The mapper instance reads the configuration artifact that contains
SQL statements prepared by the developer for each mapping situation of each class in
the domain. For instance, the artifact Account.xml defines a query that is responsible for
the construction of each Account instance. The artifact Entry.xml declares a query, that
returns a set of Entry instances related to one Account. The developer must also provide
SQOL statements for the remaining CRUD operations.

The Metadata Mapper is represented by the Mapper class in Figure 2.4. Instead of
storing developer written SQL statements, it stores information about the tables,
columns and mapping options of the developer (FOWLER, 2002). The mapping options
depends on the attribute and column types, including cardinality, length and precision,
but may require some special configuration for Large Binary Objects (LOBs) and dates.
This metadata i1s then used to dynamically assemble a SQL statement for each
operation.

27

Figure 2.6: Data mapper such as in MyBatis.

ORM Framework «artifact» B
DataMapper <<roads>> Class: Account
—_ | getAccount:
~ |SELECT ...
FROM Accounts
WHERE number =#id#
<<reads>> !
<<refers=>> i
Vv ;
«artifact») domain |/
Class: Entry Account
getEntriesByAcctNumber: | __________ = [
SELECT ... <<refers=>>
FROM Acct_Entries [*]entries
WHERE acct_number = #id# Entry

A Metadata Mapper framework may have all metadata informed by the developer,
by configuration artifacts and domain structure. Another approach to obtain metadata is
to extract it from the database itself and combine with data informed by the developer.
In such case, the database schema itself is a configuration artifact, complemented by the
developer according the framework rules.

RAR uses the metadata extraction approach to perform all column mappings. The
developers do not need to declare properties representing the database columns, all they
need to do is to declare the class mapped to the table and the framework will, at run-
time, query the database to obtain column metadata and dynamically provide properties
to the classes. One drawback of this approach is that without database connection, the
developer may not know what properties a persistent class have.

MyBatis is the only Data Mapper analyzed. All other frameworks, i.e. SOLAlchemy,
JPA, MS Entity Framework, and Cayenne employ the Metadata Mapper approach.

2.3.1 Mapping Classes to Many Tables

Metadata mapper frameworks usually allows the mapping of one class to multiple
tables. JPA, Entity Framework, SQLAlchemy, and RAR have mechanisms to map a class
to more than one table, offering some mechanism to resolve the persistence of the
instances. Data mappers, such as MyBatis, can easily be mapped to many tables due to
its query flexibility.

JPA, Entity Framework, and SQLAlchemy allows the definition of secondary tables,
joined by a common PK. The framework retrieves the data by performing inner joins,

28

and persist data by issuing inserts, updates, and deletes for each table in the mapping.
JPA did not forbid implementing frameworks of improving secondary table support
beyond this limitation, and in fact Hibernate allows the definition of the SQL statements
that perform the joins and database changes (RED HAT MIDDLEWARE, 2014).

RAR allows secondary tables by using nested attributes (RUBYONRAILS.ORG,
2014). Differently from the other ORM frameworks, the secondary tables must first be
defined as classes, with the necessary associative mappings. Therefore, the
ActiveRecord framework do not hide the secondary tables from the domain as the above
mentioned frameworks.

Another approach to map classes to multiple tables is the definition of entities over
updatable views. This solution moves the mapping implementation to the database as
stored procedures, views, and/or triggers. This approach gives greater flexibility, but
hides the mapping inside the database.

A persistent class can often be defined over an arbitrary query, as a view can be
defined by any valid SQL query, as long as it is read only. But the usual benefit of
defining a domain class is its persistence. The problem of detecting what queries
imposes a read-only restriction to the persistent class is similar to the problem of
translating updates on views (DAYAL and BERNSTEIN, 1982; KELLER, 1985).
Ultimately, the ideal mapping implementation would have to translate the operations
affecting the tables, and these operations should be side-effect free: a change on one
instance cannot affect any other instance in memory, or stored in the database.

2.3.2 Discussion

The Data Mapper approach requires the specification of SQL statements for each
CRUD operation on each domain object. These statements are the mapping between the
domain and the database, becoming sensitive to changes in both ends and dependent to
the chosen database platform.

The Metadata mapping approach requires the specification of equivalence between
domain classes and database tables, what sometimes may be difficult to achieve in
legacy systems. The more resourceful is the Metadata Mapper, more freedom the
domain model will have from the database and/or vice versa. Transferring the SQL
responsibility to the framework may impact the performance and this may influence the
design and require careful parametrization of the mapping. A framework may allow that
part of the mapping specification is done through a Data Mapper approach.

One characteristic of the Data Mapper pattern is the higher mapping flexibility: by
treating each case by individual hand crafted SQL statements, the domain model can be
very distinct from the original database model (FOWLER, 2002). On the other hand, the
Metadata Mapper encapsulates the database access, avoiding the database vendor “lock
in” and its configuration is less repetitive and pretty much automatic when domain
objects are similar to the tables.

2.4 Model-based Mapping

ORM frameworks often include a set of tools to specify the system, manage
configuration artifacts, generate pieces of code and/or data modeling. Nevertheless,
frameworks may rely on such tools to construct an abstract logical model ahead of

29

implementation, or work straight with implementation artifacts without any previous
specific abstract model. Model based ORM involves a language with higher abstraction
level (usually a visual one) to specify the two natures of entities: persistence, as a
relational table, and behavior, as an OO class. This modeling language can actually
represent elements from database, application and all the mappings required to
overcome the IMP.

The mapping model is the primary input for any future change in the configuration,
database structure and/or domain classes. Usually there are tools that can perform
reverse and forward engineering between model, database and domain classes by Match
and ModelGen operations, according to the model management approach
(BERNSTEIN and MELNIK, 2007). The match operation tries to identify the mappings
between elements from two meta-models, while the ModelGen generates elements from
one model to another (such as generating DML or application code).

The Entity Data Model (EDM) is a model based mapping tool for the Entity
Framework (ADYA et al., 2007; MICROSOFT, 2012a), influenced by the model
management approach. The mapping starts with a model (with an ER logical inspired
notation) that can be created from scratch, or by reverse engineering a database. This
conceptual model is extended with visual elements to identify ORM patterns supported
by the tool, such as navigation properties for relationships. Finally, this model is used to
generate source code and configuration, by a template mechanism, that implements the
domain objects and its mappings.

Figure 2.7 presents an example of EDM. The Product entity has a many-to-one
relationship to Category, specified by the navigation property Category. The Category
has a reverse navigation property named Products, that contains a collection of
products.

Figure 2.7: Entity Data Model for MS Entity Framework

2 Product [#
<2 Category E3 = properties
% Discontinued
= Properties 3 ProductiD
'l’%ﬁ‘ CategoryID = ProductMame
¥ CategoryMame - : E UnitPrice
=l Navigation Properties =l Mavigation Properties
*'EJ, Products -'"-:-L Category

Source: (SNEED, 2012).

The disadvantage of using an ER like model (such as EDM) as the source for
generating the domain model is the absence of visual behavior specification for the
entity classes. Even when dealing with code and mappings, currently it is only possible
to define methods that call stored procedures outside the model. Operations on the
application side are not represented on the models.

The Cayenne is another example of model based tool that generates the source code
from a visual model. Instead of one model, Cayenne requires the specification of two
models. The first is a data model and the last is a class model bound to this data model.

30

Figure 2.8 presents an example of Cayenne model for a similar Product x Category
model. The “C” icon represents the classes (ObjEntities) and the boxed icon represents
tables (DbEntities). The modeler allows the specification of how each ObjEntity is
mapped to one or more DbEntity. The model itself has a “Property explorer” visual
representation, far away from the ER visual language.

Figure 2.8: Cayenne models domain and database elements separated.
‘,!" CayenneModeler - ChdewvitesteCayene\cayenne.xml

File Edit Project Tools Help
& UntitledDomain Entity |, Attributes * Relationships | Callbacks |
&=+ a% UntitledDomainM: = _
H ,, G Categnw q "={:" - g Ut
- g Name | Target |Semantics| Delete Rule|
b CATEGORY .
catego Catego to one Mulli
- [EPrRobUCT gony @ Category v
- @ UntitledDomainN¢

Although the JPA specification was not conceived as a model based mapping
framework, nothing prevents independent vendors from building tools for modeling
ORM. The Hibernate Tools project (RED HAT MIDDLEWARE, 2014) provides a
graphical view of the mappings, along with other development tools. The key point here
is that such tools are not intended to design, but more focused on ease the
comprehension of the (eventually huge) mappings.

2.4.1 Discussion

Model based ORM frameworks are somewhat new and clearly did not encompass all
design choices for mapping, with limitations on behavior specification and a lack of
connection to the transient components of the system.

EDM option for ER models naturally limits behavior specification, better expressed
with class models. It is somewhat unclear how manual behavior development and code
generation should work together without constant overriding, if by customizing the
generator (that may require maintenance when updating the framework) or by moving
any behavior out of the entity classes (what fells like a procedural solution).

The separation of class and table concepts on Cayenne, potentially duplicates the
number of elements that the developer have to deal with (elements that in a conceptual
viewpoint represent the same thing). Its modeling tool is much more a visual editor than
a notation itself, leaving most of mapping information hidden behind wizards and
menus, instead of graphic displaying its details. Moreover, it has the same limitation of
the EDM regarding the lack of operations specification.

A model based solution, with support to mappings that are sensitive to changes on
both sides of the ORM artifacts, still seems to be missing and not being offered by any
of the tools available for the researched frameworks.

2.5 Identity

The PK is the minimal subset of columns that uniquely identifies a row in a database
table. The PK may be composed by meaningful or meaningless information to the

31

developer viewpoint, and it is usually immutable. PKs can be referenced in other tables
by Foreign Keys (FKs).

The identity problem refers to the mapping of the PK concept to the domain object.
Objects usually do not need a declarative identity because they are internally identified
by their memory position. From an OO viewpoint, if an object is serialized to an
external system and later reconstructed to the same state, it is another instance and
therefore a distinct object. Non standard equality and guarantee of uniqueness are
behaviors that must be implemented on the class, such as the equals operation on the
Java platform (GOSLING et al., 2005).

The identity problem was covered by the Identity Field pattern (FOWLER, 2002).
The following characteristics were identified based on the implementation of this
pattern by the ORM frameworks:

— Identity Complexity: can be of Single or Compound complexity: Single identities
are formed by a single column; Compound identities by a set of columns.
Compound keys are often used to implement weak entities.

— lIdentity Uniqueness scope: can be of Table or Database uniqueness. Concerns if
the database is designed, to have PKs that are unique in the context of the table,
or the entire database. Table uniqueness is the most common situation on legacy
databases.

— Identity Assignment: can be of Auto-generation, Counter or User Assigned. A
database can offer different resources to assign the PK: With auto-generation
the database assigns a key for each inserted row; With counter assignment, the
developer obtains a new key from a named unique counter (also called sequence
generator), that may be shared by several tables; and with user assignment the
application is responsible of assigning the key, asking the user for a meaningful
key or generating the key by a client side solution.

ORM frameworks may not support all combinations of the above characteristics.
Some ORM frameworks only support single key mappings, such as the RAR
(HEINEMEIER HANSSON, 2012). Some characteristics are supported by all
frameworks, such as single complexity and table uniqueness.

Figure 2.9: Primary key fields (a) and primary key class (b).
Telephone
«PK» area: Integer [1]

3) | «PK» number: Integer [1]
... other properties

Telephone 3 TelephonePK
. area: Integer [1
)| . other properties ® }number' Ir?te Lr‘][ﬂ
+ identifier - LD

32

Composite keys may be represented by a separated PK class, or by PK fields
identified within the class. On Figure 2.9, diagram a) shows the composite PK for
Telephone as two properties, area and number, directly containing the columns values;
and diagram b) depicts the PK as an identifier relationship, between Telephone and
TelephonePK classes. Some frameworks, such as the ones that follow the JPA
specification, allow both representations, although the definition of PK classes may be
required even if the identified fields approach is used (DEMICHIEL, 2013).

Key assignment is a tricky problem to the ORM. A domain object is first created in
memory and then it can be persisted on database. If the key is user assigned, the ORM
must ensure that a key is provided before that object is persisted. On the other hand, if
the key is generated by the database, it must not be assigned by the user. If it is an auto-
generation field, the ORM must implement some way of capturing the generated value,
to store in the object for later updates. When a counter is employed, the counter
specification must be informed in the mapping, or obtained from some default naming
convention.

The user assigned identity may be automatically generated in the ORM level. The
most common techniques are based upon Globally Unique Identifier (GUID)
generation, key tables and table scans. A framework may allow the user to create
customized generations, combining different techniques.

Complexity and assignment are affected by the chosen uniqueness scope. Composite
and auto-generated identities are usually related to fable scope, while GUID and single
identities are the usual combination for database scope. The ORM may treat all scoping
as table, offer some facility to distinguish database or table scoping, or just require
database scoping. By treating all scoping as fable, the developer can still implement
some sort of database scoping, if the ORM supports user assignment to generate
GUIDs for instance. Conversely, requiring database scope turns out to be an
impediment for database schemas with table scoping and access by legacy systems.

2.5.1 Discussion

PK mapping is often forgotten in the OO project stage, spanning unpredicted PK
classes in the implementation stage. Another common problem is the absence of the PK
attributes in the domain classes, since they are required only to model the database. The
assignment, and uniqueness of scope, may impact in the inheritance support of the
framework. Single and compound keys will impact the foreign key support.

If a metadata mapper is employed it will require metadata about how the PK will be
represented. Conversely, the data mapper will require the presence of "find-by-primary-
key" factory methods for most domain classes.

2.6 Foreign Key

The Foreign Key Mapping pattern describes the common solutions for representing
database relationships in classes (and vice verse) for the ome-to and fo-one cases
(FOWLER, 2002; KELLER, 1997). One of the most important features of RDBs is the
referential integrity, a mechanism that guarantees coherent relationships between rows
in different tables (ELMASRI and NAVATHE, 2003; GARCIA-MOLINA, ULLMAN
and WIDOM, 2008). One row references the other by having a FK, a subset of its

33

columns that references the PK columns (sometimes an Alternate Key) of the other
table. The database must either ensure that the FK is pointing to some row that exists in
the referenced table, or that it has NULL values in all of its columns.

Figure 2.10: Association relationship between classes.

Party phones [1..7] Telephone
. - —— = area: Integer [1]
name: Strin T - '
g party [1] number: Integer [1]
Party Telephone

name: String [1] . area: Integer [1]
phones: Telephone [1..*] I)
calls: Telephone [1] party: Party [1]

In OO systems, classes may reference other classes by variables, what denotes a
(usually transient) dependency relationship. An association (or structural) relationship
between two classes A and B typically happens when there is an instance variable on A
with type being B, or a collection of B elements (BERLER et al., 2000). This
relationship is often persistent, and may be unidirectional or bidirectional, the later
typically requiring another instance variable on B referencing A.

Figure 2.10 represents two diagrams representing Party, a pattern to represent
persons and organizations, and Telephone (FOWLER, 1996). The upper diagram is an
UML representation of a bidirectional relationship between Party and Telephone.
However, in implementation terms, the relationship is only implied by instance
variables phones and party, as shown in the lower diagram. It is not clear, without
looking at the upper diagram, if phones and party forms a bidirectional relationship or
two independent unidirectional relationships. If a second variable references the same
destination class (calls), there is no structural information, on the classes, that indicates
which property is in the opposite side of the relationship. There is nothing like a FK
constraint in OO programming languages, although it can be implemented, by
encapsulation of instance variables access with operations.

On RDBs the FK is placed in one table, depending on the cardinality of the
relationship. The row with the FK can reference at most one row in the other table by
this FK. Rows in the table referenced by the FK, often named master table, can be
referenced by zero or more rows within the same constraint rule. Nevertheless, database
relationships are considered bidirectional because the SQL query language allows to
access both the master row knowing the detail FK, or the detail rows by knowing its
master PK.

The Foreign Key Mapping pattern simplest version is to have a field, in the class
that owns the foreign key, that references an instance of the master class. This mapping

34

is known as many-to-one. Sometimes the inverse is a more significant design, such as
the party referencing its phones, in such case the field is a collection, owned by the
master class, and is named one-to-many. One-to-one relationships differ very little from
many-to-one, regarding the implementation in unidirectional situations like that.

Nevertheless, if both classes references each other, the foreign key mapping is
named bidirectional, and it must deal with the problem of keeping both sides of the
relationship updated. If one Telephone is added to the phones of Party, the Telephone
itself must have its party reference updated, and if the Telephone is assigned to a
different Party, both parties must be updated: the old Party collection of phones must
have this Telephone removed and added to the phones collection of the new Party.

The simplest case of mapping unidirectional many-to-one is supported by all studied
ORM frameworks. The instance variable identity is mapped to a FK, automatically, if
the name matches the database structures. Additional mapping information is needed,
when the variable name did not match with the column name, or when the identifier is
compound.

The bidirectional case must support some mechanism to specify what is the opposite
instance variable, as shown in the Figure 2.10 party-phones relationship. To represent
the to many side, the instance variable requires some collection instance, with variable
size support, such as the Java Collection framework. Mechanisms such as Templates, or
Generics, allow the framework to type collections.

Some languages do not support the typing of collections, leading to some
mechanism to specify the target of the relationship. One solution, employed by the RAR,
is to match relationships by the variable name. If this match is not possible, the
relationship can still be defined, by overriding the standard active record
implementation. Most ORM frameworks have some customization approach using
reflection, instantiation (SQL Alchemy), or external configuration (JPA, Entity
Framework).

The one-to-many unidirectional relationship is one exception scenario. By using the
Foreign Key pattern, the key is stored in the many side, that should supposedly not
know about the relationship. This can be handled, at some ORM frameworks, by
implementing one-fo-many with the association table pattern, avoiding an FK in the
“wrong” direction.

For the one-to-many direction of the relationship, some frameworks work with read
only collections and add/remove methods for the elements, while others allow the direct
manipulation of collections, later reflecting these changes as updates in the referring
object. Cayenne, for instance, requires a method to add elements to the collection, while
the JPA allows direct manipulation of collections. However, for bidirectional
relationships, changes on one side may not be automatically reflected in the opposite
side, hence add/remove methods are a good practice to encapsulate such details, when
this is the case.

2.6.1 Fetch Strategy

The fetch strategy determines what part of a persistent graph should be retrieved
(BAUER and KING, 2004). For the example in Figure 2.10, the fetch strategy, specified
for the phones of a Party, would specify whether these phones should be loaded from

35

the database along with that instance, or not. Conversely, when a Phone instance is
loaded from the database, loading the Party, into the party instance variable, is also
subject to the fetch strategy, specified for this instance variable.

The Lazy Load pattern offers a flexible solution to the fetch strategy, by deferring
the loading, to the first moment the information is requested by the system (FOWLER,
2002). For collections, the most common solution, is to provide a transparent wrapper
around the collection, that checks if the collection was initialized, and load it only when
needed.

In the to zero/one scenario, the solution may be a virtual proxy, an instance of the
class that actually is a pointer to the real object, retrieved on demand from the database
(GAMMA et al.,, 1994). The decision about using virtual proxies appears to be
transparent, but it may end up neglecting polymorphism. For instance, imagine the
following scenario: the Party class has a specialization called Person. If the system
retrieves a Telephone with lazy loading strategy, a Party virtual proxy will be
instantiated despite the possibility of the party being a Person. If the system access the
party variable, the related Person will be instantiated and loaded, but, the already
instantiated Party proxy, will be wrapped around this Person instance.

For data mappers such as MyBatis, the lazy loading is controlled by the nesting type
used in the configuration. In the previous example, the Party class might be mapped to
an outer join with Telephone and a nested resultset; or, alternatively, mapped by one
query to Party and a nested “on demand” query for Telephone. All frameworks in this
survey, present the possibility of fetch strategy configuration, but only JPA and
SQOLAlchemy allow the configuration of proxies for relationships.

2.6.2 Discussion

Relationships are best represented in visual models, rather than code or SQL, in
which the reader must interpret statements, to discover the nature of one relationship.
For ORM frameworks, some mapping are often needed, to specify elements such as
relationship direction, type or collections, that are connected by foreign keys.

Performance is a concern in relationship mapping. The fetch strategy plays an
important role in ORM design. Lazy fetch in to-zero/one relationships has different
consequences on each ORM framework, leading to the use of proxies and impacting on
the way that the domain objects behave.

2.7 Association table

The Association Table Mapping pattern describes the common solutions to represent
OO many-to-many relationships in databases (FOWLER, 2002; KELLER, 1997). RDBs
do not deal transparently with many-to-many relationships. These relationships must be
implemented by a third association table, containing mandatory many-to-one
relationships to both related tables.

The basic idea, behind Association Table Mapping, is to use a link table to store the
association. This table has only the foreign key IDs, for the two tables that are linked
together, and it has one row, for each pair of associated objects. The link table has no
corresponding in-memory object. As a result, it has no ID and its PK, if it exists, is the
compound of the two PKs of the tables that are associated.

36

Figure 2.11 shows an example of many-to-many table mapping, between classes
Employee and Post of the Post pattern. The Employee class has the collection field
posts referencing Post objects. Employee and Post are stored in the tables with the same
names, and the employees-posts collection is stored in the Employee Post association
table. If a Post is added into the collection, a row must be inserted in the
Employee Post table, with corresponding empld and postld values; if it is removed
from the collection, this row is deleted in the same way. The identification of this table
is usually done by joining the PKs, from the associated tables.

Tables such as Employee Post, present in the database model, may not be of interest
from an OO design standpoint. In OO language models, many-to-many relationships can
be transparently mapped into object references, as long as the underlying relationship
table does not contain information by itself. For example, an employees-posts
association may be transparently mapped, as long as it does not have other information,
such as experience in years, or type of degree. When the relationship has attributes, it
usually ends up being a Class, represented in UML by an Association Class (OMG,
2011b).

The Employee Post table is not represented in the class model, but ORM
frameworks usually have to store metadata about this table, in order to implement the
relationship. Some tools may assume the table name from the class names, but usually
the developer supply the name of the association table.

Figure 2.11: Association table example.

Emplo?ee employees | Post
et o~ rame Sung)
Employee Employee Post Post
4+~ empld: Int (0,1) (0,n) ﬁ em;:ll;i:llni; (0,n) (0,1) A~ postld : Int
postld : In

For bidirectional relationships, the ORM must deal with two instance variables
(employees and posts on Figure 2.11) that represent dependent collections. If a Post is
added or removed from the posts collection of an employee, this employee should be
added/removed from the employees collection of this Post instance.

Most persistence frameworks are able to deal with transparent association tables, but
some of them may have restrictions. For instance, the MS Entity framework assumes
that the association table has a PK consisting of the two FKs and is unable to recognize
any other column in this table. An association table with a unique identifier is therefore
unsupported. The Cayenne Framework allows some flexibility of the transparent
association table for read-only relationships. JPA allows to represent the relationship as
a Map containing the associative attribute(s), such as the experience level.

Transparent association tables are not directly supported by MyBatis. Nevertheless,
the mapping language allows the definition of collections over nested results or nested
queries that can emulate the association table without the existence of an association
class to explicitly map the association table.

37

2.7.1 Discussion

Transparent association tables are a great abstraction for modeling systems, and
may simplify the implementation of domain classes, by removing association classes
required only to emulate many-to-many relationships. However, support for association
tables is often limited in ORM frameworks, while it is common to find several
variations in legacy databases that are unsupported by transparent association tables,
regarding, for instance, surrogate keys in association tables.

2.8 Embedded Values Support

Not all classes in the OO design model will make sense as database tables. Some
classes may represent persistent data only when related to another persistent class. In
cases where two classes relate in a one-fo-zero/one basis, the dependent classes are the
best candidates to be stored within the owner table, by the application of the Embedded
Value or Single-Table Aggregation patterns (FOWLER, 2002; KELLER, 1997).

Figure 2.12: UML model (left) and tables (right) of the Association table example.

— | address: String [1]

pnumber: Number{8)
email: Varchar{40)

Phone 1] : Employee
— +phone Ve -y
country: Integer [1] Employee| ! P Emp':'l_"r: —cy
area: Integer [1] ! Country: Humber
number: Integer [1]| _ +phone | area: Number(4)
Contact e [0.1] E pnumber: Number({8)
) ! email: Varchar(40)
sendMessage() = +T1r;m” : Customer
+amail E) custid: Int
Email 0] Customer ! country: Number{2)
- ! area: Number{4)

Imagine the situation where the system deals with contacts for its employees and
customers, within the Accountability domain (Figure 2.12). A Contact may be an Email
or a Phone with SMS support. Both Employee and Customer can have one Phone and
one Email contact, but the customer may not inform the contact information. To reuse
and encapsulate the contact behavior, phone and email are separated classes, but from
the database viewpoint these are simple attributes of the parent tables.

Phone and Email can be seen as regular value objects (like String or Date) and are
only persisted when related to an owner instance, such as employee or customer.
Usually the relationship is unidirectional from the owner to the embedded class, what
denotes an “attribute of” relationship (OMG, 2011b). This relationship may be a
composition, although it is common to see the owner reassignment allowed by the
persistence framework.

Cayenne and JPA have support for embeddable classes. In the MS Entity
Framework the Embedded Value is named Complex Type; in the SOL Alchemy it is
named Composite Column; and in RAR its named Aggregated Value Object. MyBatis
does not need to distinguish embeddable classes, because for each class, the developer
have to provide the SQL for persistence.

38

Some frameworks, such as JPA and MS Entity Framework, allow the definition of
standard mappings for embeddable classes, such as the preferred database types. Others,
such as RAR and SQL Alchemy, do not support default mappings, requiring a specific
mapping of each reference to an embeddable class.

Another pattern that falls under this embeddable criteria is the Dependent mapping.
In fact, as a pattern, Dependent mapping is a generalization of embedment, that deals
with classes that are persistent due to the relationship to other persistent classes,
regardless of the nature or cardinality of the association (FOWLER, 2002).

Figure 2.13 revisits the embeddable example replacing the one-to-zero/one with
one-to-many relationships between Employee/Customer and Phone/Email contacts. In
order to store more than one associated element, a new table is required, as what
happens with the Foreign Key pattern. The key difference here is, that the table that
stores the phones of Customer, is not the same table that stores the phones of
Employees. The table that stores a dependent mapping should do it exclusively for one
owner.

Figure 2.13: Dependent mapping pattern example: class model (upper) and database
model (lower).

Phone .
— : [l + phone (0.1
country: Integer [1] Employee
area: Integer [1] [0.1]
R number: Integer [1]| _ +Phone
ontac
== [
+email
sendMessage() = [l
+email
Email
_ [
— | address: String [1]

Employee_Emails Employee Employee_Phones
P empid: Int , " P empid: Int u } FE empid: Int
/A~ order: Int ' [A~ order: Int

email: Varchar(40) country: Number{2)

area: Number(4)

Customer_Phones pnumber: Number(8)
A custid: Int
A~ order: Int Customer Customer_Emails

country: Number(2) } # 17 custid: Int H } /A~ custid: Int

area: Number(4) {..) P order: Int

pnumber: Number(8) email: Varchar{40)

In the example of Figure 2.13, the dependent tables are designed with composite
keys with one column referencing the owner table, and the other registering the order of
the element in the relationship. The dependent relationship simplify the persistence
changes, in a collection of dependents that can all be safely deleted, and reinserted,
when the owner is persisted.

39

The Dependent Mapping pattern described by Fowler states that the owner class is
responsible to the persistence of the owned objects. Considering ORM tools taking over
this work, or with metadata mappings performing general persistence, this pattern can
be used to describe element collections such as collections of embeddable objects and
basic types.

The support of more generic dependent mapping is not yet widely supported by
ORM solutions. JPA supports collections of embeddable objects (named element
collections), mapping such collections into a separate table that refers back to one
owner entity table. The element collection mapping allows the mapping of one-to-many
dependent mappings.

2.8.1 Discussion

Embedded values are a valuable asset to bridge persistent and transient elements of
the domain model. Reuse and encapsulation are great advantages of OO, and the forces
that lead OO design to break a class in two or more pieces are often contrary to the
database normalization forces that put that information together.

The possibility of defining default mappings for the embedded classes can facilitate
the design, by reducing repetitive mapping. Information such as field types and lengths
will probably be the same for all embedded mappings that target to the same class.

2.9 Inheritance Mapping

Inheritance is not supported in pure RDB models. It must somehow be emulated
with optional fields, discriminators and/or table joins. There are three preferred ways,
identified as patterns, for mapping inheritance (FOWLER, 2002; KELLER, 1997).

— “single-table” or “one inheritance tree one table”, meaning that one table
contains all possible attributes of the class tree.

— “Class-table”, “Vertical inheritance”, or “one class one table”. Each class is
mapped to one table containing only the attributes for that class.

— “Concrete-table”, “Horizontal inheritance”, or “one inheritance path one table”.
Each concrete class is mapped to one table, but each table contains the sum of all
attributes of the class hierarchy.

The choice of patterns depends on implementation and platform specific issues. The
balance of performance forces, such as update and write access versus polymorphic
read, may be more determinant than maintenance and ease of writing queries, in the
decision about what pattern should be followed. Resources of the database system, such
as NULL compression that saves space for the single-table pattern, must be also taken
into account before deciding the best strategy (KELLER, 1997).

The Account example is expanded in Figure 2.14 to illustrate a specialization of
accounts, named SummaryAccount, which represent accounts that are composed by
other accounts. SummaryAccount inherits properties from Account, such as name, and
adds its own properties. The components relationship may connect a SummaryAccount
to any Account, including another SummaryAccount. The Entry class has a polymorphic
association with the Account class: it may refer to one Account or to one
SummaryAccount object.

40

Figure 2.14: Inheritance example for Account.

Entry = [1] Account

" entries [7]

number: Integer [1]
~_| --- account properiies

''_,..-'-"
components | [*] ﬁl"i\
[0.1] |SummaryAccount
T
summary ... summary propeties

A single-table pattern solution for the components model is shown in Figure 2.15.
The Accounts table contains the sum of all attributes of the hierarchy and the sum of all
associations. The type attribute (marked with *) was added to discriminate between an
Account and a SummaryAccount row, although it could be replaced by using the
synthetic object identifier pattern (KELLER, 1997). Mandatory associations are mapped
as optional associations, but our example association was already optional.
Nevertheless, the standard database integrity mechanisms cannot prevent an Account,
from being referenced by another Account which is not a SummaryAccount. It would be
necessary to check the discriminator value, in order to determine that such constraint

was violated.

Figure 2.15: Single-table approach for Account example.

Acct_Entries Accounts (0,1)
A7 entryld: Int @A) S humber: Int 2
acct_number: Int(FIK) type: Char(1) * com

(0.n) ; po
. summaryld: Int(Fk) -
entries account properties...
summary properties... |{0M)

Figure 2.16: Class-table approach for Account example.

Acct_Entries |=&ntries Accounts
A7 entryld: Int A S number, Int (1,1)
acct_number:Int{FK) (0.m) summaryld: Int(FK)
]'“ .
account propetties... | g
{D.r"} ——
com
po Summary
nents A number: Int (FK) |(0:1)

(0,1)

sumMmary properties...

A class-table pattern mapping is shown in Figure 2.16. Accounts and Summary
represent Account and SummaryAccount classes, with a similar attribute/association
distribution. To retrieve a SummaryAccount, the system must join tables Summary and
Accounts, by its common PK. The association is now placed in the Summary, allowing

41

the database to enforce the components association. One visible downfall for this
approach is the cost of joining Accounts and Summary, to obtain a single
SummaryAccount instance.

A concrete-table pattern mapping is shown in Figure 2.17. Each concrete class of
the hierarchy is mapped to one table, but the retrieval must be done without the
requirement of joining tables. The consequence is that specialization tables will contain
columns for the inherited attributes.

Figure 2.17: Concrete-table approach for Account example.

_ Accounts
Acct_Entries 7 number: Int *

Pentﬁf'di'ﬂt* summaryld: Int(FK) |(o,n)
acct_number:irt account properties. . JCom

po
nents
Summary
(0,1) L number: Int * (0,1)
c:l:uprg summaryld: Int{FK)

nents account properties...
summary properties. .

(0n)

Even without the foreign key constraint, in the specialized concrete tables, it is high
desirable that the number (marked with *) be unique for the entire hierarchy, because
otherwise, it would be impossible to represent a polymorphic association to a super
class. In the example, Acct Entries refers to an acct number that can be a row at
Accounts or Summary tables. This kind of relationship cannot be enforced by a FK and
should be enforced by the persistence layer.

Both Account and SummaryAccount can be components of a SummaryAccount,
requiring two column references, to represent the components association of Figure
2.14. The summaryld column, of Accounts, can reference the Summary PK, but a
Summary PK can also be referenced by a summaryld column, of another Summary. In
the concrete-table strategy, it is not uncommon to have one association become two, or
more, column references between tables.

Besides problems related to relationship mapping, the concrete-table has a severe
performance problem for polymorphic queries (KELLER, 1997). If one needs to query
the entire hierarchy, for a specific condition, an expensive UNION operation is issued to
all tables.

Surely, this example does not explore all possible combinations of problems
adapting each inheritance pattern to the other relationship, PK, FK, and so forth
patterns. If, in this scenario, the concrete-table seems to be a bad choice, it may be
turned into a good choice, depending on the relationships, the number of estimated
account records, what classes are persistent in the class tree, and/or presence of a legacy
database schema. Some flexibility, to change between each approach, is a valuable asset
for this solution.

Most ORM frameworks have some kind of inheritance mechanism, and these three
patterns are usually supported. JPA, MS Entity framework and SQLAlchemy let the

42

developer choose between the three patterns, although the concrete-table support is
optional in JPA. Cayenne supports single-table and class-table (named vertical
inheritance) but has the concrete-table (to be named horizontal inheritance) under
development. The RAR implements only the single-table strategy, by introducing a
discriminating column named inheritance column (HEINEMEIER HANSSON, 2012).

MyBatis framework data mapper approach, requires the specification of the SQL
expressions for each mapping, and offers the discriminator mapping, that uses one table
column to discriminate the correct class of the hierarchy. The discriminator can be
utilized to implement a single-table strategy, but it is possible to emulate the class-
table, by manually providing adequate SQL expressions. However, the discriminator
column is required for all “type select” situations.

The discriminator column may be required depending of ORM and pattern in use.
With JPA, a discriminator is required for single-table, but optional for class-table
inheritance. In Ruby, the discriminator may not exist for single-table, but it means that
the instance type will not be automatically detected. It is sometimes possible to identify
the record type in the single-table strategy, by the presence of null values, but it is not
really supported by the researched tools, due to its poor performance.

SQL-Alchemy allows fine control on retrieving class-table objects, but requires a
discriminator column in the root table. When retrieving Account, for instance, only the
Accounts table may be queried, and the remaining attributes are loaded on demand,
avoiding the expensive join. With the discriminator, the persistence framework can
determine which type must be instantiated, without performing an outer join to each
possible sub-type.

Figure 2.18: Independent keys in class-table inheritance example.

Acct Entries | entries Accounts
A entryld: Int) S humber: Int (1,1)
acct_number: Int(FK) (o.n) type: Char(1)*
A summaryld: Int(FK) is
(O} account properties...
com
0
nerﬁs Summary 1)
I[[:.;1}.5£:Jr1umber: Int (FK) s

acct_number: Imt{FK) [AK)
summary properties...

Another issue rises in the joining of inheritance tables. The MS Entity Framework
requires that, the PK of each table, must be the same, and a FK to the master table
(Figure 2.16). The JPA specification states that the PK should be specified only in the
root entity, but at same time, allows the FK to the super-class to be redefined by
subclasses, using the PrimaryKeyJoinColumn annotation. The effect of this redefinition,
in JPA, may have unexpected consequences depending on the implementing
framework, because it is not possible to declare in the mappings the PK of the subclass.
The SQL-Alchemy explicitly allows user defined FK relationship between each class-
table.

43

Figure 2.18 shows an example of class-table mapping with independent PK and a
discriminator (marked with *) column. Flexibility in the FK inheritance mapping is
important to map legacy database relationships as inheritance relationships, when the
FK relationship is not in the PK, but an alternate key.

2.9.1 Discussion

Inheritance is one key feature of ORM, and the most difficult issue to deal with. The
mapping strategy to be chosen is a decision that affects behavior, performance, and
design limitations of the domain model. Some of these limitations are dependent of the
ORM tool, and others are inherent to the strategy itself.

Mapping inheritance in legacy schemas may be difficult, because certain design
conditions must be met to support inheritance, and these conditions change from tool to
tool. Moreover, not all constraints can be enforced by the database for every strategy,
and if there are other non ORM based applications, using the same schema, they must
ensure these constraints are satisfied within their code.

2.10 Summary

Table 2.2 presents a summary, with each analyzed criterion, and its characteristics,
related to each ORM framework analyzed over the previous sections. This summary is
organized as criteria, subdivided by characteristics previously presented, and its
relationship with each studied ORM framework.

The first criterion is the domain coupling, in which some frameworks offer loose
coupling and others are tied by inheritance coupling. The entity framework is usually
not loose coupled, although with some customization it is possible to design a loose
coupled domain, hence its marked with depends. Another characteristic analyzed is if
some of the mapping is done by external configuration files.

The mapping criterion is determinant for the mapping abstraction level. Data
Mappers deal directly with SQL statements, therefore some of the criteria can be
satisfied by emulating their mapping requirements. Entries in Table 2.2 marked with the
Emul. abbreviation indicate these situations.

The model criterion is focused on model first tools, in which entity class models
represent the mapping between the relational and OO artifacts. As show in Table 2.2,
none of the tools are yet focused on the structural behavior specification of operations.

On the identity criterion, the PK representation as a field, or as an embeddable class,
has limitations in some of the frameworks. In JPA, for example, when mapping a
composite PK as fields in the class, the developer must also define a PK class with these
PK fields. Also, support to table independent keys exists in all frameworks, and unique
identifiers for databases can be achieved by application or user assigned keys.

Foreign keys, transparent association tables, and embeddable values all represent
relationship criteria, the first two between persistent entities, and the third with transient
reusable classes. Mybatis can emulate some of these constructs, as explained earlier.

Finally, on the inheritance criterion, JPA allows, but does not require, the concrete-
table strategy, hence it is marked as implementation dependent (Dep). MyBatis supports

44

single inheritance, but may emulate other strategies through some additional mapping
work.

Table 2.2: ORM Frameworks support for each proposed criterion.

Criteria \ Frameworks RAR Cayenne | Entity JPA 2 | MyBatis SOL- Achemy
Framework
Coupling Loose No No Depends Yes Yes Yes
External conf. No No Yes Yes Yes No
Mapping Metadata Mapper | Yes Yes Yes Yes No Yes
Extract metadata | Yes No No No No No
Model Entity class No Yes Yes No No No
Operations No No No No No No
Identity Compound keys No Yes Yes Yes Yes Yes
Table uniqueness | Yes Yes Yes Yes Yes Yes
Auto-generation Yes Yes Yes Yes Yes Yes
Counter gen. Yes Yes No Yes Yes Yes
Application gen. No Yes Yes Yes Yes Yes
User assignment Yes Yes Yes Yes Yes Yes
PK as Field(s) Yes Yes Yes Yes Yes Yes
PK as Class No No No Yes Yes No
Foreign Bidirectional No Yes Yes Yes Emul Yes
Key Collection update | Yes Yes Yes Yes Emul Yes
Fetch config. Yes Yes Yes Yes Yes Yes
Proxy option No No No Yes No Yes
Transparent Assoc. Table Yes Yes Yes Yes Emul Yes
Embed. Map container Yes Yes Yes Yes Emul Yes
Value
Map aggregated No Yes Yes Yes No No
Inheritance | Single-table Yes Yes Yes Yes Yes Yes
Class-table No Yes Yes Yes Emul Yes
Concrete-table No No Yes Dep. Emul Yes
Join class-table No Flex PK Flex Emul Flex

The join of inheritance class tables may be done by PK, or may be flexible if user
defined. JPA allows FK redefinition, but not the mapping of distinct PK in subclasses,
what may bring unexpected problems for some mappings.

Table 2.3 presents a summary of the discussed topics that affect the design of
systems based upon ORM frameworks. The topics were organized by UML element,
such as models, classes, attributes, relationships and inheritance, helping designers to
document their decisions on class models. The information summarized by tables 2.2
and 2.3 relates resources and decisions common to the studied persistence frameworks,
helping with designing and documenting applications, as well as porting application
across distinct ORM frameworks.

Table 2.3: Summary of design decisions based upon ORM frameworks.

Domain Level

What to observe/question during project design

Model

If the framework has a data-model that controls persistence, how does it work with
object-oriented domain models?

Are operations assigned to classes that extend generated classes or domain classes do not
support operations?

Class

All domain
classes

Are inheritance to ORM framework classes mandatory?

Is there some dependency to framework classes on domain classes? Can it be decoupled?

If persistent

Which table(s) (if data mapper, what SQL statements) are mapped to that class?

Is the identity mapping defined? one or more attributes?

How the identity will be assigned? Will generation parameters for the identity be
necessary? (such as table of ids, sequences, auto-columns...)

If embeddable

Is it necessary to distinguish a class as embeddable?

Is it possible to define preferred mapping for attributes?

Is it used as identity for persistent classes? If so, should the class follow specific rules
required by the ORM framework?

Relationships from embeddable values to other domain classes should be avoided, and
may be unsupported according to each framework.

Attribute (persistent)

Does it match a database column type or should it be an embeddable value?

If it is part of a composite Identity, does it represent an embeddable value class
containing PK fields or each attribute of the identity is an individual attribute of the
class?

Type parameters such as length and precision were defined? Dates and LOBs may need
specific parametrization. Is the cardinality matching NULL/NOT NULL constraints?

Association zero/one- Should a collection type be defined ? How to deal with element ordering?
(persistent) to-many - .
Can/Should the fetch configuration be specified?
many-to- Will the relationship attribute be loaded by a proxy?
zero/one
bidirectio The collection must have a reverse attribute or collection in the opposite class that
nal maintains a bidirectional relationship. Is it defined and documented?
to-one The FK that implements the relationship may be a class attribute or may be hidden by
the framework. The relationship may be represented only by a reference to the related
object. Is the relation Attribute-Collection-FK clear and well documented?
many-to- Is a join table clearly defined, with FKs to the tables mapped to the related classes?
man
Y Do your ORM framework transparently support Join Tables? In what cases a join table
must be explicitly implemented as an association class?
other Maps and element collections are supported by few frameworks.
Inheritance What strategy will be employed (among those available in the chosen framework) ?

Is a discriminator column necessary? This column is not an attribute of the domain
model, but it is required to map inheritance. Discriminator requirements change from
one framework to another.

Does the persistence framework support classes in an inheritance hierarchy with distinct
Identities (PKs) ?

45

46

3 ESSENTIAL NOTATION FOR ORM (ENORM)

This chapter presents the Essential Notation for Object-Relational Mapping
(ENORM) and the artifacts related to this notation. ENORM extends the UML class
model, offering a concise set of visual elements specific for ORM designs. These
essential concepts, introduced at chapter 2, reflect persistence patterns of the literature
adopted by distinct ORM frameworks in the market. The goal of ENORM is to facilitate
the design by the clear application of ORM patterns, document mappings with a
platform independent notation, and be a repository for MDD transformations, partial
code generation, and round-trip engineering tools.

This chapter begins presenting the main visual elements, followed by examples
explaining the key features. After a few examples, the meta-model is presented,
followed by an analysis of special cases, known limitations, and a reference, in BNF,
for element naming. The chapter ends by presenting the main features of the modeling
tool, and related notations specialized in persistence.

3.1 Overview

The notation here proposed is a lightweight UML profile, represented by a set of
graphical extensions for class models, encompassing the essential structural concepts of
ORM. ENORM was designed to be easily understood by developers and rich enough
for MDD tools, allowing the specification of the relevant persistence details, but hiding
what can be inferred.

ENORM elements (Figure 3.1) are derived from ORM patterns following the
Domain Model pattern (FOWLER, 2002). Besides, ENORM reflects common practices
of various ORM frameworks, such as activerecord for Ruby (RAR), JPA, and
SQLAlchemy (SA) for Python (BAYER, 2012; DEMICHIEL, 2013; HEINEMEIER
HANSSON, 2012).

A Persistent class (marked with “||”) represents a class implemented as an Active
Record, Data Mapper, or mapped in such a way by a framework. The class is persisted
by a table with the same name; or one or more specified tables. Each property of a
persistent class maps to a column, that can be detailed in the model when necessary.

Associations between persistent classes are implemented with Foreign Keys (FKs)
detailed by join columns and tables. Inheritance can be flat for single table pattern;
vertical, for joined table pattern; or horizontal for the concrete table pattern. Non
persistent classes can be persisted within persistent classes, by associations marked as
embed. A persistent class can have transient properties by using the transient symbol.

47

Figure 3.1: Main visual elements and their meaning.

Graphical Element Description
class || table1, table2, ... Persistent class. Optional tables
property || column def Definition of the column mapping
«PK» Part of the primary key
«Embed» Dependent or embedded

(a)

Inheritance types: (a)Flat, (b)Vertical
(b) (c) or (¢)Horizontal. Discriminators
can be specified.

join table = table Association table name
join columns = col7, col2, ... |Columns thatimplement association
«Qverride» j Override an inherited or embedded
property path || column def property or association mapping
property or assoc. end O Transient feature should not be mapped
«Map» Set key property of qualified associations

The specification of ENORM follows the principles bellow:

Do not Repeat Yourself (DRY): By representing concepts that are the same
together: classes and tables, properties and columns, etc...

Convention over configuration (CoC): Keep the notation short, and hide what
can be inferred. For example, any association between persistent classes are
persistent; if no PK is specified, use a simple non-meaningful column as PK.

Keep It Short and Simple (KISS): Do not introduce completely new visual
elements, but decorate existing elements of UML. Use of formatted comment
boxes, or braces, to display stereotype details, as suggested by the UML
specification.

Models as central artifacts: All the essential mapping information should be
stored at the model, and follow the ENORM meta-model.

Platform independence: The notation is pattern centric, the majority of the
resources are established ORM patterns in the literature. In a few exceptions,
they represent trends revealed by our survey of chapter 2.

MDD aimed: The ENORM is a UML profile, stored with XMI, and ready to be
used as input for transformation languages that read UML models.

3.2 A Simple Example

Figure 3.2 shows a simple design for the Accounting patterns (FOWLER, 1996).
Account, Entry, and Transaction are persistent classes, each persisted by tables with the

48

same name. Account has a meaningful PK named number. Entry and Transaction will
also have PKs, but they are not specified (inferred by convention).

Quantity is not persistent and does not correspond to a table. However, each Entry
instance refers to a Quantity with the Embed stereotype. Since the upper multiplicity is
one, quantity association is persisted along the Entry table, by columns amount and unit.
Quantity is similarly embedded by Account.

Figure 3.2: Simple Transaction example.

Account || Ent transaction| Transaction ||
«PK» number: Long[1] ntry || date: Date[1]
ate: Date
dtBalance: Date[0..1] account entries entries
balance() L 0.7 0.1 !
K 0.1
0.1 P
.. Erbed «Embed»
«cmped» 1
i uanti
lastBalance Quantity) v
amount: double[1]
0.1 unit: String[1] 1

Finally, the associations between persistent classes are mapped as FKs connecting
the PKs of each table. Enfry will have a column referencing account number and a
column referencing the PK of Transaction.

3.3 A not so Simple Example

Database information systems usually refer to centralized databases serving multiple
systems, that must adapt to the existing schema. Often that means a break between
nomenclature used by the system and the database, and a more complicated mapping.

Figure 3.3: Summary account example.

5 3 «Embed» balance Quantity 4 unit Unit ||Currency
«Override» 0.1" lamount: double[1] || :(20.2) 0 17 |«PK» name: String[1] || unit:(15)
balance.amount || Act_brief.value «Embed» /N 1
balance.unit || Act_brief.unit quantity
i 0. 0.* «PK» transaction{ 7
entry join columns=id_transaction}

R «abstract» Entry || Transaction ||
Account ||Account, Act_brief «abstract» nmry !
component; 2 «PK» id: Long[1] || id_transaction

«<PK» number: Integer[1] : : date: Timestamp([1] || dt_t ti
dtBalance: stamp[0..1] || Act_brief.dt_calc| 4 4 erlt*rles ent"riltes 1 e Tmesame —ee

0 2
calcBalance(): Quantity
summary{ entries 7 0.*
" entries | © {readOnly}

join tablegAct_comps}

10 0.% 6 «PK» account{ 8
1|, join columns=acct_number} 9
SummaryAccount |[] D__| DetailAccount ||

name: String[1]

0.1 derived union of components.entries

Figure 3.3 introduces the SummaryAccount class, that aggregates accounts
implementing multiple summary accounts (FOWLER, 1996). Each account can be part
of one or more summary accounts, and the entries of the summary was redefined as the
union of all underlying DetailAccount instances. The Unit class now replaces the free

49

text unit property. Figure 3.4 presents the database derived from the model. Several
changes were introduced in the mapping:

1. Account is mapped to two tables: Account and Act_brief. The table Act brief has an
FK to Account, that is also a PK, and each instance of Account is retrieved by a join.
Account 1s the main table, because it is the first in the list.

2. Property dtBalance is mapped to column dt calc on table Act brief. Mapping
information of a property can be specified using the persistence symbol (||).

3. Quantity now refers to a Unit persisted by the Currency table. When Account
references a Quantity instance, it stores a reference (FK) to the Currency table.

Figure 3.4: Database model of account example.

(Account w 4 Act_brief w
Vs
«PK» number: INTEGER 1 n “«PK» number: INTEGER
type: CHAR(1) NOT NULL{D,S} value: NUMERIC(20,2)
—<unit: VARCHAR(15)
1 T 1 0.1 dt_calc: TIMESTAMP
n (Currency h
] «PK» it 1
(Act_comps 7 n L«PK» unit: VARCHAR(15) | n
4 Ent
«PK» number: INTEGER) ntry
Detail A t
L«PK»summary: INTEGERJ (PK ° albcc-cimgggg «PK» acct_number: INTEGER
\«PK> number: J | «PK» id transaction: INTEGER
n 1 _jamount: NUMERIC(20,2)not nuil
Nunit: VARCHAR(15) NOT NULL
1 n
. n
(SummaryAccount w C Transaction)

«PK» id_transaction: INTEGER
dt_transaction: TIMESTAMP NOT NULL/

«PK» number: INTEGERJ

4. Property amount with default SQL precision/scale of (20,2).

5. Account overrides the quantity: amount is persisted by the column value of table
Act brief; the association end unit is stored by the column unit in table Act brief, that
references the table Currency. By default, all columns would have been stored along the
primary table Account.

6. The account inheritance tree is persisted with the joined table pattern. Each class has
its own tables, and each PK of the specializations refers to the Account PK. The
discriminator column can assume 'S', for summary accounts, or 'D', for detail accounts.

7-8. Entry refers to Transaction with a column named id transaction, and refers to
DetailAccount with a column named acct number. Both relationships are marked as
PK, setting a composite PK of Entry.

9. Account defines the association entries as abstract, therefore it is not persisted.
DetailAccount redefines entries as bidirectional, with an FK, and a concrete association.
The SummaryAccount redefines the association as derived from its components, with

50

the transient symbol marking that this association should not be stored by an FK
column.

10. The components association is many-to-many, and therefore is mapped by an
association table. The join table specifies that this table is Acct Comps. By default, it
will have FK columns referring to Account and SummaryAccount.

3.4 ENORM Meta-model

The profile package of UML contains a set of mechanisms providing the ability to
tailor the UML meta-model for different platforms (OMG, 2011b). A profile is mainly
comprised of stereotypes, each of them extending a meta-class of UML, such as classes,
properties, or use cases.

The UML meta-model works as a tree, where each leaf is owned by its parent in a
composite relationship. For instance, the Property is owned by one Class, that is
owned by one Package. Each object has one, and only one, parent owner, or is the
root. Each stereotype can have properties representing scalar values, or other meta-
objects. When defining new meta-classes, they must also belong in the owning tree,
tracking back to the root UML element. This ownership is denoted by making the
association between the stereotype, and this meta-class, a composition.

Backing up the visual notation of ENORM, there is a profile providing compatibility
between ENORM and UML implementations. Figure 3.5 summarizes the stereotypes,
the extended UML elements, meta-classes, and its properties and relationships.

The Persistent stereotype is applicable to a Class, marking this class with the
double bars (||) of Table 3.1. The source property allows the direct definition of one
Table, a reference to an already defined table by TableRef, or a JoinedSource
comprising two or more tables connected by JoinColumn objects. If source is
unspecified, the class is persisted by a table with the same name of the class.

The use of Table or TableRef determines the class that “owns” the table definition,
preventing duplicate specification of tables. This follows the proxy pattern, where the
owner has a composite association with an abstract meta-class, that can be the object
itself (table, column, and so on) or just a reference to an object, owned by some other
stereotype/class (GAMMA et al., 1994).

Following the example of Figure 3.3, the Account class has the Persistent
stereotype applied, with the source property referencing a JoinedSource, because it is
mapped to two joined tables. The JoinedSource will have two Table definitions at the
defines ordered composition, the first being Account, and the second Act_brief. Both
tables are defined by the Account class. The Unit class will have the Persistent
stereotype, with the source directly referencing a Table named Currency. Classes such
as Transaction can have unspecified source, because the table has the same name of
the class.

Properties owned by a persistent class are, by default, persisted, and scalar values
are stored as columns. The ColumnMapping stereotype allows the definition of these
columns, informing column name, if it accept nulls, length, precision, scale, unique
constraint, database type and so on. The column can be owned by a Table, but the table
may be inferred, if the Persistent class does not define a table, or if the class is not

51

persistent. Again, a ColumnDefinition can be a Column owned by the property, or a
ColumnRef proxy that references a Column. A property without mapping will have a
column with an inferred definition from its meta-information (type, multiplicity, etc...).

Figure 3.5: Main elements of the ENORM profile.

Foteiape | | Enummer «stereotype> T
EﬁngR ORDINAL Embedded Enumerated
STRING value: EnumType [0..1]
«stereotype» «stereotype»
DiscriminatorColumn «stereotype»
vallue: Stéinlg [U..E;]r - (uml) 4J ColumnMapping
column: ColumnDefinition - "
Property value: ColumnDefinition [1
p——) - &
«stereotype» Class -f— «stereotype»
Overrides J Map
overrides: Override [*] f A keyProperty: Property [0..1]
«stereofype»
«;frrsei?stt};ﬁ» Transient «stereotype»
_ «stereotypes AssociationMapping
source: DataSource [0..1] || operated| [value: AssociationDef [1]

DataSource <———— JoinedSource Column
source g‘:\ name: String [0..1]
[0..1] ZF TableRef nullable: Boolean [0..1] = true
Table table|[1] insertable: Boolean [0..1] = true
. i defines [*] updatable: Boolean [0..1] = true
name: String [1] P °C _
catalog: String [0..1] . fordereds I‘:Olum”?iﬁ"'t'm["a 5115'"92[505-1]
schema: String[0..1 | ‘€ngth- Integer [U.. 1] =
9[0-1] table [0..1] columns’] wracision: Integer [0..1] = 0
T scale: Integer [0..1] =0
AssociationDef orderColumns unique: Boolean [0..1] = false
fetch: FetchType [0..1] {ordered) ']
cascade: CascadeType [*] column
- orphanRemoval: Boolean [1] ColumnRef (1]
enforce: Boolean [1]
column[1] | AttributeOverride |
ass Ci?“’f’”Def JoinColumn @ = = ColumnDefinition 1
joinColumns[*] columnDefinifion
AssociationOverride‘_E} Override {ordere d}pmpert' yPath '] Pr%gg?'ty
[(Uml') "7 l(:IStEI"-EOWD:J}I «stereotypex» w&numerations
Generalization orzonta CascadeType
4—‘ Flat —
«stereotype» < }—l astereotype» ;EEF;{% ET
DiscriminableGeneralization Vertical REMOVE
discriminatorValue: String [0..1] joinCols: JoinColumn [*] REPRESA

52

The Embedded stereotype is applied to association ends, or simple properties,
whose types are not persistent classes. This means that this class is persisted as a
dependent table (if fo-many), or embedded in the table (if to-one). Properties of non
persistent classes can have the ColumnMapping stereotype applied, in order to specify
how is its preferred way of being persisted, such as length, precision, and so on. These
definitions will not be owned by a Table.

For example, the dtBalance property of Account will have the ColumnMapping
stereotype with a ColumnRef value, referencing a Column with name dt calc. This
Column is owned by the Table Act brief, defined in the mapping of Account. The
property amount, of Quantity class, will have the ColumnMapping stereotype
referencing a Column, with precision of 20, and scale of 2, because Quantity is not
persistent and this column does not exist at any specific table. However, when Quantity
is embedded by Entry, this information is used to know what is the default precision and
scale of this property.

The AssociationMapping stereotype allows the definition of mapping details for
one association, by the application in one of the association ends. The AssociationDef
class allows the definition of fetch strategies, cascade delete, orphan removal policy,
columns used by an order by clause, join columns, and a join table. The JoinColumn
class defines the FK column in the detail side, and optionally the corresponding PK in
the master side (for multiple PK, or ad hoc joins). If enforce is true, there will have a
FK constraint for the join columns. The source, of AssociationDef, is usually defined
on many-to-many situations, to specify the table(s) that implements the relationship.

For example, the class Entry has an association end named transaction, that refers to
the Transaction class, with the AssociationMapping stereotype applied. This defines
an AssociationDef, owning one JoinColumn, that owns a Column named
id_transaction. Notice that if Entry defines the mapping table, the JoinColumn could
own a ColumnRef referencing a Column owned by this table. Another example is the
components association end, that has the AssociationMapping stereotype with an
AssociationDef that owns, by the association source, the Table named Act Comps.
This table implements the many-to-many relationship.

The PK stereotype marks a property as part of the PK of some persistent class. It can
be applied on association ends, such as transaction and account of Entry, meaning that
the FK columns are also part of the PK. PK can be combined with ColumnMapping,
AssociationMapping and so on. Generated marks a column with generated values.

Horizontal, Flat, and Vertical stercotypes can be applied to a generalization, to
specify which pattern will be used to emulate inheritance on the database. With Flat, all
columns necessary to represent the inheritance tree are stored in the same table. Usually,
the instance type is determined by a discriminator column, that can be defined by
applying the DiscriminatorColumn stereotype at the general class, and filling the
property discriminatorValue for each generalization with the Flat application.

The Vertical stereotype stores each class along its properties in a distinct table, that
is by default joined by a common PK. It is possible to specify what columns perform the
join by the joinCols property. It is also possible to define a discriminator. Finally, the
Horizontal stereotype stores each concrete class independently, and the origin table
determines the type.

53

In the example of Figure 3.3, the generalizations connecting Account and its
specializations have the Vertical stereotype applied. The generalization from
SummaryAcount has the discriminatorValue equals to “S”, and the generalization from
DetailAccount has the value of “D”. We could have defined the discriminator column
by applying the DiscriminatorColumn stereotype to Account, detailing the column
property. If Account was not abstract, we could had specified the discriminator value of
Account t00.

A class may specify an inheritance pattern, even when it inherits from a non
persistent class. In this situation (and only this), the properties and associations of the
general class will be persisted along the persistent specializations. The Overrides
stereotype allows a class to override such properties (AftributeOverride) and
associations (AssociationOverride), defining the columns, join columns, join tables,
among other details.

A class may also override properties and associations of embedded/dependent
classes. The tricky part here is that one class can embeds a class, that embeds another
class. The property path of embedded overrides is represented by the ordered
association propertyPath.

In the example of Figure 3.3, the Overrides stereotype was applied on the Account
class, containing one AttributeOverride and one AssociationOverride. The override
with the path “balance.amount” refers to the AttributeOverride with the sequence
{Account.balance, Quantity.amount} as propertyPath. This allows the override to
differentiate when the class has more than one relationship to the same class.

The Enumerated stereotype allows the definition of how enumerations are mapped
(STRING or ORDINAL values). The Transient stereotype marks a property, or
association end, to be ignored on persistence mapping.

3.5 Special Mapping Cases

This section presents a series of special cases that exemplify other applications of
the notation supported by the profile presented by section 3.4.

3.5.1 Embedded Values

Class embedding denotes a class from which its instances are persisted embedded at
a related class table. Only the instances referenced by persistent classes with an embed
association can be persisted; and will be persisted only when the owning class is
persisted. This kind of relationship suits well to aggregations, compositions and classes
that behave like a database domain.

The embedding is represented in the relationship by the <<embed>> annotation, just
after the association end pointing the embedded class. On Figure 3.2, the Account class
is persistent, and related to the Quantity class, that is not persistent. The embedded
relationship allows the information of Quantity to be persisted along with Account
records.

The embedding on ENORM is a stereotype for the association end. The class do not
need to be marked as embeddable, but it will implicitly be mapped that way, according
to the framework used for persistence.

54

Typically, the attributes of Quantity became attributes of the table(s) of Account
(Act_brief, at the example), such as value and unit. However, the nullable characteristic
of each column depends on the relationship cardinality. An Account may not have a
balance, and therefore both columns must allow nulls on the database, even if amount
has minimal cardinality of one. Notice that a Quantity not referenced by an Account, or
an Entry, will not be persisted.

Figure 3.6: A class embedded by two persistent classes.

ENORM model
A ” a «Embed» b B zEmbed= b C C ”
W . i
0.1 0.1 b fields ... 0.1 0.1

Database model

[A] [c]

P Ko ID_4&: INTEGER. =PI ID_C: INTEGER
B_FIELDS ... B_FIELDS ...
"
Example Instances
al:A bl bB1B |k cl:.C Either it will raise an errar ar
b fields... b1 will be stored both on a1 and ¢1.
h2B |b c2.C b3B | b2 will be persited within ¢2 attable G
b_fields ... b_fields..| B3 will not be persisted.
ad:A b| hL4B
b fields ... b4 will be persisted within a4 attable A

One class may be embedded by various persistent classes, and that is the usual
scenario. Figure 3.6 shows classes 4, B and C, where both 4 and C embed B. 4 and C
are responsible of persisting related B instances, and therefore their tables will have the
columns necessary to persist B. Individual instances of B will be persisted on 4, C, or
will be dumped, according to the references held by either 4 or C. If an instance, such
as b1, is referenced by more than one entity, and it is persisted, there is no guarantee
that, when restored, the same instance (in memory terms) of b/ will be referenced by a/
and c/. Thus, the implementation should ensure an adequate equality operation(s) (such
as overriding the Java equals method).

A non-persistent class may reference a persistent class without being embedded.
Instances of this class will not be persisted, even when related to instances of this
persistent class. However, they can be persisted if embedded by another class.

For instance, take the classes 4, B, and C of Figure 3.7. 4 and C are persistent, 4 is
associated to B, B to C, and 4 embeds B. An instance b2 of B referencing c2, but
unreferenced by any A, will not be persisted. An instance b4 of B, referenced by an
instance a4 of A, will be persisted. An instance b/ of B, referenced by an instance al of
A, that references an instance c/ of C, will be persisted, and also the reference to C. This
will inevitability link 4 and C tables in the database. If the cardinality of A4 to B is one,
and B to C is also one, 4 will be persisted in a table that has a foreign key (/D _C) to C.

55

Figure 3.7: Embedded classes referencing persistent classes.

ENORM model
All

w o =
Embed= b B vh |

- T
b_fields ... 0.1 0.1

L~
o F o

1 0.1

Database model

ral ™y '

A ID_C=ID_C ¢)
<PKx 1D_A: INTEGER <PK= 1D_C: INTEGER
B_FIELDS ..

[0 _C: IMTEGER n 0.1
e -

Example Instances

atA b| b1:B €1 el:C | b1 fields stored within a1 row at table A
b fields... al will reference cl on ID_C
b2B o e b3B 03 amel B3 will rat b sted
- an W nat be persisie
b_fields .. b_fields .. P
al:A b| b4B bd fields stored within a4 row at table A
b _fields ...

This is what happens between the classes Entry, Quantity, and Unit of Figure 3.3.
The table Entry, that stores the embedded Quantity, has a FK to the table Currency, that
stores Unit, as shown by Figure 3.4.

Figure 3.8: Transitivity of embedment.

ENORM model
Al a «Embeds b E b «Embeds C '
3 %
0.1 0.1 |pfields ["p 1 01 |e_fields..

Database model
' A W
P Koo ID_A: INTEGER

E_FIELDS..
RC_FIELDS...

Example Instances

al:A b| b1B c cl:C b1 and ¢l will be persisted
b_fields... c_fields..| Withinal attableA.
h2B | il b3B | b2 ¢2, and b3 will not be persisted
b_fields ... c_fields... b _fields ..
a4 A b hd:B

b4 will he persisted within a4 at table A

b fields ...

56

Embedding is transitive, as in Figure 3.8. If class A4 is persistent, but classes B and C
are not, and 4 embeds B that embeds C, then instances of 4 such as al will persist
instances of B, such as b1/, and any referenced instance of C, such as c/.

Figure 3.9: Using <<Embed>> for Dependent mapping.
ENORM model

Al |2 «Embed» b B b SCll
Y ——1%
0.1 0. b_fields ... 0.1 0.1
Database model
'l A ~y r .'E'.B ™y ' C '\I
n
<P ID_A: INTEGER 1 ID_&: INTEGER not null «PKs ID_C: INTEGER
n B_FIELDS ... 0.1
I0_C: INTEGER "
" - " - "
Example Instances
al:A b h1:B Cl e al and c1 stored attables Aand C;
b fields b1 stored atAB table, referencing c1 by
- ID_Cand al by |D_A;
bZ:B ¢ c2C b3:B 2 will be stored attable C, but b2 and b3
b_fields ... b_fields ... will not be persisted.
akA b| baB a4 will be persisted attable A; b4 will be persisted at
b_fields ... table AB, and will referance a4 by ID_A; 1ID_C will be null

A persistent class can have more than one embedding association to the same class.
The modeler can use the mapping override to give meaningful names to the columns
that persist the object. Otherwise, the column names will depend of the ORM tool, that
usually concatenates the association end name with each property.

The embedding association can have cardinality greater than one, in which case an
exclusive table will be necessary to persist the data in this association (see Figure 2.13
in the Embedded values support section). Figure 3.9 shows an example of embedding
association with collections for the example of Figure 3.7. The table AB exclusively
stores zero or more B elements referenced by A. If the instance a/ references b1, and b/
references c/, then b1 will be stored as an AB record referencing a/ and c1.

The table AB, by default, does not have a PK, because only entities have identities.
However, if the embedded property is an ordered collection, AB will have an order
column, forming a composite PK with /D A, as exemplified by Figure 3.10. The
ordering can be toggled by the UML attribute isOrdered. Figure 3.10 also presents a
variation of Figure 3.6, but with collections of B elements. Each collection is persisted
by an exclusive table, 4B for B related to 4, and CB for ordered B related to C.

Embedding a persistent class is not allowed. If class B is embedded it must not be
persistent. Also, the association to an embedded class must be navigable, and the
reverse end is usually not navigable, because most ORM frameworks will not support
this navigation.

57

Figure 3.10: Two collection-embedments example.

ENORM model ordered
¥ || a «Embed» b B «Embeds b c C ||
% — %
|:|..1 |:|..* _Tields ... |:|..* |:|“1
Database model
'l A ~y r .'E'.B ~y
wPEx ID_A: INTEGER 1 ID_A: INTEGER. not null
B_FIELDS ...
n
b - ", -
r C ™y 'l CB ™y
«PK» ID C: INTEGER 1 «PKx» ID_C: INTEGER
n «PK=ORDER INTEGER
B_FIELDS ..
", ~ e, ~

When embedding two one-fo-many associations to the same class, the modeler may
want to specify the details of the collection table, such as the table name. The
AssociationMapping stereotype can be used with Embedded to specify the table
(actually, a DataSource). Figure 3.11 shows an example of this application where 4
has two one-to-many embedded associations to B, specifying the collection table AB1
for the association end b/, and AB2 for the association end 52.

Figure 3.11: Two dependent collections to the same class.

ENORM model
Al Ly «Embed» b1{Table=AB1} g
0.1 0. -
g <Embeds b2{Table=AB2}P- €195 -
0.1 0.
Database model
AB1 N i A N i AB2
I0_A: INTEGER not null 1 [pks ID_A: INTEGER 1 ID_A: INTEGER not null
B_FIELDS ... n n B_FIELDS ...
- e, - e,

Nevertheless, embedded collections should be avoided when possible, and replaced

by first class entities. They are not easy to understand, although ORM tools offer
resources for this kind of mapping.

3.5.2 Maps

UML allows the specification of qualified associations, that represents partitions in
the association between two classes. When the qualified property has an upper value of

one, the association represents what is commonly referred as Map or Dictionary by OO
languages (OMG, 2011b).

Figure 3.12 presents an example where the association end of Account is a map with
a <Transaction, Entry> form, where the qualified variable of type Tranmsaction is the
key. The Map stereotype allows the specification that the key is, in fact, the transaction
property of Entry, what is common on ORM. The goal is that, when the user adds a pair
<tx, ey> to the map, it will associate ey both with the account and the tx transaction.

58

Figure 3.12: Map with key reference.

Account || = 1 :
PK» number: Integer[1] E account eptries| EPtry || | entries Transaction ||
dtBalance: Date[0.1] ﬂl date: Date[1]

halance()

1 0.* transaction
_ -:-:Map b)
transaction

The property key can also be user defined, derived from a complex operation. In
such cases, it can be a read-only map. Qualified associations without a property key are
also allowed. In the example, the map would be persisted in a separate many-to-many
table, instead of using the association between entries and transactions. Qualifier
properties can also assume non-persistent and scalar types.

3.5.3 Inheritance

The combination of inheritance strategies, and persistence, unlocks some special
situations with specific mappings by the ORM tools. Figure 3.13 presents three
inheritance situations where the super class did not have a mapping table.

Figure 3.13: Three different inheritance examples without parent table.

«abstract»
: a fqrﬁc . A . A
p: Int[1] p: Int[1] p: Int[1]
Bl Cll Bl Cll Bl Cll

In the first model, all three classes are marked as persistent, but the super class 4 is
abstract. The horizontal inheritance states that only concrete classes will have mapped
classes, and therefore there will be no need for a table that persists 4 instances.

In the second and third models there are instances of 4, but 4 is not persistent, and
therefore did not have any table. However, the resulting tables persisting the
specializations are distinct: At the second model, the horizontal inheritance makes the
property p persistent at the persistent subclasses of 4, and therefore tables B and C will
have a column persisting p. The third model has no defined strategy, meaning that p
should be ignored for persistence at the subclasses.

Figure 3.14 presents other cases of horizontal inheritance with non persistent parent,
but this time with an association to a persistent class. Instances of 4 are not persistent,
and therefore the association referencing C is transient. However, instances of B are
persistent, and should persist the inherited associations of 4, because of the horizontal
inheritance.

In the left model of the figure, B references zero-or-one C instances by inheritance,
therefore the table of B will have a FK pointing to C. However, in the right model, B

59

references zero-or-many C instances. This could be persisted by a FK from C to B, but
that would require a bidirectional relationship. The preferred solution to keep the
unidirectional association is to have a third table (B_C) that stores, like a many-to-many
relationship, what C objects are related to B. That table would have as PK the same PK
of C, to enforce that a C can have only one B.

Figure 3.14: Inherited association with persistent class.

C .. C -,
A s | a x—=>{c]|
0.) 0..1 N

A -\

Al B |

Bidirectional relationships variations of the Figure 3.14 are usually not well
supported by ORM tools, because they restrict associations to transient classes. The
modeler may want to create a direct relationship between B and C, overriding the
original relationship. This is similar to what happens in the example of Figure 3.3,
where the one directional association between Account and Entry was overwritten by
the bidirectional association DetailAccount and Entry.

The inheritance symbol may be used at the end of the relationship, as exemplified at
the example of Figure 3.15. The discriminator column should be displayed near the
arrows, and only one time for the hierarchy. The discriminator values are represented
near the end representing the class. If the discriminator applies to the general class, it
should be placed after the column definition. For example, if Party was not abstract, and
its discriminator was “Y”, then the discriminator definition would be
PARTY TYPE="Y".

Figure 3.15: Alternative way to express mapped specializations with ENORM.

«abstract» «abstract» «abstract»
Party ||PARTIES Party ||PARTIES Party ||PARTIES
name: String [1] || :(50) name: String [1] || :(50) name: String [1] || :(50)
_)
PARTY_TYPE PARTY_TYPE
p c P -l @
Person || Company || Person || Company || Person || Company ||

cpf: String[1] ||:(11) ||cnpj: String[1] |]:(14)|||cpf: String[1] |]:(11)||cnpj: String[1] ||:(14)]|/cpf: String[1] [|:(11)]|cnpj: String[1] [|:(14)

3.5.4 Auto-generated Columns

Auto-generated PKs are very common at RDBs, and a default behavior for some
ORM frameworks, such as RAR. Generated properties are not distinguished by ENORM
notation, but can be specified at the tool applying the Generated stereotype at the
property. A class with no explicit PK will have an auto-generated PK.

60

Figure 3.16: ENORM profile model of generators.

wstereotypes {umi) zenumerations
Generators - Class GenerationType
AUTO
T (.7 Generator LrELE
= SEQUENCE
generators | name: String [1] IDENTITY

wstereotypes
Generated

strateqy: GenerationType [0..1]
generator: String [0..1]

SequenceGenerator
catalog: String [0..1] TableGenerator table [‘1]
schema: String [0..1] — Table
sequenceMame: String [0..1] | |initialValue: Integer [1] [1]
initialValue: Integer [0..1] = 0 | | allocationSize: Integer [0..1] = Column
valueColumn

The Generated allows the specification of the strategy of generation and an
optional generator. The default strategy AUTO means that the strategy of the target
platform should be used. This usually is the IDENTITY, that does not require the
specification of a generator.

The SEQUENCE and TABLE strategies require the specification of the name of the
generator, that can refer to a generator defined at the model, or at the database. To
specify a Generator at the model, a class must have the Generators stereotype
applied, specifying one or more SequenceGenerator or TableGenerator instances.

Sequence generators and table generators can be shared by more than one column,
and at distinct tables. The TableGenerator specifies a Table, and one of the columns
of this table should be the valueColumn, that holds the last generated value. In order to
avoid visual pollution, information about column generation is not planned to be
displayed by ENORM diagrams.

3.5.5 Constraints and Indexes

When it is necessary to specify every detail of the database, ENORM allows the
specification of constraints and indexes, by specifying the definitions of a Table.
Figure 3.17 shows the meta-model elements of ENORM that stores the creation of
Definition objects.

Figure 3.17: Profile model of table definitions, for indexes and constraints.

definitions [*] zenumerations
Definition = * Table DefinitionType
type: DefinitionType [1] UNIQUE
name: String [0..1] colurmn| [*] INDEX
body: String [0..1] columns [*]x Column CHECK
fordered: EE

61

A Definition have a type, that specify if it is an index, a unique index, a check
constraint, a FK, or a PK. The Definition may have a name, that identifies it at the
database, and a body, if the user wants to specify the command that creates the
constraint.

The Definition is also associated with an ordered list of columns that it affects. For
instance, if we want to define a unique index, for an alternate key of Person, using RG
and authority, we create a Definition on the Table Persons, referencing the columns
RG and authority. Notice that for using the Definition, it is necessary to define the
Table, and the Column of each referenced property, using the ColumnMapping
stereotype, as shows the Figure 3.18.

Figure 3.18: Definition example with unique index constraint definition.

erson .
Phone || {ioinCo?umnsz Person || Persons |- «Unique » \
P (rg,rg),[auth,authontﬂ RG: Integer [1] | RG, authority
o~ *] [1]-" authority: String [1] || (10)

The notation used at Figure 3.18 for the unique Definition is a suggestion, that is not
covered by the ENORM visual notation. Most ORM frameworks did not support
advanced definition of constraints, but S4 allows. If used, the title should be the type of
Definition, and the contents are the list of columns or the body.

Notice that an AssociationDef can enforce this FK if it have one or more
JoinColumn objects, each referencing one inverseColumn that is part of the PK, or
part of a unique index. At the example, Phone references Person by two columns
named rg and auth, and inverse columns pointing to the unique index columns, instead
of pointing to the implicit PK of Person. A FK Definition is not necessary for Phone.

FK and PK definitions should be avoided. The preferred way of specifying FKs is
by creating JoinColumn objects at the AssociationDef meta-object. For PKs, the
application of the PK stereotype at the properties or association ends is the preferred
way of specifying the constraint. However, ENORM allows the specification of tables
that are not visible as classes, such as tables that implement many-to-many associations
and JoinedSource, and for these cases the Definition is the only way to
specify/customize the constraints. Moreover, unique constraints with only one column,
can be specified by the unigue property of Column, but unique constraints with many
columns can only be specified with Definition objects.

3.6 Limitations
This section enumerates some known limitations of ENORM.
3.6.1 Flexible Data Sources

Currently, the profile only supports the mapping of one class, to many tables, if each
table has a one-fo-one relationship to the first table. This is an easy way to specify the
data source, without caring about checking how a complex mapping would be persisted.
A more flexible rule for data sources would be equivalent to a side effect free updatable
view (DAYAL and BERNSTEIN, 1982).

62

This, however, does not invalidate the current ENORM meta-model. The
JoinedSource could be extended, in the future, with the definition of the Query that
would retrieve the object instance. The Figure 3.19 shows an example of these meta-
classes, but the Query would have to map all the dynamic operations of the data
manipulation language of SQL. This Query would reference the tables already defined
in the model, or defined by the JoinedSource. This goes beyond the current scope of
ENORM.

Figure 3.19: A sketch of meta-model with flexible data sources.

Table | definesl] g JoinedSource ¢————= Query

— lordered} mapping -
[0..1]

3.6.2 Qualified Associations

Qualified associations can have more than one qualifier properties. This kind of
construct would need keys with fuples of objects, what can be quite complicated to
implement using ORM tools. Qualified properties, with upper cardinality over one, are a
special case, representing a map of collection elements, where each key can have more
than one associated value.

3.6.3 Multiple Inheritance, Multiple Types

The profile does not include resources to deal with the persistent specialization of
more than one persistent class, and the resulting mapping would be unknown. However,
a class can specialize any number of other classes, as long as it only inherits persistent
information from one tree branch. Single relation with multiple type attributes
(ELMASRI and NAVATHE, 2003) was not included in ENORM.

3.6.4 Association Class and “n-ary”

The profile does not have any specific mapping for the Association Class element
of UML, it is as any other class. ENORM does not yet support persistent associations
with more than two classes, common on ER conceptual models. These associations
must be separated on binary associations.

3.6.5 Generics and Template Parameters

Mechanisms such as generics can be specified using template parameters on UML,
and they are useful for strong typed languages, such as Java and C#. We did not identify
any additional extension necessary to the use of template parameters in that context.
However, certain combinations are difficult to model, and implement, using the studied
ORM tools.

Figure 3.20 has an example of template parameter where the class Owner is
parametrized with a parameter named E that identifies what kind of Property this
Owner has; Property also has a parameter E that identifies what kind of Owner this has.
Then we created two persistent classes that specializes Owner to own properties of
persistent specializations of Property: OwnerA owns PropertyA, and OwnerB owns
PropertyB. This is denoted by the binding of E at the generalization.

63

Figure 3.20: Template parameter example.

___________ - L _____
'EClass = Property | 7: E:Class = Owner j|
Owner]| ~—p=~-""="7~ ! properties Property'- - - - - - - - - - - 4
allProperties(): E [0"6’”1'3" 0.x
« bind » “gmdp” I bind hind
_ =E -= PropertyTypeB= L4 ® € ®
<E-> ProperyTypeA> <E-= OwnerB= <E -= OwnerA=
i
OwnerA || OwnerB || propemes PropertyTypeB || | Property Typed || |
owWner 0.
)T\ owner 0.1 0.1 h properties [,*

As a general rule, the parametrized class cannot be persistent if the parameter affects
the type of its relationships. For instance, if Owner is persistent, and the relationship
owner-properties is defined in function of the binding of E at each class, the persistence
manager will not know for sure what subclasses of Property and Owner exist, in order
to establish FKs between the classes.

To exemplify the above problem using Java, the properties of the Owner, and the
owner of the Property, could both be implemented using generic parameters:

class Owner<E extends Property>...
Set<E> properties; // what E associations are persistent?
class Property<E extends Owner> ..

E owner; // what E associations are persistent?

At the example, Owner is persistent but abstract, and Property is not persistent. An
instance of Property will not be persisted, only of its specializations. Nevertheless, the
owner-properties relationship of Property is persistent at the subclasses, because its
subclasses declare a horizontal specialization.

However, each pair (4-4, B-B) of subclasses overrides the owner-properties
relationship, to explicitly tells the ORM framework what combinations are possible. For
instance, PropertyTypeB will have a FK to OwnerB, and will not need a FK to OwnerA.

In practice, it is still difficult to use template parameters with the UML notation. For
instance, it is not clear how the notation, for a relationship bound to parameter £, would
look like, simply because template parameters are much more flexible than Java
Generics. It is possible to specify anything as constraint, not only class types, and
therefore a relationship dependent to E could have an indefinite destination.

3.7 ENORM Notation Reference

UML defines the notation, of the textual elements at the model, using a variation of
the BNF notation. With ENORM, we extended these textual notations, describing
information about the ORM mappings using the EBNF meta-language (ISO, 1996).
Figure 3.21 lists the syntax definitions to describe classes, properties, associations ends,
discriminators, and the mapping overrides. The EBNF here described omits the
concatenation operation (commas).

64

Figure 3.21: EBNF specification for ENORM labels.

class def =
class uml [PERSISTENT [datasource]l;
datasource =
table def ["," datasource];
table def =
[catalog"."] [schema"."]table;
property def =
[PK] property uml [PERSISTENT property mapping | TRANSIENT];
property mapping =

column ref[":"column def];
column ref=
[table def"."]column name;

column def=

[column type][" ("length")"]{"{"column modifiers"}"};
length = number | number", "number;
assoc _end def =

[PK] [EMBED] assoc _end uml [TRANSIENT | assoc mapping];

assoc_mapping = "{" assoc_table | join columns "}";
assoc_table = ("joinTable=" | "Table=") table def;
join columns =
"joinColumns=" (
column ref{","column ref} |
ext join column{","ext join column});

ext join column =
"("column ref","column ref")";
overrides = override{"\n"override};
override =
property path PERSISTENT [PK] (property mapping | join columns);
property path = identifier["."property path];
column modifiers =
"unique"| "non-update" | "non-insert" | "read-only";
discriminator =
property mapping ["="discr value];
EMBED = "«Embed»";
TRANSIENT = "©";
PERSISTENT = "[|";
PK = "«PK»";

The table, catalog, schema, column_name, column_type, and discr value non-
terminals are simple identifiers. The non-terminals ending with “ uml” are defined by
the UML specification (OMG, 2011b). The uppercase identifiers represent the terminals
introduced by ENORM.

The underlined non-terminals define the notation of the non-trivial concepts
represented by ENORM at the models:

* class_def: The notation for naming a class.

» property def: The notation for naming a property. Notice that property uml is
itself an UML non-terminal, containing information such as #pe and
multiplicity.

* assoc_end_def: The notation for naming association ends.

* overrides: The notation for displaying the list of overrides at a comment box.
Notice that overrides usually refer to properties, and associations, defined by
other classes.

65

* discriminator: The notation to display the discriminator column, at the
specialization end of the general class.

Using EBNF, the terminal symbols are specified between quotes, and the non
terminal symbols are specified by rules after the equal symbol. The rules are a
concatenation of elements, or definition lists separated by pipes. Parenthesis are used to
group elements, brackets to delimit optional elements, and braces to delimit elements
that can repeat zero or more times.

For example, the class_def non-terminal has a rule that concatenates the UML class
name (class_uml), with the optional terminal PERSISTENT (when the class is
persistent). If the class is persistent, the class def can concatenate the non-terminal
datasource. The datasource is defined at a recursive rule, that has at least one table_def.

Figure 3.22 shows the application of the non-terminal elements at the model. Notice
that this example uses the alternative way to display inheritance, between the center and
left classes, as described at section 3.5.3. The notational elements of UML that are not
affected by ENORM, such as operations and association names, were omitted.

Figure 3.22: Visual distribution of the ENORM non-terminals.

:class_def :discriminator| :class_def | :assoc_end_di :class_def
T -
{:property_def} %’{:property_det} :assoc end def {:property_def}
:discr_value - -

«Qverride»
:overrides

3.8 Modeling Tool

The modeling tool was developed as a plugin for Eclipse, using open source
components from the Eclipse Platform (ECLIPSE FOUNDATION, 2012a). The most
important components were:

* The UML2 project, a framework intended to implement the specification of
UML 2 as an Eclipse Modeling Framework (EMF) meta-model. The UML2
project provides a model to create UML and UML profiles, and store them using
XMI (OMG, 2007). However, it does not include the creation of UML diagrams.

* The Graphical Editing Framework (GEF) of Eclipse, a framework that provides
support for creating modeling tools, such as UML editors, supporting figure
manipulation, figure connections, layers, and viewport/scrolling control
(ECLIPSE FOUNDATION, 2012b).

The tool takes the responsibility to abstract the ENORM meta-model from the user,
and draw the diagrams using the notation elements of ENORM. Figure 3.23 presents a
screen capture highlighting the main windows of the tool:

1. The package explorer is an eclipse window that lists the model files. The sum!/
files contains the visual information about the models, and the uml files the
structural information, including the ENORM profile application.

66

2. The outline window shows the main elements of the diagram in a tree view.

3. The palette toolbar lists the elements available to the user draw the model:
classes, interfaces, associations, properties, inheritance, implementation,
attribute overrides, and operations. Each component in the palette has a slide,
that allows the user to choose other components, such as persistent classes,
embedded associations, and association overrides.

4. The drawing canvas is the most important window, where the user draws the
model, and select elements for editing. At the above example, the Account class
is selected.

5. The properties window is where the user can edit the details of the selected
component in the canvas. For instance, because the Account class has a data
source defined as Join, the window knows that should list the tables defined in
the join. The proxies are therefore handled in a transparent way for the user.

Figure 3.23: Modeling tool screen shot.
e Resource - newprof/Account3_syn.suml - Eclipse Platform = (=
File Edit MNavigate Search Project Sample Menu Run Window Help
ar = i HU R =0 SR A S e A =] Quick Access | @ | [Resource | |
[y ProjectExpl. 32 = O & Account 2 = 8 i
= G:Dl - «Embed» Quantity A |@pad p
= newpref 2 balance . Fmount: double[1] [:202) |y NI
:’E\‘d - ! ‘ Overrider] 0.1 0.
ECONNS S 51 W) alance.amoun cct_brief.value e
&) Account3_syn.uml :a:ance.unitHAttncibrit;:u:ft I «Overriden 1] ;E?"btie;» 1 I_—u_l)
& AccountMinisuml N
#) AccountMini.uml e 0. . . $
& cleanModel.uml 4 o S 0. “DK“’IE" |
#] JavaBasic.uml wabstracts A s ety foun calu =, r
2 modell.suml Account |Account, Acct_brief cabstracts ntry || =
%‘ :Z:::;Su\:nnl‘l v compone:\'f ;Eg:lannucr::bsi:n‘:;[egi’][WH]A:ct_briaf‘dt_:a\ 0.1 enr,ltxne anﬂ‘kas 5 VPre]
¢ ?]S;r:;:ljlri.&ct_comps} A ﬂﬂ 0" \D”# entries | 8 {re ﬁ
&= Outline 52 = 8 «PK= account|
outine 2 - ’ Aﬂ join co\umnst:a:ct_number} ‘,«’f:)

- G SummsryAceout A ::;nasg‘»:;:;ntll DetailAccount || =

[DetailAccount s 0 v | ==

4 [B] Account < > [oper] v

| @] number
 Summanyacaoun - Propertes 5 MlEEE T
[&] Entry Property Value S
» [B] Transaction data source Join
Ve 4 joined tables [Account, Acct_brief]

[@] Unit > [0] Account

» [8] Quantity v 1 Mcct_brief =

< > < >

The tool is distributed as open source, and can be downloaded from our sourceforge

project'.

3.8.1 Modeling Tool for the Experiments

For the experiments detailed at chapter 5, a specific version of the tool was
employed, capable of editing relational and UML class models. This tool is not a plugin,

but Rich Client Platform (RCP) available as a Java Web Start application.

The architecture of the experimental tool is summarized at Figure 3.24. The Java

Web Start allows the download and execution of Java applications, with one click on
the browser, only requiring the Java Runtime Enviroment installed in the client machine

1 http://eorm.sourceforge.net/

67

(ORACLE, 2014). The experimental modeling tool also communicates with a Java
Servlet that manages the experiment.

Figure 3.24: Experimental tool architecture.

Experiment Client Side H Experiment Servlet ‘
ENORM editor H UML class editor H Relational Editor ‘
Eclipse GEF || ECORE || EMF I XM |

|
|
|
| Eclipse Platform |
| Java WebStart + Eclipse RCP |

Each step of the experiment, and what modeling language should be used by the
user, is managed by the tool. The models, and all data about the experiment, are
uploaded to the Serviet after the experiment is completed.

3.8.2 Future Steps

The tool focus until now was to allow the modeling using ENORM.
Transformations and model checking were left out of the tool until this moment. The
ideal modeling tool would be able to implement a round-trip engineering, synchronizing
code and models, respecting what is produced in one, or other artifact (Figure 3.25).

Figure 3.25: MDD scenario for ENORM models.
ENORM metamodel

Software viewpoint: P A ... Database viewpoint:

Y I | 7=YY) R E—)

Classes |[[— —~| ENORM |*———Relational
Platform |. .~ :
information L_:_____‘_‘:-_—-——--__J I
o B platform metamodel

e R v | pA
. transformation: - . e
- o (PSM) . _»-activerecord

The idea is to create bidirectional transformations for the three studied platforms at
chapter 4 (JPA, RAR, and SA4). These transformations would use a mechanism, such as
Symmetric Lenses or Delta Based Transformations, to transform models to code, and
back again (DISKIN, XIONG and CZARNECKI, 2010; HOFMANN, PIERCE and
WAGNER, 2011).

68

Because this area is a separate research topic, presenting several open research
questions (BORK et al., 2008), we decided to let this for future work, instead of using
established transformation languages, that did not yet cover bidirectional
transformations, such as QVT and ATL (JOUAULT et al., 2006; OMG, 2011a).

The Platform Independent Models (PIM) are transformed, with the aid of Platform
Specific Information (PSI), to the Platform Specific Model (PSM). The PSM is a model,
but not a diagram, being the Abstract Syntax Tree (AST) of the destination code. A
transformation takes PIM elements, that are visualized as diagrams, and transforms into
PSM elements, that are visualized as code.

Both relational and class models are subsets of an ENORM model, and therefore
function as views. All UML can be specified with ENORM, because ENORM is UML
with an applied profile, but not all databases can be specified using ENORM (for
instance, stored procedures cannot be expressed by ENORM). However, we assume that
what cannot be represented, is part of PSI.

Therefore, what takes from the ENORM model to the PSM, including database
stored procedures, are these specific information, that can be hard coded by
transformations, the result of specific profiles informing the user preferences, or the
PSM itself. Using the PSM, the reverse transformation can read the changes performed
by the developer at the code, and use this information for the following transformations.

3.9 Other Class Models and Persistence Extensions

This section briefly describes two relevant approaches to the problem of persistence
modeling and object-relational mapping. The first is a profile focusing in extending
UML to draw ER/Relational database models and the second is a proposal of the Object
Management Group (OMG) to standardize UML extensions to several persistence
medias, including a traceability support between specific concepts and requirements.

3.9.1 A UML Profile for Data Modeling

The UML Profile for Data Modeling was proposed to fill the absence of a data
model diagram on UML. It is a profile, intended to be used by class diagrams, to
emulate concepts common on database modeling tools, such as tables, PKs, foreign
keys, indexes, and views. The profile also includes support to model other persistent
mechanisms, such as files and XML (AMBLER, HARTFORD and RUECKERT,
2003).

The profile allows three levels of abstraction: Logical, Physical, and Conceptual
data models, following the ANSI standard for database design (AMERICAN
NATIONAL STANDARDS INSTITUTE, 1975). When creating a new data model, the
designer will choose a model type according to these levels. The design of the software
domain is done with separated class models, with no extensions.

Several stereotypes were defined, according to the abstraction level, to specify
classes as tables, views, or indexes; properties as columns, foreign keys, PKs, or
alternate keys; and associations as generalizations, or identifying/not-identifying, to
name a few. The notation also covers triggers, access restrictions, and stored
procedures, using OCL when necessary.

69

Figure 3.26 is an example of the profile in use, for a physical data model
representing a RDB schema. The diagram describes three tables and a view of the
database, with PKs, FKs, alternate keys (AKs), indexes, and database column type
information. It is important to observe that the diagram does not show how the tables
are related to the application classes that represent the domain.

Figure 3.26: UML Profile for data modeling example (AMBLER, HARTFORD and

RUECKERT, 2003).
Employes Salary
{accessrights = HR}
_PPEmployee_FOID: CHAR[1E] ==P k== <<Surrogate== 9 earns g% .
7| Employes Humber: INT20 zsak=x key = AK-13 EE'E[V—PD'PD'D'I:DHACRJL? :;P{K::K=}
s Given_Mame: VARCHAR(30] mployes_POID: (18]
) Middle_Mame: ¥ARCHARZ0) Amourit: FLOAT
N Surmmme: YARCHAR40) Start_Date: DATE
: Preferred_Hame: WARCHAR40] 1 End_Date: DATE
': Start_DO=te: DATE h
\ Sacial_Security_Humber: CHAR[10] 2=Ak== Tkey = AK-2} ==
1
* -3 h..‘ ™ FPhons
. L L3
e f M, kN 1.* | Phone_POID: CHAR[1E] <=PK==
IErnplayesa H Y * Employes_FOID: CHAR[1E] <=Fk==
= indewss “ IEmployeas * Usage_Type_POID: CHAR[1E) ==Fk==
1 == | ndex=s . Format_Type_POID: CHAR[1E] ==FK==
'. LN L E Phaone_Number: INT24
[v ="
IEmployee? 1\ __-"
.
= =
Index “YEmployee
Employes_Number: INT24 ==View=> {read only} HR Datab
abase --
Employes_Humber: INT24 [fordered byl Erploves Irfo
Full_M=rme: WARCHAR(100]
Middle_H=are: WARCHARZO)] Last Updated: 14/08/2003
Social_Security_Number: CHAR[10]
or k_Phone: INTZ24
Copyright 20022006 Scott W. Ambler [== -Frone: INT24 “<Physical Data Model=>

Models with this notation can be used as input for MDD transformations, generating
SQL scripts to create/maintain a database. A tool was developed with this objective
(HARTFORD, 2004).

This profile, however, does not deal with the mapping between OO classes and RDB
tables. It is not intended to ORM, but as an alternative to use UML notation for database
design, with a profile compatible UML design tool.

3.9.2 Information Management Meta-model (IMM)

The Information Management Meta-model (IMM) is an ongoing effort of OMG to
bridge the gap between the UML, RDBs, and XML modeling. The IMM approach
consists in the standardization of UML profiles, and transformations, to represent
persistence using UML. It encompasses relational database design, entity-relationship
models, XML Schemas, LDAP models, and a traceability model to manage the
interoperability between these meta-models (OMG, 2005, 2012).

The IMM is still a request for proposal, however the modeling approach is similar to
the UML profile of Ambler, by creating separated models using consolidated notations
adapted to the UML meta-model. According to the proposal, when creating ER and
relational models, the design decisions will be traced to requirements, and then used to
generate code for the system. How exactly this traceability and code generation will
work is not yet clear, but the IMM does not include an effort to model concepts
together. Database models and class models are separated unconnected models.

70

By using separated models, even if all traceability is registered, the connection
between concepts will be hidden from the stakeholders. ENORM follows an opposite
path, by exploring the synergy of modeling the concepts together. The scope of IMM is
also much more generic, because it encompasses all possible ways of representing
RDBs, plus other persistent medias. The scope of ENORM is specific to relational
database mapping patterns, following the domain logic described by the Domain Model
pattern.

71

4 ENORM IN PRACTICE: APPLICATION EXAMPLES

This chapter discusses the implementation aspects of systems, designed with
ENORM models, using three different ORM frameworks, at three distinct platforms:
JPA, SA, and RAR. Chapter 2 surveyed the ORM tools with a pattern approach, and
Chapter 3 presented our notation to represent these patterns, in the context of the
surveyed tools. At this chapter, we explore the challenges and differences on mapping
from ENORM models to the distinct platforms and ORM tools.

Four ENORM domain models, based on analysis patterns, are presented, and at each
case, we point out the most important differences, when implementing each model on
the three distinct platforms. At the end of the chapter we present a summary of
guidelines to developers, highlighting the difficult points in the context of MDD.

4.1 ENORM and ORM Frameworks

The way JPA, SA, and RAR implements each ORM pattern is distinct. AR separates
database definition on migration files, apart from class and mapping definitions, that are
independent from the migrations. JPA, on the other hand, infers much of the database
structure from annotations placed before each class (or XML), but does not have a
central place where the database is defined. In the middle ground, S4 allows the
definition of tables, classes, and its mappings separately (classical) or together
(declarative), but the table definitions are clearly separated at run time.

Each example implementation, presented at this chapter, is one among various
possible implementations. They represent optimal implementations, for a certain
version, at a certain configuration, within a specific platform. They capture limitations
of each tool that are specific within these constraints.

The JPA examples were developed with Hibernate version 4.2.8 and Java JDK 1.7.
The mapping was executed using annotations at the code, and only JPA4 annotations. We
could had used specific hibernate annotations, XML instead of annotations, or other
JPA implementations such as EclipseLink.

The SA examples were developed using the classical mapping, that separates the
instantiation of classes, tables, and mappings. S4 also has another way to express the
mappings, by the use of the declarative mode, where all persistent classes extend a Base
class. But we found the classical mapping more interesting to compare with the other
two frameworks. The version of Python was 2.7.5, and the S4 version was 0.8.2.

The RAR examples were implemented with Ruby version 1.9.3, ActiveRecord
version 3.2.14, and composite _primary keys version 5.0.13, this last being an

72

independent modification, to add support to composite keys (DR NIC WILLIAMS and
CHARLIE SAVAGE, 2013). Also, migrations files were used to create the database.
The projects were created using the Ruby on Rails framework.

The database used by the examples was the PostgreSQL version 9.2. The database
creation was performed by the ORM tools, by setting options to create the database
from the mappings.

4.2 Party Pattern for Accountability

The concept of accountability applies when a person, or organization, is responsible
for another. This first example is a model for the abstract concept of Party, a pattern
described by Fowler, defining a super class that abstracts the common attributes of
person and organization (FOWLER, 1996).

Figure 4.1: Party pattern designed with ENORM.

Address Telephone ||[TELEPHONES Email
address: String [1] «PK» area: Integer[1] || :(5) email: String [1] || :(50)
city: String [1] || :(30) «PK» number: Integer[1] || :(8)
state: String [1] || :(2

gl1]1:@ " N W
telephone’|* o = | -
«Embed» 0.1 - emal
address Party Telephone
party y, !
«abstract»
Party party ||PARTIES | party
Party_Address <>name: String [1] | :(50) |~ Party_Email
B 0.1 0.1
|
é PARTY_TYPE é
P C
Person || Company ||

cpf: String[1] ||:(11) {unique} cnpj: String[1] |[:(14){unique}

The model of Figure 4.1 presents the Party pattern as a class with a one-to-many
relationship to Telephone, and one-to-zero/one Address and Email. For the persistence,
we decided to use the embedded classes solution where possible, reducing the number
of tables. Classes that represents entities such as Person, Company, and Telephone are
persistent (represented with the || sign), Address and Email are embedded. Telephone is
persisted by table TELEPHONES, and Party by table PARTIES.

The Party hierarchy has no PK specified by the model, meaning it should not use a
meaningful PK. The class that represents the organization is named Company. The
Telephone class has two properties marked as PK, area and number, what configures a
composite key.

73

The inheritance of Party to Person, and Company, is implemented by the Flat
strategy, meaning that all three classes will be persisted at the same table. The
PARTY_TYPE column is the discriminator that assumes the value P for Person, and C
for Company. Party is abstract, therefore has no discriminator value.

Regarding the stereotypes, all persistent classes will have the Persistent stereotype
applied. The class Party will have the DiscriminatorColumn applied, defining the
column used for discrimination. Each generalization relationship aiming Party will
have the Flat stereotype applied, with a discriminatorValue (P or C).

The properties can have complementary specification of database information,
specified using the ColumnMapping stereotype, represented by the persistence symbol
(ID- For example, city has length of 30, state length of 2, and email length of 50; but
address has no length specified.

The association ends email and address will have the Embedded stereotype. The
association between Telephone and Party have no stereotype application, because
associations between persistent classes are already persistent.

4.2.1 Mapping Persistent class Telephone
The following subsections present the mappings for each studied platform.

4.2.1.1 Using JPA

With JPA, persistent classes are those annotated with @Entity. Persistent FK
associations are usually annotated using @ManyToOne at the side that owns the FK,
and @OneToMany at the side that is referenced by the FK. Only the navigable sides
have association mappings.

The Telephone class is annotated with @Entity, that has a parameter to specify the
table name. All properties are mapped to columns automatically, but it is necessary to
inform the length, by using the @Column annotation, at the instance variables that
represent each property. The association end to Party is annotated by @ManyToOne.

The tricky part of the mapping is the definition of the composite PK, requiring a
separated class just to hold the keys. Each property that is part of the key is annotated
by @ld, and the Telephone class is annotated by @IdClass, pointing out the PK class.
Here is the code fragment with the Telephone class:

@Entity @Table (name="TELEPHONES") @IdClass (TelephonePK.class) public class Telephone({
@Id @Column (length=5)private int area;
@Id @Column(length=8)private int number;
@ManyToOne (optional=false) private Party party;
//methods. .. (get/set)

class TelephonePK implements Serializable({
private int area, number;
//methods... (get/set/equals/hash)

4.2.1.2 Using SqlAlchemy

We have to declare the Telephone class, instantiate a Table mapping, and instantiate
a mapper connecting the class and the table. The table is composed of column instances,
informing database type, primary and foreign key constraints, and any other information

74

necessary to define the table. Bidirectional associations are declared at the many side of
the mapper, but all FKs are declared at the fable instance:

Telephone table = Table('Telephones', metadata,
Column('area', Integer (5), primary key = True, autoincrement = False),
Column ('number’, Integer (8), primary key = True, autoincrement = False),
Column('party id', Integer,
ForeignKey ('Parties.id")
)

class Telephone (object) :

TelephoneMapper = mapper (Telephone, Telephone table)

4.2.1.3 Using ActiveRecord of Ruby

RAR have a separated module that deals with the definition of the database, by
extending the Migration class. Each migration may define a change in database, or a
pair of up/down sections, with instructions for the application of the migration, and its
rollback. The developer can use RAR without using migrations, because RAR will not
read the migrations to make the mappings, differently from SA4 that uses table objects to
understand the mappings:

class CreateTelephone < ActiveRecord::Migration
def up
create table :TELEPHONES, {:id => false} do |t]|
t.decimal :area, :precision=>5, :null => false
t.decimal :number, :precision=>8, :null => false
t.references :party, :null => false
end
execute 'ALTER TABLE "TELEPHONES" ADD PRIMARY KEY (area, number);'
end

def down
drop table :TELEPHONES
end
end

The CreateTelephone migration creates a table named TELEPHONES, without
default PK (id=>false). By default, RAR migrations would create a PK named id, with
auto increment. We have to declare each column, followed by the precision specified at
the ENORM model. The FK column is declared using the t.references type, with the
name of the destination class. Ruby will create a column named <class name>_id
referencing the PARTIES table, but it did not create FK constraints. Because composite
keys are not supported, we have to specify an extra SQL command to create the PK
constraint. This “execute” command is RDB vendor dependent.

RAR persistent classes extends the ActiveRecord::Base class. Most of the mapping is
available by properties of the Base class, such as the table name (table_name). The
problem here is that RAR classes also do not support composite PKs. A solution to this
problem is to use the optional composite primary keys package for RAR, that fixes this
limitation, offering the primary keys list:

class Telephone < ActiveRecord: :Base
self.table name="TELEPHONES" fthe default in RAR is plural, but lowercase
self.primary keys = [:area, :number]
belongs_to :party, :inverse_of=>:telephones

The primary keys declares area and number as the PK. The belongs to modifier
declares party as a reference to the Party class, with inverse relationship telephones,
thus implementing the bidirectional relationship. RAR associations, based on FK

75

pattern, are mainly mapped using belongs to for one/many-to-one associations, and
has-many for one-to-many associations.

4.2.2 Embedded classes

The following subsections present the mappings for each studied platform.

4.2.2.1 Using JPA

The embeddable classes of JPA must be annotated with @Embeddable. The
attributes can have column definitions, such as the length, that are used when
embedding the class:

@Embeddable public class Address {
private String address;
@Column (length=30) private String city;
€Column (length=2) private String state;
//methods... (get/set/equals/hash/...)

4.2.2.2 Using SqlAlchemy

The embedded classes do not need to be annotated, all they need is to implement the
composite values method. Any configuration is done by the mapper instance of the
embedding class:

class Address (object) :
def __init__ (self, address, city, state):
self.setAddress (address)
self.setCity (city)
self.setState (state)
def _ composite values_ (self):
return self.address, self.city, self.state

4.2.2.3 Using ActiveRecord of Ruby

Using RAR, the embedded classes do not need to be annotated, or modified. Any
configuration is done by the persistent class that embeds the class. In the example
bellow, Address has his three properties and a constructor. Notice that embedded
instances must be immutable on RAR, so every attribute is declared to have only public
getters by the attr _reader module method:

class Address
attr reader :address, :city, :state
def initialize(address, city, state)
@address, Qcity, @state = address, city, state
end
end

4.2.3 Party, Person, Company, and Flat inheritance
The following subsections present the mappings for each studied platform.

4.2.3.1 Using JPA

The Party abstract class is defined as an @£Entity, and the @Inheritance annotation
defines the mapping strategy, in our case Flat is Single Table. Following our model, we
also define the @DiscriminatorColumn as PARTY TYPE:

@Entity @Table (name="PARTIES") @Inheritance(strategy=SINGLE TABLE)
@DiscriminatorColumn (name="PARTY TYPE") public abstract class Party ({
@Id @GeneratedValue private int idParty;

Column (nullable = false, length=50) private String name;
@OneToMany (mappedBy="party") private Set<Telephone> telephones;
@Embedded private Address address;

@Embedded private EMail email;
//methods... (get/set/...)

76

The PK was not specified at our model, so we define a simple auto generated PK
named idParty using @Id and @GeneratedValue. The variable telephones is a one-to-
many bidirectional relationship, mapped in the inverse side by the party variable. The
address and email are embedded instances, and since we specified the mappings at the
classes, it is not needed to override this information. Property name has a column with
length of 50. The specializations of Party are as follows:

@Entity @DiscriminatorValue (value="P") public class Person extends Party({
@Column (unique=true, length=11) private String cpf;
//methods... (get/set/...)

}

@Entity @DiscriminatorValue (value="C") public class Company extends Party({
@Column (unique=true, length=14) private String cnpj;
//methods... (get/set/...)

The @DiscriminatorValue annotations tell what values the discriminator column
will assume for Person and Company. The properties cpf and cnpj are marked as unique
at the @Column annotation, following the model. They function as alternate keys.

4.2.3.2 Using SqlAlchemy

We first define the Table instance, and its columns, including the party type
discriminator column, the PK, all columns needed to persist the embedded objects, and
all columns that represent the properties declared at the specializations:

Party table Table('Parties', metadata,

Column('id', Integer, primary key=True), Column('name’', String, nullable=False),
Column ('address', String(255)), Column('city’', String(30)),

Column('stete String(2)), Column('email', String(50)),

Column ('party Lype', String(l), nullable=False),

Column('gg_ , String, unique = True), Column('cnpj', String, unique = True)

After that, we declare the Party class, and its specialization as follows, without any
special ORM methods or annotations:

class Party (object):
class Person (Party) :

class Company (Party) :

Finally we declare the instantiation of three mappers, one for each class of the
inheritance tree. The mapper of the Party declares how to fetch the discriminator, at the
polymorphic_on clause, by using the party type column of the Party table declared
before. Notice that the Table Party table has a property named c, that references all
columns of this table:

PartyMapper = mapper (Party, Party table, polymorphic on=Party table.c.party type,
properties={
'address':composite (Address.Address, Party table.c.address, Party table.c.city,
Party table.c.state),
'"Email’':composite (EMail.EMail, Party table.c.email),
telephones': relationship (Telephone, backref "party') })

The address property embeds an Address, mapping the columns at the same order
of the composite_values method. Email works in a similar way. Finally, the felephones
relationship is bidirectional and one-to-many, referencing Telephone.

SA way of mapping FK associations is to declare a relationship property, at the
mapper that is referenced by the FK. Declaring a backref will add a property (party) to
the mapping of the class that has the FK column (7Telephone).

77

Person and Company mappers must refer to the supper class, or its mapper, by the
inherits clause. They also declares the discriminator value with the
polymorphic_identity clause:

PersonMapper = mapper (Person, inherits=PartyMapper, polymorphic identity='P")
CompanyMapper= mapper (Company, inherits=PartyMapper, polymorphic identity='C")

4.2.3.3 Using ActiveRecord of Ruby

Using RAR, we first define the migration that creates the PARTIES table, with all
columns that belongs to each specialization of Party, and all columns that persists the
embedded objects:

create table :PARTIES do |t]

.string :name, :null => false ,:1imit=>50
.string :party_ type, :null => false

.string :address

.string :ecity, :1limit=>30

.string :state, :limit=>2

.string :email, :1limit=>50

.string :cpf, :limit=>11

.string :cnpj, :limit=>14

o ot o o of o o |

end
The PK is implicit, but we have to introduce the discriminator column named
party_type. The Address class maps address, city, and state columns, while the Email
class maps only one column also named email. The properties cpf and cnpj are mapped
as accepting nulls, because they are obligatory depending on the type:

class Party < ActiveRecord::Base # RAR does not support abstract super class for FLAT
self.inheritance column = "party type" # discriminator column
self.table name = "PARTIES" # table name
has_many :telephones, :inverse_of => :party
composed_of :address, :class_name => 'Address',

:mapping => [%w(address address), %w(city city), %w(state state)]
composed_of :email, :class_name => 'Email', :mapping => [%w(email email)]
def self.find sti class(type_name) # Customized discriminator

case type name
when "pP"
Person
when "C"
Company
else
raise "unknown party type"
end
end
end

Flat inheritance using RAR is supported, but specifying what values the party type
column should use, to each class, needs some customization. By default, RAR will just
write the class name at the type column, so we need to override the find sti class
operation telling that Person is named “P”, and Company is named “C”.

class Person < Party
validates :cpf, :uniqueness => true
def self.sti name
:P # Person is “pP”
end
end
class Company < Party
validates :cnpj, :uniqueness => true
def self.sti name
:C # Company is “C”
end
end

Party has a bidirectional one-to-many relationship with Telephone, mapped by
has_many, with inverse variable named party at the Telephone class. It has an Address

78

instance, embedded by the composed of that maps the properties of Address to the
columns with the same name. It also declares the embedded instance of Email.

The specializations of Party are described as follows, overriding the sti name
operation. This operation tells RAR that Person and Company are persisted with
party_type equals to “P” and “C”.

4.3 Accountability Type Model

This second example focus in the modeling of accountabilities between various
parties, following certain rules connecting types of accountabilities and parties. The
model of Figure 4.2 presents our model for the accountability pattern (FOWLER,
1996), which describes an Accountability having a commissioner and a responsible
parties, related to an AccountabilityType, at some TimePeriod. Each AccountabilityType
can follow a Rule that will validate if the commissioner and responsible are of the
adequate types for that type of accountability.

Figure 4.2: Accountability, first model.
commissioner{
join columns=COMMISSIONER _ID}

Accountability || 0.” 1 «abstract>
Party ||

()-\//namez String[1] || :(50)
1

responsible{ ety e
0..1 join columns=RESPONSIBLE_ID} -
«Embed» - -
TimePeriod

timePeriod P 0
begin: Date[1] I

accountabilityType 1 end: Date[0.1] Person || «abstract»
AccountabilityType || Organization ||

description: String[1] || :(50)

4
X accountabilityType ; \I/ : ORGANIZATION_TYPE
0.”

0.1 |O—I /R b \ S
rule

Rule | OperatingUnit || Region || Division || SalesOffice ||
description: String[1] || :(50)

accountability><

For instance, the AccountabilityType “Responsible Division” should accept as
commissioner only sales offices, and only divisions as responsible. It will be related to a
Rule named “divisionResponsibleOffice”, that enforces by code, that the commissioner
is of type SalesOffice, and responsible of type Division.

For example, an Accountability with type “Reponsible Division” could be created
between the Division “Serra Gaucha”, and the SalesOffice of “Bento Gongalves™. The
TimePeriod sets the start of the accountability, and its end, or null if it is still valid.

The design of Figure 4.2 puts TimePeriod as an embedded relationship of
Accountability. The specializations of Party are mapped using the Flat inheritance. The
associations commissioner and responsible are mapped to use specific FKs, defined by

79

the join column, named COMMISSIONER ID and REPONSIBLE ID. The mappings
are simple, without defining specific table names, or PKs.

This model can be improved, by the application of separation of the knowledge, and
operational levels, of the Party Type pattern, displayed by Figure 4.3. Instead of having
a fixed structure, with several specializations of Party, we make these types dynamic by
introducing the PartyType class, and each static subtype of organization is replaced by a
dynamic instance of PartyType. A Party may now relate to one or more types. For
example, the “Serra Gaiucha” Organization will relate to the “Division” PartyType.

Figure 4.3: Accountability with Party type pattern and knowledge level.

commissioners{

commissionerOf join table:ACCTYPEfCOMMISSIONERS}
AccountabilityType || PartyType ||
description: String[1] || :(50) 0. 1 description: String[1] || :(50)
M types
type 1 responsibleFor responsibles(1.%

join table=ACCTYPE_RESPONSIBLES}

. commissioner{ 0.*
J 0. commissionerOf join columns=COMMISSIONER_ID} b
- «abstract»
Accountability || Party ||
o 1 Iname: String[1] || :(50)
0.1 0.” 1
responsibleFor responsible{
Embed join columns=RESPONSIBLE_|D}
<« » 1
timePeriod 4 o
TimePeriod
begin[:) IDta'ES[11]] Person || Organization ||
end: Date|0..

The Rule class can now be replaced by a dynamic solution, at which the
AccountabilityType lists what possible types of party can assume the positions of
commissioner and responsible, by the two new many-to-many relationships:
commissioners and relationships.

The mapping proposed at Figure 4.3 introduces three new many-to-many
relationships, mapped by association tables. The commissioners relationship is mapped
by the join table named ACCTYPE COMMISSIONERS, and the responsibles by the
ACCTYPE RESPONSIBLES table. The many-to-many types relationship, between
Party and PartyType, will have a join table without specified name, meaning that the
table name will be the default of the ORM tool.

4.3.1 Implementing the Associations

The model introduces the specification of join columns for many-to-one
associations, and the specification of join tables to implement many-to-many
associations. The distinction between associations that connect the same pairs of classes
is what differentiate this example from the first.

80

4.3.1.1 Using JPA

The Association Table pattern is implemented by using the @ManyToMany
annotation. The @.JoinTable annotation can be used to specify the association table, but
JPA will assume a table following a “default name”, if nothing is specified, as in the
following example, where the #ypes property represents the association between Party
and PartyType:

@Entity @Inheritance (strategy=SINGLE TABLE) @DiscriminatorColumn (name="PARTY TYPE")
public abstract class Party {
@Id @GeneratedValue private int idParty;
@Column (nullable = false, length=50) private String name;
@OneToMany (mappedBy="commissioner") private Set<Accountability> commissionerOf;
@OneToMany (mappedBy="responsible") private Set<Accountability> responsibleFor;
@ManyToMany private Set<PartyType> types;
// methods get/set/etc...

@Entity public class Accountability {
@Id @GeneratedValue private int idAccountability;
@ManyToOne (optional=false) @JoinColumn (name="COMMISSIONER ID")
private Party commissioner;
@ManyToOne (optional=false)@JoinColumn (name="RESPONSIBLE ID")
private Party responsible;
@ManyToOne (optional=false) private AccountabilityType accountabilityType;
CEmbedded private TimePeriod timePeriod;
// methods get/set/etc...

@Entity public class AccountabilityType {
@Id @GeneratedValue private int accountabilityTypeId;
@Column (nullable=false, length=50) private String description;
@ManyToMany @JoinTable (name="ACCTYPE COMMISSIONERS")
private Set<PartyType> commissioners;
@ManyToMany @JoinTable (name="ACCTYPE RESPONSIBLES")
private Set<PartyType> responsibles;
// methods get/set/etc...

@Entity public class PartyType {
@Id @GeneratedValue private int idPartyType;
@Column (nullable = false, length=50) private String description;
@ManyToMany (mappedBy="commissioners")private Set<AccountabilityType> commissionerOf;
@ManyToMany (mappedBy="responsibles") private Set<AccountabilityType> responsibleFor;
// methods get/set/etc...

In order to specify the join columns that implement the relationships commissioner
and responsible, the Accountability class has the @JoinColumn annotation, associated
to the properties referencing parties. The commissioner uses the FK column
COMMISSIONER ID, and the responsible uses the FK column RESPONSIBLE ID.

AccountabilityType has two bidirectional many-to-many relationships with
PartyType, implementing the knowledge level of the model. The @dJoinTable
annotation tells the ORM framework that the association tables are named
ACCTYPE COMMISSIONERS, for the comissioners-comissionerOf association, and
ACCTYPE RESPONSIBLES, for the responsible-responsibleFor association.

4.3.1.2 Using SqlAlchemy

The first step is to declare the Table objects, including the columns that are FKs, and
the association tables. The PARTY PARTY TYPE Table implements the parties-
partytypes relationship, and the other association tables have the names of the model:

Party table = Table('Party', metadata, ...

Party Type table = Table('Party Type', metadata,...

PARTY PARTY TYPE = Table ('PARTY PARTY TYPE', metadata,...

Accountability table = Table('Accountability', metadata,
Column('id accountability', Integer, primary key=True),
Column ('begin', DateTime, nullable=False),

81

Column ('end', DateTime),
Column('id acctype', Integer, ForeignKey('Accountability Type.id acctype',
ondelete="CASCADE ") ,nullable=False),
Column('id commissioner', Integer,ForeignKey('Party.id party')),
Colum('id_responsible', Integer, ForeignKey('Party.id _party')))
ACCTYPE COMMISSIONERS = Table('ACCTYPE COMMISSIONERS', metadata,
Column('id partytype',Integer,ForeignKey('Party Type.id partytype'),nullable=False),

Column('id acctype', Integer, ForeignKey('Accountability Type.id acctype'),
nullable=False))

ACCTYPE RESPONSIBLES = Table('ACCTYPE RESPONSIBLES', metadata,
Column ('id partytype',Integer,ForeignKey('Party Type.id partytype'),nullable=False),

Column('id acctype', Integer, ForeignKey('Accountability Type.id acctype'),
nullable=False))

The many-to-many mappings are declared using the relationship property, and the
parameter secondary specifies the association table name. The join column, specified at
the model, is mapped using the primaryjoin option of the relationship, that specifies the
join condition:

PartyMapper = mapper (Party, Party table, polymorphic on=Party table.c.type,
polymorphic identity='T', properties={

'commissionersOf' : relationship(lambda: Accountability, backref = "commissioner”,
primaryjoin=(Accountability table.c.id commissioner==Party table.c.id party)),
'responsiblesFor' : relationship (lambda: Accountability, backref = "responsible”,

primaryjoin=(Accountability table.c.id responsible==Party table.c.id party)),
"types': relationship (PartyType, secondary=PARTY PARTY TYPE) })
AccountabilityMapper = mapper (Accountability, Accountability table, properties={
'timePeriod':composite (TimePeriod, Accountability table.c.begin,
Accountability table.c.end),
'accountabilityType': relationship (AccountabilityType) 1})
AccountabilityTypeMapper = mapper (AccountabilityType, Accountability Type table,
properties={
'commissioners': relationship(PartyType, secondary=ACCTYPE COMMISSIONERS, backref
"commissionerOf"),

'responsibles': relationship (PartyType, secondary=ACCTYPE RESPONSIBLES, backref =
"responsibleFor") })

4.3.1.3 Using ActiveRecord of Ruby

To transparently map the Association Table pattern, RAR offers the
has _and_belongs to many mapping. In the next code snippet, the party-partytypes
association of property types is mapped to a table named, by RAR convention,
“parties_party types’:

class Party < ActiveRecord::Base
has_and belongs_to many :types, :class name => 'PartyType'
has_many :commissionersOf, :class_name => 'Accountability',
:inverse of=>:commissioner, :foreign key => "commissioner id"
has_many :responsiblesFor, :class name => 'Accountability',
:inverse of=>:responsible,:foreign_key => "responsible id"
#

The associations from Party to Accountability, mapped by has many, specity the
FKs, according to the join columns of the model, by the foreign key option. This is
repeated at the other side of the relationship at the Accountability class:

class Accountability < ActiveRecord:: Base

bel ongs_to :conm ssioner, :class_name => 'Party', :inverse_of=> conm ssionersOf,
:foreign_key => "conmi ssi oner_id"
bel ongs_to :responsible, :class_name => 'Party', :inverse_of=>:responsibl esFor

:foreign_key => "responsible_id"
bel ongs_to :accountabilityType
#

The associations between AccountabilityType and PartyType are also mapped by the
has_and _belongs to_many, but with the option join_table that specifies the name of the
table, according to what we specified at the model:

82

class AccountabilityType < ActiveRecord:: Base
has_and_bel ongs_t o_many :conmi ssioners, :class_nane => 'PartyType',
;join_tabl e=>"acctype conmi ssi oners"
has_and belongs to many :responsibles, :class name => 'PartyType',
:join_ table=>"acctype responsibles"

#.o..

4.4 Account Model

The Account Model was already presented at the Figure 3.3 of Chapter 3, under the
“a not so simple example” section. In this section, we will jump directly to the
implementation issues of this model.

4.4.1 Entry is a dependent entity

The Entry class has a composite PK with two columns, and each column is a FK to
another table. Entry is identified by the pair of referenced Account and Transaction
objects.

4.4.1.1 Using JPA

The PK of Entry falls in the same case examined at Telephone, but the properties
that represent the PK at Enfry must also be annotated as @ManyToOne and
@JoinColumn. The later is required to enforce that the column should not accept
updates (PKs cannot be updated):

@Entity @IdClass (EntryPK.class) public class Entry {

@Id @JoinColumn (updatable = false, name = "acct number", referencedColumnName =
"number") @ManyToOne private DetailAccount account;

@Id @JoinColumn (updatable = false, name = "id transaction", referencedColumnName =
"id transaction") (@ManyToOne private Transaction transaction;
//methods. .. (get/set)

class EntryPK implements Serializable {
private int account;
private long transaction;
//methods. .. (get/set)

The PK properties are of the type of the destination class: account is a
DetailAccount, and transaction is a Tramsaction. However, the properties of the PK
class EntryPK have to be of scalar types compatible with FK types: account is an int,
and transaction a long. The @JoinColumn also tells JPA that FK references a column
named number at Account, but is named acct_number at the Entry table.

4.4.1.2 Using SQLAlchemy
SA easily maps FKs that are also PKs, all that is needed to do is to declare the
columns as FKs and PKs when instantiating the Table:

Entry table = Table('Entry',metadata,
Column ('acct number', Integer, ForeignKey('DetailAccount.number'), primary_ key=True,
autoincrement=False),
Column ('id transaction', Integer,ForeignKey('Transaction.id transaction'),

primary key=True, autoincrement=False),
4.4.1.3 Using ActiveRecord of Ruby
Once again, we have to resort to the composite primary keys extension. The
mapping is similar to what we have done with Telephone (at section 4.2.1.3), with a
similar migration for the PKs. The difference is that we also declares the many-to-one
associations using the belongs to mapping:

class Entry < ActiveRecord: :Base
self.primary keys = [:acct_number, :id_transaction]
belongs_to:account, :class name=>"DetailAccount",:foreign key => 'acct number’,
:inverse_of=>:entries
belongs_to:transaction, :foreign key => 'id_transaction', :inverse_of=>:entries

83

Differently from JPA and SA, the acct number and id_transaction are also exposed
properties of Entry instances. This means that a developer can assign the account of an
Entry and/or the acct number of the same Entry, what may lead to an error if they do
not match the same object.

4.4.2 Account mapped by two tables

The Account class is mapped by the tables Account and Act brief. Some properties
are persisted at Account, and others at Act brief.

4.4.2.1 Using JPA

The @SecondaryTable(s) annotation allows the specification of one or more tables
that are joined with the main table, in order to persist the properties of a class. At the
code of Account, properties mapped to Act brief must be annotated by @Column, or
@JoinColumn, identifying the destination fable.

// omitted inheritance mappings ...

@Entity @SecondaryTable(name = "Act Brief")

public abstract class Account {

@Id @GeneratedValue private int number;

@Column (name = "dt calc", table = "Act Brief") @Temporal (TemporalType.DATE)
private Date dtBalance;

// ... omitted other properties

The PK property number is persisted at the main table, with the same name of the
class. But at our model, the drbalance is mapped as “Act_brief.dt calc”, meaning that it
is persisted at the table Act_brief. This is implemented by the table option.

4.4.2.2 Using SQLAlchemy
S4 has the concept of join object that represents a data source with multiple tables.

First we declare the Account and Act_brief tables, and then we instantiate a join named
JAC, based upon both tables:

Account table = Table('Account',metadata,
Column ('number', Integer, primary key=True),
)
Balance table = Table('Act brief',metadata,
Column ("'number', Integer,
ForeignKey ("Account.number'),primary key=True,autoincrement=False),

)
JAC = join(Account table, Balance table)

The number column of the Act brief table is the PK and a FK to Account. The JAC
join is then used as the source for the mapper. The number property is declared using a
column_property instance, that allows the mapping of one property to two columns.
This is necessary to ensure that the number, at Account and Act_brief tables, is always
the same for the same instance:

AccountMaper = mapper (Account, JAC,
'number': column property(Account table.c.number, Balance table.c.number)

4.4.2.3 Using ActiveRecord of Ruby

There is no way to map one class to two tables, and two tables to just one class,
using RAR. What can be done is to have two persistent classes, and make one of the two
classes reference the other, dispatching the method calls using the Bridge pattern

(GAMMA et al., 1994).

84

At our example, Account and Act brief would be classes that inherit from
ActiveRecord::Base, and have a ome-to-one association. Each property persisted at
Act brief, would have an accessor on Account, dispatching the implementation at the
Act_brief instance. The constructor of Account will have to create an Act brief, and the
association will have to cascade deletes.

An alternative of directly bridging each property is to resort to introspection and
meta-programming. Our solution to the problem was to create a module that deals with
the bridging automatically, by listening to the method missing event, and trying to pass
it out to the associated class. First we declare the classes and the mappings, as bellow:

class ActBrief < ActiveRecord::Base
belongs_to :account, :class_name =>"Account", :foreign_key => 'number'
.. omitted other mappings

end

class Account < ActiveRecord::Base
include MixinMod # Emulating secondary table act brief using MIX IN

@@mixin=MixInDesc.new (Account,"actbrief",nil) # Configure the mix in
self.primary key = "number"
has_one :actbrief, :class _name =>"ActBrief", :foreign key => 'number', :dependent =>

:destroy, :inverse_of=>:account
.. omitted other mappings
end

The ActBrief has a one-to-one relationship with Account, declared by one side by
belongs to, and the other by has one keyword. The module MixinMod, responsible to
build the bridge, is included, and a mapping is instantiated between Account and
actbrief property, and stored at the class variable mixin. The MixinMod will listen to the
missing methods, and dispatch them to the actbrief association.

4.4.3 Vertical Inheritance of Account
The following subsections present the mappings for each studied platform.

4.4.3.1 Using JPA

When the strategy of @Inheritance is set to JOINED, each class in the inheritance
tree has (at least) one table responsible for the persistence. The discriminator column is
optional in that case, but following the specification of the model, it can assume D for
DetailAccount or S for SummaryAccount, and is similar to the Flat case of Party.

@Entity @Inheritance (strategy = InheritanceType.JOINED)

@DiscriminatorColumn (name = "type", discriminatorType = DiscriminatorType.STRING,
length = 1)
public abstract class Account implements { //... omitted

}

@Entity @DiscriminatorValue ("D") public class DetailAccount extends Account ({
//... omitted

}

@Entity @DiscriminatorValue ("S") public class SummaryAccount extends Account {
//... omitted

4.4.3.2 Using SQLAlchemy
Each Table, of the specialization classes, is instantiated with a FK connecting the
PK to the Account table:

SummaryAccount table = Table ('SummaryAccount',metadata,
Column ('number', Integer, ForeignKey ('Account.number', use_alter=True,
name="'fk summary acct'), primary key=True))
DetailAccount table = Table('DetailAccount',metadata,
Column ('number', Integer, ForeignKey ('Account.number', use_alter=True,
name="'fk detail acct'), primary key=True))

The mappers are instantiated in a similar way of the Flat inheritance, but it specifies
the tables that persist each subclass. The inherits option points to the general class:

85

AccountMaper = mapper (Account, JAC, polymorphic on=Account table.c.type

SummaryAccountMaper = mapper (SummaryAccount, SummaryAccount table, inherits=Account,
polymorphic identity='S’,

DetailAccountMaper = mapper (DetailAccount, DetailAccount table, inherits=Account,
polymorphic identity='D"’,

4.4.3.3 Using ActiveRecord of Ruby

RAR does not support Verical inheritance. Once again, one possible implementation
is to declare the classes separated, without inheritance, and resort to an association
combined with the Bridge pattern. RAR offers the polymorphic association, that can deal
with objects of distinct types at the same association:

class Account < ActiveRecord: :Base
#... Omitted declarations
belongs_to :impl, :polymorphic=>true,:foreign_key=>'number', :dependent=>:destroy

Now the Account instance belongs to the specializations that implement the class,
that can be of type SummaryAccount or DetailAccount. The polymorphic option tells the
framework to use a discriminator column, defined at the migration, to specify what kind
of Account is related by the impl association. However, RAR requires a column that
follows a specific name, and is not flexible about the discriminator values.

create_table :accounts, :primary key => 'number' do |t]|
t.string :impl_type #...

The column impl type will assume a value equal to the name of the class, and we
could not use the discriminator values entered at the model (D or S). The remaining
class will be as follows:

class DetailAccount < ActiveRecord::Base # It does not extends Account!
include MixinMod # Module that implements the bridge

@@mixin=MixInDesc.new(DetailAccount,"account", "number")

self.primary key = "number";

has_one :account, :as => :impl, :autosave => true,:foreign key => 'number'
...omitted

class SummaryAccount < ActiveRecord: :Base
include MixinMod
@@mixin=MixInDesc.new (SummaryAccount,"account", "number")

self.primary key = "number"
has_one :account, :as => :impl, :autosave => true,:foreign key => 'number'
...omitted

Notice that if SummaryAccount or DetailAccount inherits from Account, the
framework will map all classes, its properties, and association ends, to the same table.
Therefore, the specializations could not inherit from Account.

The has one mapping to account has the “as => :impl” mapping telling the
framework that it is the polymorphic inverse of impl. Both SummaryAccount and
DetailAccount have a reference to account, and the MixInDesc is initialized mapping
each class to the account association. The third attribute is the number key, and tells the
MixinMod that the class must first instantiate and save the Account, obtain the number,
and assign this to the key of the specialization. The implementation of MixinMod is
described at the Appendix E.

4.4.4 Properties and columns with distinct names

ENORM allows the specification of a property persisted at a column with different
name, by using the ColumnMapping applied at the property. The Account class maps
the property dtBalance to a column named d¢ calc at Figure 3.3.

86

4.4.4.1 Using JPA

It is trivial to specify a scalar property with a distinct name of the column that
persists it. At the example of section 4.4.2.1, dtBalance is mapped to a column named
dt calc by the @Column annotation.

4.4.4.2 Using SQLAlchemy
Properties with a distinct name are declared at the mapper, pointing the column at
the table object. The following snippet maps dtBalance to dt calc at Balance_table:

AccountMaper = mapper (Account,
properties={
'dtBalance':Balance table.c.dt calc,

4.4.4.3 Using ActiveRecord of Ruby

RAR does not support the mapping of a column with a distinct property name. A
workaround would be to declare another property named dtBalance, at the Account
class, that has keeps the same value of the d¢ calc:

alias_attribute :dtBalance ,:dt_calc

The alias attribute core method declares the property as a synonym property.
However, using the alias_attribute will not hide the dt calc property, and Account will
have two properties acessors that reflect the same value, df calc and dtBalance.

4.4.5 Overrides and Embedded objects referencing persistent classes

The Quantity class is not persistent, but references a persistent class that represents
its Unit. This section focus on the mappings of the embeddment of Quantity, and the
possibility of overriding its mappings.

4.4.5.1 Using JPA

The Quantity class can be annotated with @ManyToOne at the unit property, and the
ORM framework will know that should create the FK at the classes that embed
Quantity:

@Embeddable public class Quantity {
@Column (precision=20, scale=2) private BigDecimal amount;
@ManyToOne private Unit unit;
//...omitted

public class Entry { //...omitted

@Embedded private Quantity quantity;

The Entry class embeds Quantity by the quantity association end. The Account class,
at the model of Figure 3.3, also embeds Quantity by the balance association end, but
has an override section specifying that the Act brief is responsible for the persistence of
both columns. This is implemented in JPA by the @AttributeOverride(s) and
@AssociationOverride(s) annotations:

@Embedded

@AttributeOverride (name="amount", column=@Column (name="value", table="Act Brief"))
@AssociationOverride (name="unit", joinColumns=@JoinColumn (name="unit", table="Act brief"
)) private Quantity balance = new Quantity();

The balance property has an override at the attribute named amount, mapping it to
the column named value at the secondary table Act brief. It also has a mapping override
at the association named unit, to use a column with the same name, persisted at the table
Act brief.

mailto:joinColumns%3D@JoinColumn
mailto:joinColumns%3D@JoinColumn

87

4.4.5.2 Using SQLAlchemy
The columns that persist the composite are specified at the Table instance that
persist the owner class:

Balance table = Table('Act brief’,

Column ('value', Numeric (20,2), nullable=True),

Column ('unit', String(1l5),ForeignKey('Currency.unit'), nullable=True)
Entry table = Table('Entry',metadata,

Column ("amount', Numeric (20,2), nullable=False),

Column ('unit', String(1l5),ForeignKey('Currency.unit'), nullable=False)

AccountMaper = mapper (Account,

'balance':composite (Quantity, Balance table.c.value, Balance table.c.unit),
EntryMapper = mapper (Entry,

'quantity':composite (Quantity, Entry table.c.amount, Entry table.c.unit),

However, S4 does not recognize the association of a composite with a persistent
class transparently. It will instantiate the Quantity composite using the PK of Unit,
instead of the Unit itself. One solution is to create a listener method that enforces that
the value of the unit if indeed a Unit:

s for(Entry.quantity, 'set')
@ 1t. 1 for (Account.balance, 'set',propagate=True)
def loadUnit (target, value, oldvalue, initiator):
if not (isinstance (value.unit, Unit)):
session = Session.object session(target)
value.unit = session.query(Unit) .get (value.unit)

SA allows the specification of methods that are called when certain events happens.
In the above example, the set event is called anytime the specified property is changed,
including when the object is loaded. The method checks if the unit is a Unit, if not, it is
the PK of the unit, and this value is used to query the real Unit.

4.4.5.3 Using ActiveRecord of Ruby

The composed of mapping can declare the mappings between each property of the
Embedded class, and the column that persists this property at the persistent class. But
the default behavior is to deal with the PK of the Unit, and not the Unit itself. This can
be overridden at the mapping, by defining the constructor method. This method is
responsible for the instantiation of Quantity objects:

class ActBrief < ActiveRecord::Base #...omitted mappings
composed_of :balance, :class_name => 'Quantity',
:mapping => [["value","amount"], ["unit","unit"]],
:constructor => Proc.new { |amount, unit]| (unit==nil) ? nil :
Quantity.new(amount, Unit.find(unit)) }
#...omitted
class Entry < ActiveRecord: :Base
composed of :quantity, :class_name => 'Quantity',
:mapping => [["amount","amount"], ["unit","unit"]],
:constructor => Proc.new { |amount, unit| (unit==nil) ? nil :
Quantity.new(amount, Unit.find(unit)) }
#...omitted

The constructor takes the unit PK and queries the framework for the Unit object,
passing it to the constructor of Quantity. If the unit PK is nil, the resulting Quantity will
also be nil.

4.4.6 The Account-Entry association

The account-entry association is abstract, but at OO languages, associations are not
explicitly declared: they are implemented by association ends. Associations ends are
properties, and both properties and instance variables cannot be abstract. Abstract

88

associations can, however, be declared as abstract accessor operations, implemented at
the specialization classes. This section examines how the ORM frameworks deals with
this situation.

4.4.6.1 Using JPA

It is possible to declare an abstract operation getEntries(), that access the entries
association end, at the Account class. This operation is implemented by DetailAccount
class, that declares the instance variable named entries, mapping it as the inverse of the
account property at the Entry class:

public abstract class Account { //...omitted code
public abstract List<Entry> getEntries(); //...
}
public class DetailAccount extends Account { //...omitted code
@OneToMany (mappedBy="account") private List<Entry> entries;
@Override public List<Entry> getEntries () {
if (entries == null)
entries = new ArraylList<Entry>();
return entries;

Y/ /..

public class SummaryAccount extends Account { //...omitted code
@Override public List<Entry> getEntries () {
List<Entry> listEntry = new ArrayList<Entry>();
for (Account acct: components) {
listEntry.addAll (acct.getEntries());
}

return listEntry;
Y/ /..
}

The association summary-entries was redefined at the entries end to be readOnly
and Transient (not persistent). It is also specified as a derived union of the sum of
entries of all components. This is implemented at the class SummaryAccount by making
getEntries() a recursive method, that calls itself at each component Account. Notice that
SummaryAccount has no mapped association to Entry, and vice-verse.

4.4.6.2 Using SOQLAlchemy

The properties were not declared ahead, because Python is a dynamic language. The
problem is that if we declare entries as an abstract method, the interpreter will ask for
this implementation before the instrumentation by the S4 framework.

On the other hand, because Python is a dynamic language, it will not enforce if
entries was declared at the abstract super-class. Nevertheless, we declared the entries
operation as a placeholder at the super class, as a mapping at the DetailAccount, and as
an operation at SummaryAccount class:

class Account (object) :
__metaclass__ = abc.ABCMeta
def entries(self):
pass

DetailAccountMaper = mapper (
properties={ 'entries': relationship(lambda: Entry, backref = "account”,

class SummaryAccount (Account) :
def __get_ entries(self):
ret = []
for acct in self.components:
for ent in acct.entries:
ret.append (ent)
return ret

entries = property(get entries)

89

The redefinition of entries at SummaryAccount used the property object of Python,
that maps a method as an accessor for a property. Notice that if we remove the entries
operation at Account, it will make absolutely no difference, as long as Account is
abstract.

4.4.6.3 Using ActiveRecord of Ruby

As a consequence to our workaround to implement Vertical inheritance, Account is
not an abstract class. The implementation of entries at Account just forwards the call to
the related specialization (impl.entries).

class Account < ActiveRecord::Base # .. omitted details

def entries
impl.entries

end

class DetailAccount < ActiveRecord::Base
has_many :entries, :foreign_key =>:acct_number, :inverse of=>:account
.. omitted details

class SummaryAccount < ActiveRecord: :Base
has_and_belongs_to_many :components, :class_name=>'Account',6 :join_table=> "act_ comps"
.. omitted details
def entries
ret = []
components.each{|c|lret+=c.impl.entries}
return ret
end

The DetailAccount class implements entries as the association to Entry by the
has_many mapping. The SummaryAccount implements entries as a read-only value
calculated from the recursive concatenation of the entries of all components. The
components is a many-to-many association declared by has and belongs to _many to
the Account class. The returning collection (ref), at the entries method, is populated by
the sum of all entries, of every component of the components association.

4.5 Resource Allocation Model

The resource allocation pattern models the relationship between an Action, and the
resources necessary to execute this action. These resources can be allocated in a general
way, referencing the type of resource, or in a specific way, referencing a resource of
some type.

Figure 4.4 presents the conceptual model for the resource allocation pattern, based
upon the book of Fowler (FOWLER, 1996). Action relates to zero or more
ResourceAl