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RESUMO

Profiling e Otimização de Código
em Sistemas de Memória Transacional

Memória Transacional tem se demonstrado um paradigma promissor na implementa-
ção de aplicações concorrentes sob memória compartilhada que busquem evitar um mo-
delo de sincronização baseado em locks. Em vez de sujeitar a execução a um acesso ex-
clusivo com base no valor de um lock que é compartilhado por threads concorrentes, uma
aplicação sob Memória Transacional tenta executar seções críticas de modo otimista, des-
fazendo as modificações no caso de um conflito de acesso à memória. Entretanto, apesar
de a abordagem baseada em locks ter adquirido um número significativo de ferramen-
tas automatizadas para a depuração, profiling e otimização automatizados (por ser uma
das técnicas de sincronização mais antigas e mais bem pesquisadas), o campo da Me-
mória Transacional ainda é comparativamente recente, e programadores frequentemente
precisam adaptar manualmente suas aplicações transacionais ao encontrar problemas de
eficiência.

Este trabalho propõe um sistema no qual o profiling de código em uma implementa-
ção de Memória Transacional simulada é utilizado para caracterizar uma aplicação tran-
sacional, formando a base para uma parametrização automatizada do respectivo sistema
especulativo para uma execução eficiente do código em questão. Também é proposta
uma abordagem de escalonamento de threads guiado por profiling em uma implementa-
ção de Memória Transacional baseada em software, usando dados coletados pelo profiler
para prever a probabilidade de conflitos e determinar que thread escalonar com base nesta
previsão. São apresentados os resultados de experimentos sob ambas as abordagens.

Palavras-chave: Memória Transacional, Profiling, Escalonamento, Memória Comparti-
lhada, Programação Paralela, Processamento de Alto Desempenho.



ABSTRACT

Code Profiling and Optimization
in Transactional Memory Systems

Transactional Memory has shown itself to be a promising paradigm for the implemen-
tation of shared-memory concurrent applications that eschew a lock-based model of data
synchronization. Rather than conditioning exclusive access on the value of a lock that is
shared across concurrent threads, Transactional Memory attempts to execute critical sec-
tions optimistically, rolling back the modifications in the event of a data access conflict.
However, while the lock-based approach has acquired a significant body of debugging,
profiling and automated optimization tools (as one of the oldest and most researched syn-
chronization techniques), the field of Transactional Memory is still comparably recent,
and programmers are usually tasked with an unguided manual tuning of their transac-
tional applications when facing efficiency problems.

We propose a system in which code profiling in a simulated hardware implementation
of Transactional Memory is used to characterize a transactional application, which forms
the basis for the automated tuning of the underlying speculative system for the efficient
execution of that particular application. We also propose a profile-guided approach to
the scheduling of threads in a software-based implementation of Transactional Memory,
using collected data to predict the likelihood of conflicts and determine what thread to
schedule based on this prediction. We present the results achieved under both designs.

Keywords: Transactional Memory, Profiling, Scheduling, Shared Memory, Parallel Pro-
gramming, High-Performance Computing.
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1 INTRODUCTION

Programmers have always struggled with the implementation of parallel code that
is both efficient and scalable, while maintaining its correctness. Due to a constant-rate
improvement in single-processor performance that lasted for decades, concurrent pro-
graming was traditionally seen as an area that is limited to high-performance scientific
applications, where it is crucial that execution time be minimized (RAUBER; RÜNGER,
2010).

In the last decade, however, the hardware industry has reached the physical limits of
heat dissipation in a processor chip. In order to maintain the performance improvements,
computer architects decided that the best solution was to replace that single-core processor
design with an architecture that would be able to sustain multiple energy-efficient cores
in a single chip (ASANOVIC et al., 2009).

The arrival of these multicore processors has presented a new challenge to the pro-
gramming industry, in that now an application can only benefit from new hardware when
it has been explicitly programmed so that its workload is divided among the available exe-
cution units (RAUBER; RÜNGER, 2010). Applications that do not take the extra work of
distributing workload and synchronizing the memory access across processor cores will
not be able to take advantage of new hardware anymore.

Due to the possibility of having multiple flows of execution competing for memory
resources, multicore processors offer hardware instructions that can be used to imple-
ment higher-level software techniques to allow programmers to determine which sections
of code should be protected, in order to guarantee mutual exclusion during data access
among threads (HENNESSY; PATTERSON, 2006).

The most common solution that is adopted to avoid conflict between concurrent oper-
ations in a shared-memory environment is lock-based synchronization. However, in spite
of how widespread it is, lock-based programming has some intrinsic deficiencies which
makes it difficult for programmers to write scalable and efficient code.

A lock-based synchronization technique requires that programmers define critical sec-
tions to protect the concurrently executing instructions. Moreover, performance consider-
ations require that parallel programmers choose the ideal locking granularity taking into
account the costs associated with fine-grained locking — all the while taking care not to
introduce deadlocks (HARRIS et al., 2005).

When implementing parallel programs through lock-based synchronization, one of
the frequent source of problems that is identified is the lack of composability (LARUS;
RAJWAR, 2006). While two sequentially correct sections of code can always be com-
bined to form a correct sequential algorithm, the equivalent is not true for lock-based code
executing in parallel, where the details of the underlying smaller components cannot be
abstracted away from the combined whole.
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One frequently cited example is that of a data structure with two thread-safe methods:
insert element and remove element. Given two instances A and B, one wishes to compose
these operations into a thread-safe move element subroutine that removes an element from
A and inserts it into B. If the relevant methods depend on locks as a way to guarantee
thread-safety, the only way to compose these operations is by acquiring an internal lock
to both instances before the execution of move element. If another threads tried to hold the
same locks in a different order, they might both come to a deadlock — even though both
threads could have correctly finished execution if they ran sequentially (HARRIS et al.,
2005).

In spite of all the difficulties in parallel code implementation, database systems have
been successfully executing queries in parallel for a long time now. The key factor that
has contributed to this result is the fact that the programming model for queries is cen-
tered around the notion of a transaction, which is a computation that must be entirely
executed as if it was the only operation accessing the underlying database, in isolation
from concurrently executing transactions.

As a way of solving the problem of parallel code composition, one of the synchro-
nization techniques that has been researched during the last two decades is the Transac-
tional Memory (TM). This synchronization model applies the concept of typically disk-
based database transactions to a more memory-based programming environment (HAR-
RIS; LARUS; RAJWAR, 2010). A transaction, in this context, consists of a sequence of
operations that is seen as indivisible by any other thread of execution. It can either execute
completely or fail and restore the modified values in memory back to their previous state.

Transactional Memory differs from from traditional approaches that rely on mutual
exclusion by the fact the underlying system is allowed to optimistically execute a set of
transactions concurrently, aborting some of them if any conflict with another transaction is
detected during execution time (DICE et al., 2009; BAUGH; NEELAKANTAM; ZILLES,
2008). In case the execution of a transaction is aborted due to conflict, it needs to be
executed again.

While this concept of a transactional memory was proposed as early as 1986 (KNIGHT,
1986), it did not receive much attention until it was shown possible through the def-
inition of a set of machine-language instructions that followed the appropriate seman-
tics (HERLIHY; MOSS, 1993). Soon after that, research sparked from the initial context
of multiprocessor architectures and into software implementations, lead by the works
of (SHAVIT; TOUITOU, 1995).

There have been many Hardware Transactional Memory proposals over the years, but
only recently have we seen real implementations. The 2008 Rock processor was the first
commercial processor to include Transactional Memory support, but in spite of the good
early results (DICE et al., 2009), the project was canceled before its release. In 2012, it
was followed by IBM’s Blue Gene/Q processor (WANG et al., 2012), as well as Intel’s
specification for transactional support on their then-upcoming Haswell architecture (Intel
Corporation, 2012).

Research on Software Transactional Memory has been going on in parallel to the hard-
ware research, and they have obtained considerably distinct results. Differently from hard-
ware implementations of transactions, that are physically constrained to a given amount
of inner buffer memory and just fail when there is a capacity overflow, software imple-
mentations are able to handle any size of transaction as long as there is enough main
memory available. Initial implementations were very slow, in spite of their high scalabil-
ity. Over time, more efficient algorithms have been proposed (DICE; SHALEV; SHAVIT,
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2006), but it is still questionable whether software implementations could ever be efficient
without specific hardware support (CASCAVAL et al., 2008).

As an attempt to tackle the deficiencies commonly perceived in both hardware and
software-implemented Transactional Memory systems, there has been some research on
Hybrid Transactional Memory, which tries to use a hardware-only implementation as
much as possible, but relegates to the software-based approach when the hardware buffer
capacity overflows or when the architecture is otherwise unable to complete the transac-
tion. This solution can keep the overall high performance of hardware implementations
while removing the strict resource restrictions that are inherent in their design (KUMAR
et al., 2006; BAUGH; NEELAKANTAM; ZILLES, 2008; DALESSANDRO et al., 2011).
Other works aim at improving particular aspects of a Transactional Memory system, ap-
plying more advanced algorithms and pieces of hardware that reduce the overhead of
transactional execution.

The general essence of Transactional Memory is that it enables the user to specify the
minimum of information required (that is, what sections of the code may contend on the
access of shared memory data and should be executed as transactions), and the underlying
system is allowed to run them as it seems fit, needing only to guarantee that concurrent
transactions do not interfere with each other. Compared to more traditional lock-based
synchronization semantics, there is a strong expectation that Transactional Memory be
overall easier to program and possibly more scalable and more efficient as well.

Although there has been significant advances in Hardware Transactional Memory re-
search, including recent adoptions under the instruction set of mainstream hardware ven-
dors, even when this functionality is present, the method of speculative execution must
always rely on Software Transactional Memory for fallback. The software implementa-
tion, in its turn, is still overall inefficient, due to the introduction of high overheads from
commit/rollback buffer bookkeeping and conflict resolution methods.

1.1 Proposal

While Transactional Memory research promises an easier-to-use method of synchro-
nization over lock-based mechanisms, its adoption strongly depends on whether the exe-
cution can be comparably as efficient as locks in the occurrence of real-world scenarios.
Therefore, we see then need to approach applications that rely on Transactional Memory
systems the same way one would approach more traditional lock-based applications, us-
ing automated tools to help humans develop, optimize and debug parallel code. We are not
aware of any published memory model that is able to account for the execution of Trans-
actional Memory programs and be used as part of an automated application performance
tuner. Our work fits that demand by filling this gap in current TM research.

In this work, we tackle the problem of efficiency in Transactional Memory systems by
reducing the execution time of benchmarking algorithms through the profiling and opti-
mization of applications based on a prediction of its runtime behavior. More specifically,
we focus on two approaches:

• Extending a Hardware Transactional Memory profiling framework for the collec-
tion of a series of parameters that can be employed by an application tuner to au-
tomatically select the most efficient Transactional Memory system policies for the
application at runtime, by taking into account the expected behavior of the applica-
tion regarding these parameters.



15

• Profiling and scheduling of user-level threads on a Software Transactional Memory
system based on a prediction of what transactions are expected to conflict, how
much rollback overhead will be spent in this potential conflict and what other user-
level threads could execute in its place to avoid this overhead and guarantee progress
of execution.

1.2 Organization

This remainder of this document is structured in the following way:
Chapter 2 presents the main definitions behind concurrency, synchronization, and

speculative execution, in particular Transactional Memory. This chapter provides the
conceptual foundation over which the rest of this thesis is structured.

Chapter 3 is an overview of the state-of-the-art regarding hardware-based transactional
architectures and simulators, as well as the related work for our Hardware Transactional
Memory proposal. Chapter 4 exposes the state-of-the-art for software-based implemen-
tations of Transactional Memory, including Software Transactional Memory systems, the
LUTS scheduler and related work for our Software Transactional Memory proposal.

Chapter 5 introduces our two proposals for profiling and optimization of Transactional
Memory systems, from their conceptual definitions to their implementation. Chapter 6
presents the evaluation methodology and experimental results derived from our work.

Finally, Chapter 7 presents some discussion on the results we achieved, as well as the
possibilities of future work and some other final considerations.
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2 SCIENTIFIC CONTEXT

Transactional Memory is a parallel programming abstraction that has been researched
as a way of expressing data access synchronization. Its main goal is to provide the ef-
ficiency of fine-grained locking while eschewing its associated programming complex-
ity (LARUS; RAJWAR, 2006; CASCAVAL et al., 2008).

The transactional approach to parallel programming can be seen as an alternative to
the method of locking, wherein multiple threads of execution coordinate their behavior
through the notion of mutual exclusion, which guarantees that only one thread will have
access to a given memory address at a given time. Section 2.1 presents an overview of
this and related solutions to the problem of concurrency control.

At the heart of the Transactional Memory paradigm, there is the concept of a trans-
action. A transaction, in this context, consists of a sequence of operations that is seen as
indivisible by any other thread of execution. Its execution is speculative, meaning that it
will try to execute completely and commit its modifications, but it is allowed to fail and
roll the values modified in memory back to their previous state. Section 2.2 exposes the
main definitions and concepts that are necessary to the understanding of the internals of
such speculative execution systems.

Many notions from Transactional Memory are analogous to what is required to design
Thread-Level Speculation, given that both parallel programming solutions rely on spec-
ulative execution, conflict detection and the ability to rollback to a correct prior state of
execution. Thus, any description of Transactional Memory would be incomplete without a
brief review of the main concepts in Thread-Level Speculation, along with a presentation
of its state-of-the-art, which we do on Section 2.3.

While the paradigm behind Transactional Memory presents a fairly straightforward
programming interface for transaction delimitation with well-defined semantics, it still
allows the underlying system to choose its parameters in a variety of dimensions, such as
the interplay between what is implemented in hardware and what is relegated to software,
the methods of conflict detection among transactions, and the form of resolution that
is employed for transaction conflicts. Section 2.4 presents an overview of these main
concepts behind what is currently being researched in Transactional Memory.

2.1 Concurrency Control

The field of parallel programming aims at improving over sequential execution through
the division of tasks so that parts of it can be performed by multiple units of execution
at the same time. While there exist some problems whose sequential algorithms can be
easily transformed into a parallel equivalent, there are those who can only be parallelized
as an intertwined set of lines of execution that explicitly cooperate and share partial data
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in a coordinated manner.
Given the requirement for this latter pattern of coordinated execution, two methods of

communication can be used to explicitly synchronize different lines of execution: mes-
sage passing and shared memory communication. In the former method, each unit of
execution must explicitly send and receive all data that is to be shared through an un-
derlying system of messages; in the latter, data is already naturally shared through the
main memory, and the units of execution as therefore tasked with the identification of
critical sections — contiguous areas of code which compete with each other for the ac-
cess to memory addresses, requiring some method of synchronization between the units
of execution to prevent the corruption of data.

While the message passing paradigm is often seen as simpler to use and less prone
to obscure programming errors, due to the explicit use of send/receive primitives, it is
the shared memory paradigm that is most likely to be used when efficiency concerns
are of utmost importance. Given the centralized role that the main memory plays on
multicore systems, and the fact that message passing can easily be implemented on top
of a shared memory system (but not the other way around), low-level primitives for inter-
thread synchronization are usually focused on the protection of shared memory critical
sections.

Two of the most widely implemented methods for employing inter-processor data syn-
chronization are the Compare-And-Swap (CAS) and the Load-Linked/Store-Conditional
(LL/SC). The former can be seen as an atomic instruction CAS VAL,NEW,MEM, which
compares the value stored at location MEM, and, if if is different from the value VAL,
assigns into MEM the value of NEW. The latter method, on the other hand, is divided into
two different instructions: LL MEM, which returns the value of a given memory address;
and SC MEM,VAL, which stores the given value at the memory location as long as the
location has not been updated since the execution of LL.

On the software level, these synchronization primitives can be used in the implemen-
tation of abstractions known as locks. A lock is a piece of memory which stores a value
that identifies whether the it has been acquired by any given thread. Any attempt at ac-
quiring a lock that is already being used by another thread will block the flow of execution
until the lock has been released.

In the locking paradigm, locking operations must used at the endpoints of critical
sections, to guarantee their exclusive access to the data. The identification of critical
sections is impacted by the concerns of correctness, which requires the encompassing
of all conflicting operations under the protection of the lock; liveness, which demands
that the parallel code be executed without the occurrence of deadlocks; and performance,
which favors a reduction of critical section sizes, splitting the problem into finer-grained
areas of exclusive access to encourage a higher degree of concurrency.

Finer-grained code, favored due to performance considerations, can be notoriously
more difficult to be properly programmed and maintained, and goes directly against the
correctness concerns which demands that all operations be shielded from concurrent ac-
cess through the acquisition of an exclusive-access lock during their whole execution.

Aside from these straightforward implementation and performance concerns com-
monly associated with locks, there are other more subtle drawbacks that emerge from
the interaction between concurrent execution of lock-based programs. When a thread
holding a contended lock is switched out, all the other threads that are waiting on this
lock and are switched in will be forced to yield without progressing, creating a problem
known as lock convoying. An even worse variant of this problem occurs when a thread
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holding a lock is preempted by a higher-priority thread that tries to acquire the lock: the
higher-priority thread will have to yield execution and wait for the lower-priority thread
to be rescheduled, finish its critical section and release the lock. If a medium-priority
thread is available to be scheduled, it may prevent the lower-priority thread from releas-
ing its lock, thus keeping the high-priority thread waiting for the medium-priority one, in
a phenomenon called priority inversion.

The many shortcomings of the locking paradigm served as motivation for the devel-
opment of non-blocking synchronization algorithms. These algorithms are characterized
by their progress guarantees, eschewing the need to wait on a lock and relying instead
on other methods of accessing contended data. Traditionally, the preferred method of
accessing this data has been the use of atomic operations such as CAS and LL/SC.

More recently, there has been a growing interest in the concept of non-blocking spec-
ulative execution, wherein concurrent code can be optimistically executed as if no data
contention were possible, and any sign of data access conflict is dealt with through the
undoing and re-execution of the concurrent code. As long as the access conflict is de-
tected as soon as it occurs, one of the conflicting threads may still be allowed to continue
its execution, while its concurrents are signaled to abort and rollback. Except for specu-
lative bookkeeping overhead, it is possible to guarantee that at least one transaction will
finish and commit for each actual critical section conflict, allowing speculative implemen-
tations to be as efficient as lock-based exclusive-access synchronization in the worst-case
scenario, while outperforming locks in the non-conflicting case due to the parallel execu-
tions.

2.2 Speculative Execution

Speculative execution is a method of parallel code execution in which critical sections
are replaced by transactions: sections of the code that access contended data, and are
intended to be optimistically executed. The term comes from its homonym in the field
of Databases, wherein the optimistic execution consists of tentatively applying all oper-
ations, checking whether any conflicts occurred with concurrent transactions, and then
either commit or abort/restart the transaction, depending on the occurrence of conflicts.

In database systems, there is a set of required properties that, together, guarantee the
proper semantics of speculative execution. These characteristics are known as ACID,
from the name of its four components (Atomicity, Consistency, Isolation and Durability):

• Atomicity1: transactions must either execute completely, until the end, or fail and
rollback, leaving everything as if it hadn’t executed.

• Consistency: transactions must take the system from one consistent state to another,
both meeting all validation rules.

• Isolation: transactions execute entirely without the interference from other transac-
tions; intermediate states are not seen from other transactions.

• Durability: transactions persist after being committed.

1The use of the term atomicity differs from the Database community to the Parallel Programming com-
munity. In parallel programming, atomicity is closer to the database concept of isolation, and that is the use
we adopt in this thesis, unless explicitly noted otherwise.
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In speculative execution systems, the concept of Durability is not usually applicable. The
other concepts, however are still required for the execution of the transactions, defining
together the proper semantics for the execution.

In order to guarantee the transactional properties, these systems must keep track of
the address sets employed at each transaction. For a given transaction X , its write-set
(denoted by XW ) is the set of memory addresses to which X has written during a given
execution. Similarly, its read-set (written as XR) is the set of memory addresses from
whichX has read during a given execution. These sets describe the approximate behavior
of a transaction and can be used to estimate the occurrences of conflicts between two
concurrent transactions (BOBBA et al., 2007).

When an unresolvable conflict is detected between two concurrently executing trans-
actions, they must be submitted to serialization, that is, one of them must be re-executed
in a way that precludes conflicting transactions (possibly under an internal lock). For
systems where more than one serialization strategy is possible, it is a current research
problem to define what is the best strategy for a given set of concurrent transactions —
that is, when is it better to give up optimistic execution of a transaction and hold re-execute
it in a guaranteed thread-safe manner.

Sometimes, a transaction may intrinsically require serialization — for example, if it
executes an irrevocable operation like input/output and cannot afford to be invalidated
by another concurrent transaction. In the other cases, the underlying system can execute
them optimistically and just check whether there has been any memory access conflict.
When there is such a conflict between two transactions, the system is required to apply a
conflict resolution strategy to decide which transactions must be re-executed.

One way of predicting the likelihood with which two concurrent transactions will need
to be serialized is through the analysis of their conflict rate, which can be defined for a
transaction X as the number of times X has been involved in a data access conflict over
the total number of times X executed. We consider that a transaction X is involved in
such a conflict if and only if there exists a concurrently executing transaction Y such that
(XW ∩ YW ) ∪ (XW ∩ YR) ∪ (XR ∩ YW ) 6= ∅.

Since the occurrence of conflicts demands the rollback of optimistic execution for a
further retrial, all speculative execution systems are required to identify and deal with
conflicts. This identification must follow a conflict detection policy, which specifies at
what point in the execution of a transaction the system will check for conflicts. There are
three valid policies (HARRIS; LARUS; RAJWAR, 2010):

• detection on open: when a transaction signals to the speculative system before ob-
taining access to each memory address;

• detection on validation: when a transaction checks during its execution whether its
objects have not gotten involved in conflicts since it started running; and

• detection on commit: when a transaction that is keeping all modifications in a
temporary buffer decides to write all information to memory and needs to check
whether it has not been invalidated by any other concurrent transaction.

Speculative execution of transactions is mainly divided into two different areas of
research: Transactional Memory, wherein user code explicitly identifies the regions of
code that should be treated as transactions and executed speculatively; and Thread-Level
Speculation, which consists of automatically identifying blocks of sequential code that
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could be executed in parallel and transforming them into transactions, achieving a type of
automatic parallelization.

2.3 Thread-Level Speculation

Thread-Level Speculation (TLS) is a method of parallelizing sequential code without
explicit semantic input from the programmer (STEFFAN et al., 2005). In this mode of
speculative execution, sequential programs are divided into parallel tasks called epochs,
which correspond to sections of sequential code that the compiler deems suitable to be
executed concurrently. We say an A is logically-earlier than epoch B if and only if A
would have preceded B in the sequential execution.

This technique differs from more traditional forms of automatic parallelization in that
instead of having to prove data independence between sections of code, the compiler
optimistically executes them concurrently, assuming that these different epochs executing
at the same time are unlikely to run into conflicts. When conflicts do occur, the thread
that is executing the logically-later epoch restarts its execution from the beginning. In this
scenario, Thread-Level Speculation can be seen as a compiler-generated loop-unrolling
into transactions that execute in parallel (GUO et al., 2008) — albeit normally using a
more specific speculative execution system for the sake of efficiency.

Figure 2.1 demonstrates an execution where each epoch corresponds to an iteration
of a loop. On each iteration, one address of a hash table is read from and another one is
written to. In this example, up to four epochs are allowed to execute concurrently. A read-
after-write dependency violation between epochs 1 and 4 is detected during the execution
of epoch 4, forcing it to rollback and re-execute.

Figure 2.1: Example of Thread-Level Speculation.
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while(continue condition) f
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Source: STEFFAN et al. (2000).

During the commit phase of an epoch, the speculative runtime system checks whether
there has been any violation of sequential semantics by logically-earlier epochs. If there
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has been none, the epoch is free to commit its speculative data modifications and its thread
can continue executing. Otherwise, the epoch is squashed: it rolls back and its execution
is restarted from the beginning.

In order to be able to achieve the proper speculative semantics, a TLS system is re-
quired to manage speculative memory state for all threads of execution (GARZARáN
et al., 2003). This is akin to version management in Transactional Memory systems. The
most commonly used approaches are

• Buffering speculative state in caches or dedicated hardware write buffers, writing
data to memory during the commit stage (GOPAL et al., 1998);

• Optimistically writing data directly to memory while generating a log of each mem-
ory modification, which is used to roll back the execution when a violation is de-
tected (GARZARáN et al., 2001).

In the second case, in order to be able to roll back memory-altering instructions, Thread-
Level Speculation implementations usually rely on special hardware support for the dy-
namic storage of data indicating what operations have been speculatively executed in
memory (GARZARáN et al., 2003).

Thread-Level Speculation can be implemented either completely in software, com-
pletely in hardware, or in a hybrid fashion. Software-only TLS incurs too much over-
head and suffers from scalability problems, making it impractical (STEFFAN et al., 2005;
OANCEA; MYCROFT; HARRIS, 2009). On the other hand, hardware-only proposal are
limited by the fact that the hardware needs to decide how to break the program into spec-
ulative epochs given only restricted local information (STEFFAN et al., 2005), without
the whole knowledge to which a compiler would have access.

Hybrid TLS solutions have been researched where the commit system is implemented
in software, while hardware Transactional Memory primitives are used in order to handle
the speculative code, relying on the semantics of transactions to deal with the commit/roll-
back behavior of epochs (GUO et al., 2008; YOO; LEE, 2008a).

Thread-Level Speculation is a promising optimization technique due to the fact that it
lifts from the compiler the obligation of proving complete data independency before par-
allelizing a loop in the source code (STEFFAN et al., 2005). The compiler is thus able to
determine what loops should be parallelized based on statically ambiguous dependencies,
eliminating the need for precise data dependence analysis and facilitating the paralleliza-
tion of non-numeric applications, at the smaller cost of having to partition the code into
speculative threads of execution (BHOWMIK; FRANKLIN, 2002).

As a method of speculative execution, Thread-Level Speculation can be simpler to use
than Transactional Memory, which requires the explicit delimitation of transactions, but
it is only applicable insofar as the user code is comprised of a reasonably large amount of
loops with few dependencies among its iterations. In the cases that it does succeed, the
compiler must still be relied on choose what sections of code to parallelize.

2.3.1 Compiler Support

In spite of having a more relaxed set of constraints than non-speculative methods of
automatic parallelization, Thread-Level Speculation still relies on its compiler to decide
what loops are likely to have few dependencies among its iterations, and when they should
be executed speculatively. The following publicly available open-source TLS compilers
have been described in the literature:
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• The POSH compiler infrastructure (LIU et al., 2006) extends gcc 3.5 through the
addition of TLS passes that operate on the high-level Static Single Assignment
(CYTRON et al., 1991) intermediate representation, partitioning the program into
tasks from loops and subroutines;

• The Intel ORC compiler for Itanium architectures (WU et al., 2005), modifying
Open64 to support TLS on IA-64 architectures;

• Stanford’s SUIF compiler has been adapted to handle TLS directives by (STEFFAN
et al., 2005).

• Purdue University’s Cetus (DAVE et al., 2009) compiler infrastructure, which trans-
lates input C code into parallel code that uses OpenMP directives.

2.3.2 Benchmarks

Most of the research regarding Thread-Level Speculation relies on executing paral-
lelized sequential code from SPEC INT (WARG; STENSTROM, 2008; ZHAI et al., 2008;
ALDEA; LLANOS; GONZÁLEZ-ESCRIBANO, 2011), a heterogeneous set of applica-
tions often used in performance measurements of optimized sequential applications.

Traditionally used parallel benchmarks like NAS (BAILEY et al., 1991), SPLASH-
2 (WOO et al., 1995), along with more recent benchmark sets like PARSEC (BIENIA
et al., 2008) are also commonly used in the TLS research, as a way to assess how good
a TLS implementation is when compared to hand-coded parallelization, but the already
inherently parallel nature of these benchmarks prevents the extraction of any heavy con-
clusions from the comparison.

2.4 Transactional Memory

Parallel programming under the Transactional Memory (TM) paradigm constitutes
mainly in specifying the proper delimitation for all transactions in the source code. The
execution of these transactions under the right semantics is a requirement that must be
satisfied by any implementation of a TM system. Nevertheless, there are several inter-
nal aspects to the implementation of such a system that are not strictly defined by the
speculative semantics, and those aspects still comprise an active area of research.

One of the main dimensions through which different designs of Transactional Mem-
ory can distinguished themselves is that of whether they are implemented directly on
hardware, or using low-level library primitives. While Hardware TM implementations
are physically limited and will fail to execute transactions that are too long or that execute
some unsupported operation (DICE et al., 2009), current Software TM implementations
can still be too slow to be used in high-performance applications (CASCAVAL et al.,
2008). Notwithstanding current research on both hardware and software fronts, hybrid
implementations have also been proposed as viable solutions, providing an interface that
is similar to the one used for software systems, and using the underlying hardware re-
sources available as long as possible, with the guarantee of falling back to the software
implementation on failure (KUMAR et al., 2006).

Some implementation concerns are pertinent to the design of every Transactional
Memory system. For example, all such systems are required to somehow detect conflict
among concurrent transactions, and to be able to apply some method of conflict resolu-
tion, which is tasked with the decision of which transactions to rollback in the face of
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a detected access conflict. The method and the timing of conflict detection, as well as
the form of conflict resolution employed will directly influence the performance of the
execution. In fact, these things may be somewhat merged into a single entity under some
systems, which use past knowledge of detection and resolution to decide how to handle
further conflicts.

Conflicts between two transactions may also be derived from a limitation of the un-
derlying transactional system. Some hardware-based systems will store transaction data
and identification in an extension of one of the cache memories, where the mapping of
different addresses into the same cache line may cause spurious conflicts to arise, either
in the case of both addresses being close enough to be part of the same line, or due to both
addresses being mapped into the same line in spite of being completely unrelated.

This latter cause of conflicts, occurring between unrelated addresses, may afflict soft-
ware systems as well, since they store transaction identification in a hash table indexed by
the accessed address — and it would generally be impractical to dedicate half of the avail-
able main memory just to guarantee that every address accessed in a transaction could be
handled by the Transactional Memory system. The characteristics of this hash table, such
as the hashing function, the hash table size, or granularity of the conflict between two
addresses, are still an area of research, since the appropriate values may vary between
programs.

Another design dimension of a Transactional Memory system is its version manage-
ment, that is, the mechanism through which transactional TXWRITE operations are prop-
agated. In an eager version management, writing operations are executed directly in a
shared memory, forcing the conflict detection to also behave eagerly, and demanding a
rollback operation that explicitly undoes those writes. On the other hand, when version
management is performed lazily, each transaction will use some local memory to store
transactional data, relegating the task of updating the shared memory to the TXCOMMIT

operation.
Even in the case of lazy version management, the underlying system is still required

to use a scheme of synchronization at some point in the execution of the transaction,
whether it be through special cache-memory targeted instructions, locks or non-blocking
algorithms. This existence of such a synchronization point in the semantics of transac-
tional programs establishes that any ordinary transaction may be subject of abortion and
rollback.

In some cases, the possibility of failure is not acceptable for a given transaction, due
to the presence of an irrevocable operation — such as a system call or an input/output
operation, which produces side-effects that cannot be rolled back. Under such circum-
stances, the speculative system must be able to execute the transaction non-speculatively,
preventing any conflicting transactions from committing as long as the irrevocable trans-
action itself hasn’t committed. Compiler preprocessing may be able to identify some of
these irrevocable transactions beforehand, but in the general case, the detection of such
transactions must still be performed at the first attempt at an irrevocable operation.

2.4.1 Compiler Support

Compiler support for hardware systems consists of generating the appropriate calls
to hardware instructions that implement transactions. Hybrid or software-only support,
on the other hand, requires that appropriate calls to transaction controlling primitives be
generated, transferring the flow of execution to a runtime library before and after the
execution of a transaction.
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Compiler support is not a strictly necessary tool for Transactional Memory, given that
it requires no specific compile-time preprocessing; in some cases, even the sole delimi-
tation of transactions with the appropriate TXBEGIN/TXEND instructions or library calls
will suffice. However, when present, it allows the target programming language to hide
the implementation details of the transactions through a syntactically unified interface.
Moreover, it permits the preprocessing of global information that can be used in code
optimization during the execution.

One of the works in this area is an extension to the Intel ICC compiler that has been
used to investigate code optimization techniques for Transactional Memory constructs
in the C language, generating code for software implementations (WANG et al., 2007).
Taking a different approach, the OpenTM API (BAEK et al., 2007) specifies an extension
to OpenMP (CHAPMAN; JOST; PAS, 2007) where transaction-related keywords indicate
how the hardware instructions or runtime functions should be called during the execution.
This API has been implemented over the GNU OpenMP environment.

The GCC compiler collection has defined a full range of Transactional Memory oper-
ations for their C compiler, including syntactic sugar for transactions themselves, as can
be seen in Figure 2.2.

Figure 2.2: Example of a list-traversing transaction on GCC.
__transaction_atomic {
   next = set->head->next;
   while (next->val < new_val) {
      next = prev->next;
   }
   next->val = new_val;
}

The presence of a compiler also allows for the preprocessing of transactional infor-
mation, giving way to algorithms that rely on some non-local advanced information. For
example, the technique of Selective Reconciliation relies on compile-time computed in-
formation regarding data dependency inside a transaction, in order to avoid having to
rollback and re-execute the whole transaction, only having to re-execute the conflicting
access instead (MANNARSWAMY; GOVINDARAJAN, 2012).

2.4.2 Benchmarks

Transactional Memory benchmarks focus on realistic examples that are not trivially
parallelizable in a lock-free manner. The goal is to compare the performance of these im-
plementations against their lock-based and sequential counterparts under varying work-
loads. The benchmarks that are most often referenced in the TM literature are:

• The STAMP benchmark suite (MINH et al., 2008) comprises a set of eight non-
trivial applications, with a sequential and a transactional version for each applica-
tion, along with corresponding input workloads. Table 2.1 presents a summary of
the operations that the STAMP benchmark executes.

• The STMBench7 benchmark (GUERRAOUI; KAPALKA; VITEK, 2007) provides
a fine-grained and a coarse-grained lock-based implementation of a database graph-
traversal application, which can be compared for performance with a TM version of
the algorithm. Different workloads can be selected, with varying amounts of data
contention.



25

Table 2.1: Summary of STAMP benchmarks.
Benchmark Description

bayes Learning the structure of a Bayesian network through a hill-climbing
strategy using an ADTree data structure.

genome A gene sequencing program, which reconstructs a gene sequence
given some segments from the whole gene.

intruder A network intrusion detection algorithm, which scans network pack-
ets looking for matches to intrusion signatures.

kmeans Applying the k-means clustering method to partition a set of obser-
vations into a given number of clusters based on their proximity.

labyrinth Finding the shortest path between two points in a maze.
ssca2 Graph construction represented with adjacency arrays.

vacation Simulator of a travel reservation system, where all threads try to con-
currently interact with a single database.

yada An implementation of the Delaunay refinement algorithm, which
creates Delaunay triangulations for a given set of points.

• The Lee-TM benchmark (ANSARI et al., 2008) amounts to a circuit routing algo-
rithm whose implementation requires various transaction lengths. Both a sequential
version and a transactional version are implemented.

Given that the Transactional Memory syntax still has not been standardized under
different compilers, and some compilers have not even been developed for this syntactic
support, instead of using any particular syntax, the C language benchmarks found in the
literature use macro calls from the C preprocessor to identify transactions in the code.

2.4.3 Lock Elision

An interesting consequence of the development of speculative execution systems is
that legacy lock-based programs can be speculatively executed under a technique known
as Lock Elision, without any extra efforts on the part of the programmers. When a lock-
based code is executed under Lock Elision, its critical sections are treated as if they were
transactions, and writes to the critical section’s lock are not performed during the trans-
action.

As a fallback mechanism, if an execution under Lock Elision conflicts with a concur-
rent critical section, a lock can be acquired to revert back to the old lock-based paradigm.
This ability to execute code speculatively without requiring major software rewriting is
what prompts many software and hardware approaches to Transactional Memory to pro-
vide support for Lock Elision alongside the explicitly speculative operations. Deciding
the best time to abandon Lock Elision in favor of standard locking for a given transaction
is still an open research question.

2.4.4 Basic Research

Research often takes advantage of low-level hardware primitives to provide raw effi-
ciency, or sophisticated software algorithms that guarantee flexibility on the behavior of
the speculative system. Chapter 3 in this thesis will focus on hardware approaches, while
Chapter 4 will present the software-based research.

Research on hybrid Transactional Memory usually relies on using hardware primitives
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to implement the common-case scenario and fallback on a software-based implementa-
tion when appropriate. Since the programming interface is usually the same as in software
Transaction Memory, research usually focuses on the hardware aspect of the hybrid imple-
mentation (BAUGH; NEELAKANTAM; ZILLES, 2008) and on deciding when to use a
hardware-only implementation and when to move to a software-based solution (KUMAR
et al., 2006).

Some works aim at the development of conflict resolution strategies that ensure some
formal guarantee of forward progress for conflicting transactions (SPEAR et al., 2009).
Other works are directed at identifying techniques to manage specific commonly occur-
ring types of data conflicts (WALIULLAH; STENSTROM, 2014). Rather than specially
handling conflicts after their occurrence, a further solution involves the scheduling of
transactions based on their previous execution, aiming at avoiding the conflict of transac-
tions in the first place (NICÁCIO; BALDASSIN; ARAUJO, 2011).

In spite of the clear semantics proposed for transactions in relation to concurrently
executing transactions, their behavior under nesting is a non-trivial topic that is still be-
ing researched (PERI; VIDYASANKAR, 2013). This interaction between inner and outer
transaction can be generally divided into three possibilities of nested transactions (HAR-
RIS; LARUS; RAJWAR, 2010):

• Flattened nesting: Closely follows the semantics of reentrant locks in the locking
paradigm, wherein the nesting itself is all but ignored. Committing the inner trans-
action has no visible effect. Aborting the inner transaction aborts the outer one as
well, retrying the whole transaction.

• Closed nesting: Committing the inner transaction has no visible effect. Aborting
the inner transaction rolls it back and retries its execution alone.

• Open nesting: Committing the inner transaction propagates its changes to other
transactions immediately, and even if the outer transaction is later aborted, the
changes are not rolled back. Aborting the inner transaction rolls it back and re-
tries its execution alone.

Transactional semantics is also a topic of research under operating systems. One of
the long-standing issues of POSIX operations is the fact that, while they do provide the
necessary atomicity for individual system calls, there is no way to group those calls into a
larger atomic unit. TxOS is a modification of the Linux kernel that provides such support
for transactional access of operating system resources: programmers can delineate the
system-level transactions with the system-call functions sys_begin and sys_end, abort-
ing all intermediary system calls with sys_abort, if necessary. TxOS can enable the
speculative execution of several otherwise irrevocable transactions; however, some sys-
tem calls, such as the ones that perform network operations, may still require execution
under a non-speculative mechanism (PORTER et al., 2009)

Under the current concerns of energy efficiency, it is no surprise that some research
be dedicated towards a more energy-efficient implementation of Transactional Memo-
ries, especially considering the explicit waste associated with aborted operations which
must be rolled back and re-executed. By designing and deploying a special commit pro-
tocol on dedicated hardware, both execution time and energy consumption may be re-
duced (GAONA et al., 2013). The accommodation of higher-level techniques obtained
through theoretical work into hardware implementations of Transactional Memory is
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also responsible for some reasonable gains in energy efficiency (WALIULLAH; STEN-
STROM, 2014).

Finally, on the topic of more theoretical works, some effort has been put on the task
of analyzing the general properties of Transactional Memory programs. For example, by
investigating how serialization influences the throughput and efficiency of Transactional
Memory systems based on the workload, the impact of conflict resolution techniques
can be more readily evaluated (HEBER; HENDLER; SUISSA, 2012). By axiomatizing
the partial ordering of transactions, very precise definitions can be achieved regarding
operations such as serialization, specifying correct behavior and allowing for the formal
verification of Transactional Memory systems (DOHERTY et al., 2013).
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3 HARDWARE TRANSACTIONAL MEMORY

The ideas behind Transactional Memory were first proposed by (KNIGHT, 1986) as
part of a method for automatically parallelizing sequential code, which would execute
speculatively in a special hardware designed to use cache coherency as the means to
maintaining correctness of the parallelized code, somewhat similar to the current proposal
of Thread-Level Speculation.

Similar concepts were later used by (HERLIHY; MOSS, 1993) when defining a new
processor architecture that strove to make lock-free synchronization as fast as the more
traditional lock-based synchronization solutions. The central goal here was to allow pro-
grammers to define custom memory access code that spanned over multiple independent
memory addresses while keeping the property of atomicity found in the more restricted
single-address read-modify-write methods.

This architecture was called Transactional Memory, and it defined the main operations
that comprise a modern Transactional Memory system: TXBEGIN, TXREAD, TXWRITE,
and TXCOMMIT. The authors proposed the addition of an extra auxiliary cache to store
transactional data, and specified some custom changes to standard cache coherence proto-
cols that allowed for the implementation of the defined instruction set. In particular, they
described how to adapt the Snoopy protocol (GOODMAN, 1983), augmenting it with
tags that describe the transactional status of a given piece of data.

Since the aforementioned proposals for Transactional Memory, much research has
been done towards an efficient implementation that could be introduced into a mainstream
processor. In this chapter, we present an overview of the state-of-the-art regarding those
hardware implementations. Section 3.1 looks at the hardware implementations that have
been put forth by the industry. Section 3.2 presents further hardware designs, in the form
of current hardware simulators that support Transactional Memory. Section 3.3 analyzes
Syncchar, a tool which combines a hardware simulator with a transactional memory sys-
tem and a performance tuning mechanism.

3.1 Hardware Proposals

In the last few years there has been substantial progress towards a more widely-
accessible hardware implementation of Transactional Memory. Most research concerns
implementations that extend currently existing hardware architectures with transactional
operations and special hardware to handle the transactions. These solutions offer a best-
effort hardware TM support, providing instructions that can be used to delimit hardware
transactions, but that are allowed to fail.

We present the Transactional Memory designs that have been, or are currently being
researched by the hardware industry and have been discussed in the literature.
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3.1.1 Vega

The first commercial system that fully supported the semantics of Transactional Mem-
ory in special-purpose hardware was the Vega machine, by Azul Systems (CHOQUETTE;
TENE; NORMOYLE, 2008). This architecture features up to 16 processors, each with
54 cores, running concurrent Java applications on its 64-bit RISC processors. The under-
lying scenario is one in which costumers wish to write standard lock-based multithreaded
Java programs and be able to use all 864 cores efficiently.

As a solution to the lock efficiency requirement, Azul decided to build Transac-
tional Memory support directly into the Java Virtual Machine, in order to accelerate
lock-protected operations without any modifications to the costumer’s code. The Vir-
tual Machine makes use of three transactional instructions: SPECULATE, which enables
speculative execution for loads and stores; ABORT, which interrupts speculation mode
and rolls back to the beginning of the transaction; and COMMIT, which finishes the spec-
ulation mode, either flushing the written data to main memory or aborting execution and
rolling back to try again (CLICK, 2009).

The Java Virtual Machine is implemented in such a way that, whenever it sees a lock,
it decides whether to actually acquire the lock or to try to speculate that section of code in
a transaction, effective executing a conditional Lock Elision. Initially, it tries to speculate,
but if the speculative execution fails too often, it switches back to acquiring the given lock
in the first trial.

The hardware organization for the Vega machine is one where each core is connected
to a private L1 cache and to a L2 cache that it shares with other 8 cores. Support for
Transactional Memory is implemented through the addition of two extra bits on each L1
cache line: speculatively-read and speculatively-written. Due to the fact that no changes
were performed on L2, cache misses on L1 will always abort an executing transaction.

Early experiments showed that memory access conflicts would restrict speedup over
sequential execution to less than 1.1. Hardware capacity overflow, on the other hand, was
reported to be very uncommon, and did not impact the runtime efficiency.

3.1.2 Rock

Sun Microsystem’s approach to speculative execution was the implementation of a
checkpoint-based architecture on their Rock processor, in which a checkpoint of the cur-
rent hardware state could be taken at an arbitrary instruction. This architecture was con-
ceived as part of a scheme for improving the efficiency of executable code through the
execution of the same software thread in two different physical threads. Whenever the
first thread became blocked due to a high-latency operation (such as an L1 cache miss or a
slow floating-point operation), the other one could speculatively execute the next instruc-
tions, and, if no conflict was detected, those operations could be committed (CHAUDHRY
et al., 2009).

The checkpoint-based design of Rock allowed it to easily support Hardware Transac-
tional Memory. The instruction CHECKPOINT <FAIL_PC> can be used to explicitly define
a rollback point, copy the current value of registers and start executing in the speculative
mode; if this execution fails, the registers can be rolled back to their values at checkpoint
and execution proceeds at FAIL_PC. Alongside the checkpointing behavior of registers,
support was also added for some of the memory-accessing operations at 32 of the L2
cache lines. Unsupported instructions would automatically abort the transaction.

Due to the need to version speculative cache lines, Rock’s hardware implementation
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involved the addition of k bits to each of the L2 cache lines, one for each of the k possible
physical threads. Every speculative memory access sets the appropriate bit, indicating that
the cache line is currently storing speculative data. Whenever a cache line is invalidated
or evicted, the transactions that have accessed it are aborted. During the execution of
the COMMIT instruction, cache lines that have been accessed by the current transaction
are locked to block access from other threads until the transaction has been properly
committed.

The Rock processor was poised to be released at some point in 2009, and early re-
search revealed some encouraging results in terms of speedup (DICE et al., 2009), but
the hardware project was canceled before its release, which prevented it from reaching a
wider programmer audience.

3.1.3 ASF

In 2009, AMD published the Advanced Synchronization Facility (ASF), a proposed
extension to the AMD64 Instruction Set Architecture that defined new instructions to
support Transactional Memory semantics (CHUNG et al., 2010). The proposal revolved
around the SPECULATE instruction, which sets a bit in the flag register and starts a trans-
action; and the COMMIT instruction, which either finishes the transaction, or rolls back,
jumps to the instruction right after SPECULATE and clears the flag bit. Inside a transac-
tion, LOAD and STORE maintain their non-transactional behavior, while the LOCK MOV

operation performs the corresponding memory-to-register or register-to-memory transac-
tional move. Two remaining instructions can be used used to force a transaction to ABORT

or to ignore (RELEASE) a memory address when checking for conflicts.
The proposal for the ASF extension was made available to the public as a way of

gathering input from the parallel programming community. It was presented as a set of
low-level hardware instructions that could be used as the means to implement anything
ranging from lock-free data structures to full-fledged Software Transactional Memory
systems. Ultimately, the goal was to adapt the design of this extension according to
the result from the review of its users. Internal research using simulators deemed the
particular semantics of an implementation of ASF to be viable (CHRISTIE et al., 2010),
but no further pronunciations have been made from AMD on the implementation of this
proposal in actual hardware.

3.1.4 Blue Gene

The first widely-deployed implementation of Transactional Memory semantics to sup-
port commonly used systems languages (such as C and C++) was IBM’s Blue Gene/Q
processor (WANG et al., 2012), developed for the Sequoia supercomputer. In this archi-
tecture, speculative state is stored in a multi-versioned 16-way set associative L2 cache,
where each speculative version of a cache line is stored in a different L2 way.

The hardware organization for this machine was originally designed without support
for Transactional Memory. As a consequence of this, the private L1 caches were not tailor-
made for the storage and management of speculative data. Rather, this data is stored in
the L2 cache, which is shared among all 16 cores of a Blue Gene/Q processor, and is what
restricts the scope of the Transactional Memory to each processor in this supercomputer.
The L2 keeps track of which thread owns each speculative version of a cache line, which
allows for the detection of conflicts between different concurrent transactions.

Since the speculative execution buffers its state in the L2 cache, this processor imple-
ments two possible solutions to provide the correct interaction between L1 and L2, in the
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form of two modes of transaction execution. In what is called the short-running mode,
any store to an address will evict its line from L1, and subsequent access to this address
will miss L1 until the transaction commits. In the long-running mode, TLB aliasing is
used to version the address space in L1, allowing it to be used during the transaction, but
requiring that the whole L1 cache be invalidated at the beginning of the transaction.

Conflict resolution is performed when the hardware eagerly detects an access conflict
and triggers a conflict interrupt. Alternatively, these interrupts can be disabled so that
the conflicts may be checked lazily at commit time. In this particular implementation,
the kernel handles conflict interrupts by favoring older transactions over transactions that
have a more recent starting time.

Forward progress of repeatedly failing transactions is ensured through an irrevoca-
ble mode, which essentially transforms the transaction into a locked critical section that
executes non-speculatively. Only one transaction can execute in irrevocable mode at a
time, and transactions that conflict with an irrevocable transaction will always fail their
speculative execution.

While the overhead of single-thread execution was lower than the overhead on STM
systems, it was still significant, being as low as about 0.5 in the worst-case STAMP bench-
marks. On the other side of the spectrum, in the best-case scenarios, a 64-thread execu-
tion yielded speedups that closely matched the 16 maximum speedup achievable in this
16-core machine.

3.1.5 Haswell

In early 2012, Intel released the specification for Transactional Synchronization Ex-
tensions (TSX) (Intel Corporation, 2012), part of their then-upcoming Haswell architec-
ture, which was officially announced later at 2013, and started shipping at the end of
the same year. The proposed instruction set defines the XACQUIRE and XRELEASE in-
struction prefixes for hardware Lock Elision, which comprises Haswell’s main interface
for speculative execution. If such a speculative execution aborts, it is resumed at the in-
struction that was prefixed by XACQUIRE, this time re-executing the code section without
Lock Elision. These instruction prefixes are simply ignored in older hardware, which just
performs locking under the traditional semantics.

A second part of the new set of instructions deals with explicit transactional semantics
through the XBEGIN, XEND and XABORT operations, with no restriction on what instruc-
tions can be executed inside a given transaction (Intel Corporation, 2013). The XABORT

instruction is required to provide a label to a fallback non-transactional implementation,
to be executed in the presence of repeated aborts.

At an organizational level, the hardware keeps track of addresses in the read-set and
the write-set at a 64B cache-line granularity. Only the L1 cache can store transactional
versions of an address’s data, and any eviction of transactional data will cause an abort.
In order to manage the transactional data, the 8-way set associative L1 cache can store
a speculative version in each of its ways, leaving the cache coherence protocol to detect
data conflicts and abort the thread that detected the conflict.

Speculative execution of irrevocable actions, such as system calls and input/output op-
erations, is not supported in any way, and any attempt will abort the executing transaction.
These operations can only only succeed under non-elided locks in a non-transactional im-
plementation of the critical section.

Differently from other hardware Transactional Memory implementations, Intel’s de-
sign is primarily aimed towards increasing the performance of legacy lock-based code
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through Lock Elision, with a mere secondary goal of promoting new synchronization
strategies through its transactional capabilities. Hence, it is a reasonable expectation that
speculative benchmarks perform better than their lock-based counterparts.

Some works have used Haswell to attain high speedup previously unseen in lock-based
implementations. For example, Haswell’s Transactional Memory has been used in an in-
memory database, achieving near-linear speedup for database lookups on up to 8 threads,
and about 16 speedup for 32 threads (VIKTOR LEIS ALFONS KEMPER, 2014). In spite
of such results, however, no performance results for mainstream Transactional Memory
benchmarks have been published to date for the Haswell architecture.

3.2 Simulators

In order to be able to evaluate an architecture that still hasn’t been built, it is necessary
to use a program that simulates the target hardware. Seeking to understand what simula-
tors tend to be used in the Transactional Memory research, we have scoured the literature
looking for papers published during the past 2 years on top-tier conferences, attending to
their method of architecture evaluation. Table 3.1 presents a summary of the simulators
that were described in the literature.

Table 3.1: Simulator usage in the TM literature.
Simulator # Papers
GEMS 3
GEMS (ATMTP) 2
GEMS (LogTM) 4
JavaSim 1
M5 1
Mambo 1
MPARM 1
PTLsim (ASF) 2
SESC 1
Simics 7
Simics + MetaTM 2
Simics + GEMS 10
UVSIM 1
Total 36

Table 3.1 was build by looking at the results of a Google Scholar query to “trans-
actional memory” simulator. Out of all papers analyzed, thirty-six of them mentioned
which simulator was used. While the simulators we evaluated targeted TM specifically,
we expect the same simulators to be able to be used in Thread-Level Speculation research.

Most of the research on simulated Transactional Memories uses some extension to the
full-system x86 simulation infrastructure known as Simics MAGNUSSON et al. (2002).
The Simics-based GEMS simulator MARTIN et al. (2005) is a widely used research tool
for Transactional Memory, along with its variants using the modules ATMTP (MOIR;
MOORE; NUSSBAUM, 2008), which models the canceled Rock processor (described
in Section 3.1.2); and LogTM (MOORE et al., 2006), modeling a homonymous Trans-
actional Memory system that substitutes the snoopy cache-coherency protocol by a fast-
committing directory-based alternative.
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Other well-known simulators in the Transactional Memory area are the PTLsim-
ASF YOURST (2007), simulating AMD’s ASF extension for 64-bit x86 architectures
(described in Section 3.1.3); and the SESC RENAU et al. (2005) emulator, for MIPS in-
struction set architectures. Other simulators have all been developed for the specific work
performed on their respective research papers, and do not seem to possess the required
generality to be adopted elsewhere.

Most simulators center their Transactional Memory support around a snoopy cache-
coherency protocol such as XMESI (ROSSBACH, 2011), a modified MESI protocol with
five additional states for cache lines that are accessed in a speculative context. Table 3.2
lists the name of these states, with a brief description of the respective cache line state.

Table 3.2: Additional states in XMESI.
State Description
TS shared (S) cache line that has performed a TXREAD.

TMU modified (M) cache line after a TXREAD.
TMM modified (M) cache line after a TXWRITE.
TQS cache line invalidated by another’s previous TXREAD.
TQM cache line invalidated by another’s TXWRITE.

The additional states augment the standard MESI coherency protocol in such a way
that it is able to represent the effect of transactional operations on cache line validity,
keeping track of possible data access conflicts. Interaction between transactional and
non-transactional code invalidates the cache line that is storing transactional data.

This aforementioned transactional cache-coherency protocol was born as part of a
Simics-based Hardware TM system simulator known as MetaTM (RAMADAN et al.,
2008). Its goal was to be able to provide the necessary semantics to substitute lock-based
critical sections by transactions inside the Linux kernel, in order to analyze the impact of
different conflict resolution techniques in a fully transactional environment.

MetaTM is based on an multiprocessor architecture, where each processor is associ-
ated to a L1 cache implementing transactional semantics through the XMESI protocol,
and a private L2 cache following a standard MESI protocol. All transactional behavior is
therefore restricted to the processors and the L1, and evictions from this cache will abort
an executing transaction.

Since the transactional data is kept on cache, and the cache coherency protocol is
capable of identifying data conflicts at the moment they happen, MetaTM can use this
eager conflict detection mechanism to apply any of a variety of conflict resolution policies,
as presented in Table 3.3.

Alternatively, instead of resolving conflicts by rolling back competing transactions,
MetaTM also implements a mechanism through which a transaction that has just per-
formed a conflicting instruction can undo this operation and stall until the other trans-
action commits instead, avoiding the overhead of a rollback and re-execution in those
cases.

When a conflicting transaction needs to be re-executed, a backoff policy is applied to
determined how much time the transaction should wait before restarting. This behavior is
useful in cases where an immediate restart would most likely repeat the same conflict and
abort it again. Table 3.4 presents the backoff policies available in MetaTM.

While other Hardware TM systems will often provide direct support for nested trans-
actions, implicitly handling reentrancy of transactions, MetaTM supports instead the ex-
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Table 3.3: Conflict resolution policies in MetaTM.
Policy Description
Timestamp Oldest transaction wins.
Kindergarten Transaction that detects conflict relinquishes its execution

and loses, as long as it has not been aborted before. If both
transactions have aborted before, Timestamp is used.

Karma Transaction that has accessed the largest amount of ad-
dresses during its executions wins.

Eruption Similar to Karma, but artificially boosts future address
count for losing transaction by the number of addresses ac-
cessed by the winner.

SizeMatters Transactions that has read/written the largest number of
bytes during its executions wins.

Table 3.4: Backoff policies in MetaTM.
Policy Description
None Use no backoff and restart immediately.
Random Wait a random amount of CPU cycles (between 0 and

1000).
Linear Wait a number of cycles that is proportional to the number

of times the transaction has already backed off.
Exponential Wait a number of cycles that is proportional to an expo-

nential on the number of times the transaction has already
backed off.

plicit management of a transaction stack. The operation XPUSH can be used to push
the identifier for the current transaction onto the stack, leaving the thread in a non-
transactional mode; its counterpart, XPOP can resume the transaction from the top of
the stack. When an interrupt is executed, the active transaction is suspended through an
implicit XPUSH, allowing further transactions to be used even inside interrupt handlers.

The modifications to hardware organization outside from the processors revolve around
the conversion of the L1 cache to the XMESI protocol, along with the addition of a per-
cache-line field to hold a transaction identifier indicating the owner transaction for of
each cache line. Alongside XPUSH and XPOP, the processor also provides the XBEGIN

and XEND instructions, which are used to control the scope of transactions.
Irrevocable transactions are supported under a software implementation that is added

to the simulated Linux kernel. Operations that normally cannot be rolled back, such as
network access, are executed inside a spinlock-based critical section that uses the XCAS

instruction: an implementation of CAS that cooperates with the transactional modules
of the simulator, triggering a data access conflict on concurrent transactions if neces-
sary (HOFMANN; ROSSBACH; WITCHEL, 2009).

3.3 Syncchar

One of the current obstacles to the employment of Transactional Memory in appli-
cations with high efficiency requirements is the lack of knowledge regarding the per-
formance aspects that characterize these applications. In particular, while the tuning of
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lock-based code follows a well-known procedure which consists in identifying critical
sections that rely on contended locks and modifying their data access patterns to alleviate
that contention (possibly also breaking them into finer-grained critical sections), the tun-
ing of transactional code will often consist in identifying the contended memory addresses
themselves and diminish transaction dependence on those addresses whenever possible.

Over the last years, some attempts have been made at modeling the behavior of Trans-
actional Memory applications in order to support programmers at the task of optimizing
their performance. The Syncchar performance modeling tool is an example of this type of
research (PORTER; WITCHEL, 2010). Syncchar instruments code compiled under either
a lock-based or a transaction-based paradigm, and executes it in a simulator, in order to
identify a model that characterizes the synchronizing behavior in the code and to be able
to predict what portions of code should be modified to improve the performance of the
application when executed under a transactional paradigm.

Execution of a parallel application Syncchar can be divided according to its three main
phases: pre-processing, simulation and post-processing. During the pre-processing phase,
Syncchar parses an object dump of the application and identifies the value of the Program
Counter register at all points of synchronizing instructions (such as instances of xcas for
lock-based code, or load/store for transactional code). These positions of synchronizing
instructions are later turned into memory breakpoints, allowing them to be tracked during
the simulation, which generates a log of this synchronization activity. This log can then
be post-processed, producing a concise report of memory contention and transactional
conflicts.

Syncchar is implemented mainly as a C++ module under the Simics hardware sim-
ulator, as an extension of the MetaTM design. Since MetaTM already expands the x86
instruction set with Hardware TM operations (implemented as Simics “magic” instruc-
tions), Syncchar only needs to set up the tracking of synchronizing instructions and im-
plement their logging through callback functions.

Aside from this tracking module, Syncchar also relies on a high-level Simics config-
uration file to specify the parameters of the execution, such as the conflict resolution and
backoff policy. A $benchmarks variable describes the benchmarks that will be automati-
cally launched when the simulated kernel boots up. Since Simics is able to simulate the
whole system stack, only minor modifications to a Linux kernel’s boot process should be
enough to accommodate the execution of benchmarks.

Due to all of the inherent shortcomings of Hardware TM, there is a strong margin
of improvement through the use of tuning that has not yet been widely explored. The
Syncchar tool represents one of the first steps in this direction, modeling and predicting
the behavior of TM applications, but further work would still required if one wishes to
use this information to automatically tune Transactional Memory applications.
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4 SOFTWARE TRANSACTIONAL MEMORY

Following the seminal work that popularized the concept of Transactional Memory
through a hardware implementation (HERLIHY; MOSS, 1993), another group of re-
searchers published a proposal that relied on the opposite approach: rather than requir-
ing a whole redesign of the standard processor organization and architecture, their Soft-
ware Transactional Memory was able to support the expected semantics on conventional
hardware, requiring only the commonly-found LL/SC instruction (SHAVIT; TOUITOU,
1995).

This proposal required that each word of transactionally accessible memory be paired
with another word of memory to store a pointer to its owner transaction. Programs were
then required to provide, during the TXBEGIN operation, a list with all memory addresses
that could be accessed inside the current transaction. The transactional semantics were a
result of atomically setting the owner for all of those memory addresses before the execu-
tion of the transaction, and the subsequent ownership release during TXCOMMIT. Since
the ownership semantics was achieved at an exclusive-access basis during TXBEGIN, this
design followed closely the existing lock-based paradigm.

Figure 4.1 presents the general schematics of this Transactional Memory implemen-
tation. Each transaction is internally represented by a Record, which stores information
regarding its current status, size, and the owned values it has modified. Note that their sys-
tem is built upon a one-to-one correspondence between memory addresses and ownership
pointers, which effectively requires that half of the available main memory be dedicated
towards bookkeeping.

In this design of Transactional Memory, a transaction must first be assigned as the
owner for each of the addresses it accesses before its code can actually execute. If a given
address is already owned by another transaction, the current transaction will fail, and will
attempt to help the conflicting transaction by executing it in the current thread before
trying to execute its transaction again.

Due to this helping behavior, the method of transaction synchronization guarantees
a non-blocking execution, in which, even if the thread for a conflicting transaction is
scheduled out, the transaction itself may still commit regardless of scheduling priority.
This avoids the common problems of deadlock, priority inversion and convoying; in order
to avoid the problem of livelocks, address ownership must be acquired in an increasing
order.

While being a historically important Software Transactional Memory design, this
early proposal is severely limited in some aspects. Aside from the hefty requirement
of half the available memory for bookkeeping, the TXBEGIN operation also demanded a
list of memory addresses that would be accessed inside the transaction — this list would
be used to acquire ownership in a well-ordered manner, ensuring that no deadlock would
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Figure 4.1: Software TM schematics.

Source: SHAVIT; TOUITOU (1995).

be possible from the execution of two concurrent transactions.
An entirely different approach is to move away from word-based Software TM and

use an object-based approach. In this extension to Object-Oriented Programming, each
object pointer is replaced by a pointer to a Locator object instead, which itself stores a
pointer to the target object, as can be seen in Figure 4.2.

Figure 4.2: Object-based TM.

Source: HERLIHY et al. (2003).

The Locator stores a pointer to the transaction that most recently tried to modify the
object, along with both the old and the new versions of the object. Whenever a transaction
wishes to access an object, it opens the object, essentially creating a local copy of the
Locator and reassigning its pointers, as shown in Figure 4.3.

At this point, the state of the old Transaction is checked. If it has already committed,
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Figure 4.3: Opening a Locator in Object-based TM.

Source: HERLIHY et al. (2003).

the Old Object pointer will be assigned to point to the already committed New Version
and the object pointed by New object would be copied, as presented in Figure 4.3. If that
Transaction had been aborted, on the other hand, the Old Object would not be reassigned,
and the New Object would point to a copy of Old Version instead.

In the case where the old Transaction is still executing, we can conclude that there is a
conflict, and one of the transactions will have to be aborted. When a transaction is ready
to commit, it simply updates the pointers of the Locators for every object it has modified.

A different line of research, this time on word-based addressing, led into a Trans-
actional Memory design that used a hash table to map from addresses to ownership
records (HARRIS; FRASER, 2003), as illustrated by Figure 4.4. In this implementa-
tion, ownership is only really acquired during the committing phase, wherein all accessed
addresses must become owned by the committing transaction before the data is written to
shared memory. If ownership is already acquired for any of the addresses, the transaction
must abort.

The elimination of the requirement of previous knowledge during TXBEGIN, together
with the advent of hash-based Transactional Memory system, have paved the way to
newer Software TM designs that implement algorithms that are geared more towards run-
time efficiency.

4.1 TL2

Most modern Software TM systems are based on an adaptation of the TL2 algo-
rithm (DICE; SHALEV; SHAVIT, 2006), one of the first designs of a Transactional
Memory system that boasted runtime performance that was as efficient as lock-based
fine-grained implementations, while being based on fairly straightforward algorithm that
only required a simple hardware synchronization facility (such as CAS or LL/SC).

The TL2 TM system provides implementation for both object-based and hash-based
ownership semantics, without any difference in its main algorithm. Its design revolves
around a global version-clock, which is read at the beginning of each transaction, and
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Figure 4.4: Hash-table-based TM bookkeeping.

Source: HARRIS; FRASER (2003).

atomically incremented after committing. All memory locations are associated with a
versioned write-lock. This lock is implemented as an unsigned integer that stores the
value of the global version-clock at the moment it was last modified. One of the write-
lock’s bits is used to indicate whether the associated memory address is currently owned
by a transaction.

Since all conflicts must have at least one TXWRITE operation involved, the value of the
write-lock for any address can be checked against a local copy of the global version-clock,
in order to validate the current version of the data. If the current write-lock’s version is
more recent than the value of the version-clock was at TXBEGIN, we must assume that the
address has been modified at some point between the beginning of the transaction and the
validation, and abort the current transaction.

In consideration of allowing the operations required by the TL2 transaction execution
algorithm, two data structures must be maintained for each transaction, in the form of
read-set and write-set linked list. Figure 4.5 represents a read-set node, which consists of
a pointer to the next node and a pointer to the versioned write-lock. The latter pointer is
an essential component of validation for previously read data, as it can be used to read the
current version and locking status associated with each memory location that accessed by
a TXREAD.

Figure 4.5: TL2 read-set node.

Next node

Write-lock

Read-set node
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A second linked-list is used to represent the execution performed by TXWRITE. Dif-
ferently from reading operations, writing requires the actual modification of shared data,
which TL2 only performs during TXCOMMIT. Because of this design, write-set nodes
must also keep track of both the target address and the new value that will be stored in
that address at commit-time (as shown in Figure 4.6).

Figure 4.6: TL2 write-set node.

Next node

Write-set node

New value

Address

Write-lock

Furthermore, in order to avoid the occurrence of Read-After-Write hazards, TXREAD

operations must also check whether the transaction has already written to its target address
before reading from shared memory. TL2 uses a bloom filter to determine whether an
address has been written to; traversing the write-set list to return the proper value in the
affirmative case.

Overall, TL2 proposes an algorithm that displays low overhead for most transactions.
The TXBEGIN operation consists in essentially reading the version-clock and locally stor-
ing a copy. During the execution, TXWRITE operations append a node to the write-set list.
TXREAD operations are validated during execution, catching conflicts as early as possi-
ble; if no conflict was detected, the address is optimistically read and a new node is added
to the read-set list.

During TXCOMMIT, all locks indicated at the write-set must be acquired, and any
failure to do so will abort the transaction. After all locks have been acquired, the global
version-clock must be updated, the read set must be validated, and the TXWRITE oper-
ations performed during execution must be propagated to shared memory. Finally, each
versioned write-lock must be updated with the value of the global version-clock and an
unset write-lock bit.

An alternative execution path can be used for read-only transaction. In this scheme,
TXBEGIN is still characterized solely by making a copy of the global version-clock. The
execution, on the other hand, is performed without the construction of the linked-lists.
Rather, each TXREAD will speculatively read from the target address and then immedi-
ately validate the operation, by checking the version in its write-lock against the copied
version-clock. At any point, failure in validation will abort the transaction. After the ex-
ecution of a read-only transaction, TXCOMMIT has no further work to perform: reaching
this operation while having managed to validate all TXREAD operations guarantees that
no conflict has happened, and the transaction can be deemed committed.
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4.2 TinySTM

One of the most efficient modern Software TM systems is TinySTM, a successor of
TL2 that borrows many concepts from the latter system (FELBER; FETZER; RIEGEL,
2008). Rather than relying solely on the commit-time locking scheme of TL2, TinySTM
also implements encounter-time locking, arguing that the early detection of conflicts in-
creases the throughput of transactions, due to less execution of useless work.

Due to the availability of encounter-time locking, TinySTM provides three different
methods of TXWRITE execution:

• WRITE_BACK_CTL: Acquires write-locks during TXCOMMIT, exactly as in TL2. Ver-
sion management must be lazy, propagating modifications from the write-set to
memory after the locks have been acquired.

• WRITE_BACK_ETL: Locks on encounter-time of TXWRITE. Still uses a lazy version
management, using the eager locking solely as a mechanism of forcing early con-
flicts.

• WRITE_THROUGH: Locks on encounter-time of TXWRITE, also writing to memory in
a scheme of eager version management. In this method, write-sets are substituted
by undo-logs, which keep track of the old values that must be restored in the event
of a rollback.

In the lazy schemes of version management, the implementation of the write-lock
is similar to the one used by TL2, with the exception that instead of always storing a
copy of the global version-clock, it stores the pointer to the correspondent write-set node
whenever its write-bit is in the owned state. This modification allows TinySTM to avoid
the complications of Read-After-Write that plague TL2, since TXREAD can easily access
the write-set node directly from the owned write-locks.

The eager version management scheme takes advantage of the ability to acquire write-
locks at the moment TXWRITE is encountered, using a different algorithm for this opera-
tion. Figure 4.7 presents a general view of this eager writing algorithm. In this scheme, a
pointer to the owner transaction is stored in the write-lock whenever its write-bit is in the
owned state.

Figure 4.7: TinySTM eager TXWRITE operation.
function txwrite(tx, addr, value)
   lock_addr = &HASH_TABLE[hash(addr)]
   if (*lock_addr & OWNED_BIT)
      owner = *lock_addr & (~OWNED_BIT)
      if (owner == tx)
         *addr = value
      else
         txabort(tx)
   else
      if acquire(tx, lock_addr)
         add_to_buffer(tx, addr, *addr)
         *addr = value
      else
         txwrite(tx, addr, value)

Whenever an owned write-lock is encountered, its owner is checked. If the transaction
itself is the owner, it can safely modify the address; otherwise, it must either wait for the
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write-lock to be released or abort, and by default TinySTM will abort. On the other hand,
if the write-lock is not owned, it must be acquired, and an atomic operation (such as
CAS) is performed to assign the write-lock with a pointer to the current transaction (with
an owned write-bit). On success, the current value must be added to an undo-buffer, and
the address can then be safely modified.

TinySTM also adopts a hierarchical scheme of TXREAD validation, wherein a second
more coarse-grained version of write-locks hash table is initially checked: if no conflict is
detected, the fraction of the read-set linked-list that corresponds to those addresses can be
skipped; if a conflict is observed, validation proceeds through the traversal of that part of
the list, checking against the fine-grained write-locks. This technique can help reduce the
overhead of validation for applications in which the frequency of the TXREAD operation
far surpasses the frequency of TXWRITE.

The reference implementation of TinySTM also provides a variety of tuning param-
eters that can be dynamically modified according to heuristics, and can strongly impact
the efficiency in the running time of a Transactional Memory application. Some of these
parameters are the choice of hash function to map from memory to write-locks, as well as
the number of entries in both coarse-grained and fine-grained write-lock hash tables.

4.3 SwissTM

SwissTM is a hash-table-based variant of the TL2 design (DRAGOJEVIć; GUER-
RAOUI; KAPAłKA, 2009) which uses a mixed uses a conflict detection scheme known
as mixed invalidation. In this system, the read/write conflict detection is lazy, while the
write/write conflicts are detected during an eager acquisition of write-locks. This be-
havior aims at avoiding executing transactions that are likely to abort due to write/write
conflicts, while reducing the number of aborts that would be caused by eager read/write
conflict detection on a transaction that could commit early, in effectively a Write-After-
Read context.

In order to support the semantics of mixed invalidation and the entailing memory
access algorithms, SwissTM extends the concept of a versioned write-lock hash table,
mapping from memory addresses to both a write-lock and a read-lock instead. The se-
mantics of TXWRITE are similar to the ones used in other Software TM systems, as can
be seen in Figure 4.8. The main difference from other writing algorithms is regarding the
fact that SwissTM acquires locks eagerly during TXWRITE, but needs to keep them in a
write buffer to lazily write during TXCOMMIT.

Figure 4.8: SwissTM TXWRITE operation.
function txwrite(tx, addr, value)
   owner = WRITE_LOCK[hash(addr)]
   if owner == tx
      update_buffer(tx, addr, value)
   else
      while !acquire_wlock(tx, addr)
         abort_or_wait(tx, addr)
      update_buffer(tx, addr, value)

The reading algorithm for SwissTM is significantly different from previous solutions.
While it must maintain a read-set linked-list similarly to TL2, the addition of read-locks
allows it to busy-wait on these locks during TXREAD until the concurrent transactions
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have committed, eliminating the need to abort on some conflicting cases while still pre-
venting the reading of inconsistent data, as the pseudo-code in Figure 4.9 suggests.

Figure 4.9: SwissTM TXREAD operation.
function txread(tx, addr)
   owner = WRITE_LOCK[hash(addr)]
   if owner == tx
      return read_from_write_set(tx, addr)
   else
      version1 = READ_LOCK[hash(addr)]
      value = *addr
      version2 = READ_LOCK[hash(addr)]
      if (version1 == LOCKED || version1 != version2)
         return txread(tx, addr)
      add_to_read_set(tx, addr, version1)
      if (!validate(tx,addr) && !try_extend(tx))
         abort(tx)
      else
         return value

Similarly to other algorithms, SwissTM will keep a local copy of the global version-
lock whenever it starts, and will validate the values it reads against that clock to guarantee
the illusion of atomicity regarding the transaction. When that validation fails, however,
SwissTM will try to extend the transaction: that is, by checking the read-locks of all
values in the read-set, if it can guarantee that previously read addresses have not been
modified since the time TXBEGIN executed, it can update the local version-clock to the
current value of the global clock, effectively acting as if the transaction had started its
execution after the conflicting memory was modified.

Conflict resolution is performed in SwissTM by a module of the system known as
the Contention Manager. Its goal is to merge two different approaches to conflict resolu-
tion, deciding between large transactions based on a well-defined order, while avoiding
extra overheads for small transactions. This is done by having two different Contention
Managers, and having each transaction know its current manager.

Transactions always start out under the Timid contention manager. If they detect a
conflict under this state, they will automatically abort and rollback, as fast as possible. On
each TXWRITE operation, a local counter is incremented, and the transaction switches to
the Greedy conflict manager if a threshold number of accesses has been crossed. Greedy
is also used for transactions that have been aborted multiple times.

When resolving the conflict between two Timid transactions, the transaction that de-
tected the conflict will abort. When a conflict between Greedy and Timid transactions
is detected, conflict resolution is performed by aborting the Timid transaction. When a
conflict is found between two Greedy transactions, a method of establishing a total order
among transactions involving a global counter is employed, and this method indicated
which transaction should have priority in the conflict.

Consequently, conflict between two Greedy transactions can have multiple possible
outcomes. The transaction that detected the conflict can either abort or yield the proces-
sor and wait for some time (see Figure 4.8), under the expectation that the conflicting
transaction will commit and release the write-lock. Alternatively, the detecting transac-
tion can abort the conflicting transactions and proceed its execution.

Whenever a transaction aborts due to write/write conflicts, it must wait some random
time (modulo an upper bound determined in the form of exponential backoff), in an at-
tempt at reducing contention on highly contested memory addresses. In particular, this
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behavior avoids repeated aborts caused by the same two transactions contending over the
same memory addresses.

4.4 LUTS

In spite of all the recent work on improving the performance of Software Transac-
tional Memory systems, they are still noticeably inefficient under high contention, due to
the inherently high overhead of software bookkeeping, which exacerbates the cost of exe-
cution and rollback for the conflicting transactions. Most Transactional Memory systems
are generally unable to avoid conflicts; they can only decide what transaction to abort
during a conflict, and some opt to also enforce a backoff policy to reduce the likelihood
of repeating the same conflict.

Rather than waiting for a scenario with a large number of conflicts to apply a pal-
liative measure, a more forward-looking approach would be to predict transactions that
are likely to abort and reschedule another transaction that is less likely to conflict in its
place. Such anticipatory behavior is the basis for LUTS (Lightweight User-level Trans-
action Scheduler) (NICÁCIO; BALDASSIN; ARAUJO, 2011), a cooperative user-level
thread scheduler that employs heuristics to determine the likelihood of each transaction
committing during the next attempted execution.

This design behind LUTS is an attempt at circumventing the problem of false paral-
lelism that results from the spawning of a number of threads that surpasses the number
of available processor cores, wherein the excessive number of concurrent transactions is
responsible for a higher rate of cache misses, a larger amount of conflicts and the uncon-
trolled thread preemption driven by a kernel scheduler that has no information regarding
the state of the transactional system.

Under LUTS, each program spawns a fixed number of threads that matches the num-
ber of cores in the machine. Whenever a system-level thread would have been spawned,
LUTS creates an Execution Context Record (ECR), which is a user-level encapsulation
of the internal state of the thread. The system-level threads are pinned in their cores, and
scheduling of ECRs is performed by the LUTS scheduler, which takes into account the
state of the transactions and their conflict estimates when deciding which transaction to
schedule.

The scheduler works as an extension of the Transactional Memory system, which
must be modified to call the appropriate LUTS subroutines during transaction operations.
Inside LUTS, the chosen conflict estimate heuristic is used to decide which user-level
thread to schedule. While the scheduler is able to switch execution to a given ECR, its
scheduling interface is based on switching to a thread based on its Lexical Transaction ID
instead (this a number that uniquely identifies the region of the code that corresponds to
the transaction; a special ID is used to represent threads that are not executing any trans-
action), and the two available heuristics will use this interface, relying on the scheduler
itself to pick a thread with the given ID for execution.

Internally, the scheduler uses a ctx_queue vector of non-blocking concurrent queues,
with a queue per Lexical Transaction ID, which is used when extracting a thread for exe-
cution based in an ID. LUTS also maintains an activeTx vector, indicating what Lexical
ID is executing on each core at a given moment, and heuristics may use this information
to decide what new ID to schedule based on the likelihood of producing a conflict with
the executing threads.

The simplest of the two heuristics available in LUTS is CILUTS, heuristic with neg-
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ligible runtime overhead, adapted from an earlier work on transaction conflict predic-
tion (YOO; LEE, 2008b). In this scheme, each Lexical ID is associated with a Conflict
Intensity (CI), a number ranging between 0 and 1 that could be interpreted as as estimated
probability of conflict with other transactions.

During the startup, all Conflict Intensities are initialized as 0, and their value is updated
every time a transaction finishes executing according to the formula:

CI ′ =

{
α · CI on commits;
α · CI + (1− α) on aborts;

where α determines how much weight past execution will have in the future conflict
predictions, decreasing exponentially the older the transactions are. At a transaction’s
TXBEGIN, CILUTS checks if the CI for its Lexical ID is above a given threshold, and if
possible, will schedule in a transaction with lower Conflict Intensity instead.

A more intricate scheduling heuristic is provided by HashLUTS, which maintains a
table of conflict estimates based on all concurrently executing transactions, and a bestTx

table that predicts the best Lexical ID to schedule according to the values in the conflict
estimate table. The conflict estimate table is essentially a vector indexed by the Lexical
IDs in activeTx.

At TXBEGIN, LUTS compares the conflict estimate between the starting transaction
and the transactions in other threads; if this estimate is higher in the current thread, a lower
estimate thread is scheduled in its place. The conflict estimate table is updated every time
the execution of a transaction finishes: if it commits, the conflict estimate is decremented,
if it is aborted, the conflict estimate is incremented instead, and the bestTx table is updated
based on this new estimate. This latter table is central to the design of HashLUTS, which
uses it to decide what thread to schedule based on the currently scheduled user-level
threads, by taking the Lexical ID from the index of bestTx that corresponds to a hash on
the active user-level threads, as indicated by the activeTx vector.

LUTS supports scheduling under the TinySTM and SwissTM Software TM libraries.
Their experiment results showed a significant improvement in the execution time of some
of the STAMP and STMBench7 benchmarks, especially in the case of high-contention
applications.
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5 PROFILING TRANSACTIONAL MEMORY APPLICATIONS

The previous chapters have described the general characteristics of the state-of-the-art
implementations and proposals for modern Software and Hardware Transaction Memory
systems. In spite of the general goal of making concurrent programming less error-prone
than the lock-based solution, and therefore less of a burden on programmers, it is clear
that the success of Transaction Memory will also rely on its ability to efficiently execute
programs under the paradigm of speculative execution.

In this chapter, we present our proposals for the application of techniques of code
profiling for the identification of specific properties in transactional applications, and the
subsequent automated tuning of parameters in the TM system based and scheduling of
transactions based on conclusions obtained from the collected information.

Initially, we present in Section 5.1 some specific definitions that will be used for the
rest of this chapter. In Section 5.2, we explore some related work in the literature that
most closely resembles our proposals. Finally, we present in Section 5.3 our proposal and
implementation of a tool for automated TM system tuning, and in Section 5.4 our design
of a profiling-based scheduling heuristic under LUTS.

5.1 Definitions

When working with Transactional Memory, the word transaction is often in the con-
text of different TM systems with slightly different meanings. When working with the
profiling of transactional applications, an explicit dissociation of these meanings is of-
tentimes necessary, as different characterizations of what is a “transaction” will directly
affect the interpretation of the collected data.

We say that the Dynamic Instance of a transaction (or just Dynamic Transaction) is
the sequence of instructions that is executing between TXSTART and TXCOMMIT (or TX-
ABORT), along with its associated internal data, which is maintained by the Transactional
Memory system. When the data accessed during the transaction is already known during
compile time, and the whole Signature is not being taken into account, the Static Trans-
action can be defined similarly. The Signature of a Dynamic Transaction is the list of
pointers that comprises its stack backtrace at the beginning of TXSTART (that is, the caller
of TXSTART, the caller’s caller, and so on, until the main function is reached).

Given a set of Dynamic Instances, we define their respective Transaction Type by tak-
ing an equivalence relation over this set with regards to their Signature. That is, we say
that two Dynamic Instances belong to the same Transaction Type if and only if their Sig-
nature is the same. When a Signature of size 1 is assumed, two transactions will be under
the same Transaction Type if and only if they would share the same Lexical Transaction
ID, if present — that is, two transactions will be considered equivalent when both their
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executions originated from the same address of machine code, calling TXBEGIN.
The need for serialization of conflicting transactions gives rise to an important defi-

nition that must be taken into account any model of transactional memory behavior: the
serialization rate, which may be defined as the number of transactions that were serial-
ized over the total number of transactions in a given execution. Serialization rate can also
be determined for a particular Transaction Type, as the frequency with which its Dynamic
Transactions had to be serialized during the course of an execution. Serialization is such
a relevant determiner of the performance of TM applications due to the exclusive-access
semantics it imposes.

Even in the cases where serialization is not necessary for the complete execution of
conflicting transactions, the overhead of the rollback operation, along with the cost of re-
execution, compels for the consideration of the rollback frequency, that is, the number of
times the instances of a Transaction Type were required to rollback over the total number
of times it executed. A high rollback frequency can often be addressed by changing the
conflict resolution policy and by a manual restructuring of data access patterns.

5.2 Related Work

There does not seem to exist a great deal of published works on modeling and per-
formance tuning of transactional applications. MARATHE; SCHERER; SCOTT (2004)
were among the first to analyze some of the aspects of the design space of Software TM
systems. They build on this analysis to develop a new TM system which adapts itself to the
workload of the target application, considering the underlying TM system (MARATHE;
III; SCOTT, 2005). In spite of the significance of this work, they do not specify a whole
performance model, concentrating instead on lock-acquiring semantics for the internal
locks used by the TM system.

DALESSANDRO; SCOTT; SPEAR (2010) use transactional memory semantics to
model the implementation of traditional synchronization techniques (such as locks, atomic
variables and condition variables) in terms of transactions. They define per-thread order
relationships that guarantee the property of serializability in the target programs, but per-
formance prediction for TM programs falls outside the scope of their work.

LU; SCOTT (2011) model deterministic semantics for parallel programs based on
thread history-based semantics (such as the ones that are used to define memory models).
Their modeling consists of a definition of an order relationship for the operations in each
thread, interpreting determinism as an equivalence relation over the set of possible parallel
program executions. They do not attempt to define performance prediction formulas,
though.

The work by PORTER; HOFMANN; WITCHEL (2007) is one of the approaches
that most closely resembles our own work. They model the conversion of lock-based
programs to transactional ones, helping in the assessment of how suitable is a given lock-
based application to be adapted to a Transactional Memory environment. They define for
a transaction X the metrics of data dependency (whether XR ∩ (YR ∪ XW ) 6= ∅) and
conflict density (average of the pairwise number of conflicts between two operations in
concurrently executing transactions), which are collected through a profiling execution
of a hardware simulator to be used to predict the transactional performance for a given
application. This prediction is not applied on any form of automated tuning, however.

While the performance tuning of Transactional Memory programs seems to be an
under-researched area, there is a plethora of published tools that are aimed at the debug-
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ging and performance tuning of lock-based programs. Some of the most relevant works
include YU; RODEHEFFER; CHEN (2005), which implement memory access tracking
inside an implementation of the Common Language Infrastructure (MILLER; RAGS-
DALE, 2003) in order to report suspected race conditions; and work by (OLSZEWSKI;
ANSEL; AMARASINGHE, 2009), which uses custom library functions that must be ex-
plicitly called by the target application to provide better runtime thread scheduling. Rather
than modifying code at runtime, the work by (HARROW, 2000) uses binary instrumenta-
tion and a special pthreads implementation in order to report possible deadlocks in target
code.

There is a growing need to approach applications that rely on Transactional Memory
systems the same way one would approach more traditional lock-based applications, using
automated tools to help humans develop, optimize and debug parallel code. We are not
aware of any published memory model that is able to account for the execution of TM
programs and be used as part of an automated application performance tuner. Our work
fits that demand by filling this gap in current TM research.

5.3 Improving Syncchar

In spite of all the effort that has been invested into the research of methods to im-
plement efficient Transactional Memory systems, the pursuit of improved performance
at a degree that matches the one provided by lock-based applications still may require
programmers to manually tinker with the application and TM system parameters in or-
der to optimize their interaction through a trial-and-error approach. Syncchar provides
a scheme for predicting the runtime characteristics of TM applications, but still expects
programmers to manually configure the TM system based on its predictions.

We propose the extension of Syncchar through the profiling of transaction executions
for the prediction of conflict rate, rollback frequency, serialization rate, conflicting Trans-
action Types, Dynamic Transaction size, number of transactional operations in Dynamic
Transaction and hardware capacity overflow in the TM application. These parameters
comprise a useful set of data that can be employed by an automated application tuner
— which is able to select TM system policies based on these parameters. The following
policies can be predicted from the aforementioned parameters:

• The conflict detection policy is a trade-off between either detecting contention ea-
gerly and thus aborting a transaction that would have been able to commit, and de-
tecting it lazily during commit-time and risking having to rollback and re-execute
the whole transaction. The Dynamic Transaction size should be a good predictor
for the better policy: big transactions should abort earlier, to avoid some of the
overhead in optimistic execution, while smaller transactions may wish to execute
without the overhead of earlier read-set validation and detect their conflicts during
commit-time instead. Similarly, a transaction’s rollback frequency, if high, would
imply the need for earlier conflict detection, as measure to minimize the dispute for
highly-contented memory addresses. In the case of TM systems providing a hard-
ware variant with an internal software fallback, the frequent occurrence of hardware
capacity overflow also signalizes an advantage in executing the conflict detection
directly in the Software TM subsystem.

• The version management strategy to be employed during eager conflict detection
can take one of two forms: eager or lazy locking. Eager locking increases con-
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tention due to a higher amount of time holding the locks, but reduces the likelihood
of needing to rollback a large amount of operations. A large number of write oper-
ations increases the likelihood of conflicts, and therefore holds more synergy with
an eager locking mechanism. On the other hand, a large number of read operations
in the set of conflicting Static Transactions implies the need for a lazier method of
locking, which would give more window for those transactions to commit. In all
cases, a high conflict rate should be a warning sign against the increased contention
of eager locking.

• When unable to execute a transaction optimistically, serialization must be em-
ployed, giving that transaction priority over any conflicting transaction, and pre-
venting other irrevocable transactions from executing. The decision of early seri-
alization can avoid the predictable rollbacks on irrevocable transactions, but will
hinder parallelization on cases of spurious serialization. The serialization rate of
a transaction can safely predict the likelihood of the transaction being irrevocable.
Even in the case of more general transactions, a high rollback frequency should
be met with serialization, as its high contention would probably demand several
execution attempts before committing.

• Transaction Memory systems usually allow for the configuration of the conflict de-
tection granularity: a coarser granularity is more likely to yield to the mistake of
spurious conflicts, while a finer granularity wastes more memory and is more likely
to cause the eviction of a transactional line from cache. In order to predict the ap-
propriate granularity, the conflict rate of a transaction could be interpreted as an
indicator of the rate for such spurious conflicts; higher conflict rates should be met
with a finer granularity, as an attempt to reduce the conflicts. Similarly, a high seri-
alization rate should be dealt with by a finer conflict detection granularity, to reduce
occurrence of false conflicts under serialization. Hardware capacity overflow, on
the other hand, is a predictor of scant hardware resources, and should be handled
with more coarse transactions.

5.3.1 Implementation

The Syncchar infrastructure is a Simics module that extends the MetaTM transactional
architecture by intercepting the transactional hardware instructions (such as TXBEGIN

and TXCOMMIT) and checking memory access operations to collect data when executing
transactionally. We expand on this implementation by adding calls to the profiler from
the MetaTM transactional instruction handler executeTransactionOp and the memory
access processing code at ProcessorManager::ProcessMemoryOperation.

During the installation of the target TM application, it is executed some times under
a profiling mode. The profiler collects transactional data from this execution, summa-
rizing it into the aforementioned parameters and permanently storing it into the disk. A
script averages the values of the parameters across the executions, building a compact
characterization of the application based on the profiling executions.

Since all policies can be distinguished based on a dichotomy on the properties that
characterize their behavior, we adopt the application of a system comprised of the lin-
ear combination of parameters; whenever the total value resulting from the sum of the
weighted parameters surpasses a given threshold, a different policy is applied to the sys-
tem. The appropriate coefficients and threshold to be used in the equation are derived
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from empirical data, identifying the values that yield a greater performance on a set of
tuning benchmarks.

5.4 ProfSched: Profile-based scheduling

LUTS was designed to employ a more proactive approach in that it avoids conflicts
by scheduling user-level threads whose transactions seem less likely to contend on the
same data. During execution, the scheduler builds up on the success or failure of multiple
instances of a Lexical Transaction, and slowly starts to characterize them according to
their conflict estimates.

This approach, while demonstrably more efficient than the method of straightforward
execution utilized by non-scheduling Transactional Memory systems, can be improved
through a modification in the scheme of execution: by collecting profiling data during
compile-time executions, we can characterize the transactions of a TM application based
on a greater variety of data without incurring a prohibitive overhead on the normal execu-
tion.

Rather than relying on the characterization of transactions through a single Lexical
ID, we propose a scheduling system in which the conflict estimate closely resembles an
average on the execution of the instance of Dynamic Transaction itself, accounting for the
fact that transactions executed under the same Signature are more likely to be similar than
transactions that simply share the same Lexical ID.

We thus propose the use of code profiling as a way of gathering information that can
be converted into a reliable conflict estimate among transactions. This information allows
us to schedule based on a given transaction at all times during the execution, without
having to wait for it to fail multiple times first.

We implement our design through two different build modes for the underlying Soft-
ware TM library: the profiling and the execution builds. The profiling build executes
the application under LUTS scheduling heuristics, but also dumps information identify-
ing key properties of the executed transactions. At some point after the compilation of a
TM application, but before the moment of its execution, we link it with the profiling TM
system and execute it.

After a profile dump has been generated, a post-processing script is used to produce a
more compact representation of the characteristics of all Dynamic Transactions in the ap-
plication, and this representation can be seamlessly loaded during execution time to guide
our profile-based scheduling heuristic. We implement our heuristic on top of a modi-
fied version of LUTS’s core scheduling interface, using SwissTM as the Transactional
Memory system.

The design of our modifications is divided into two components: TxProf, the profiling
module that interacts with both LUTS and the Software TM system to collect data regard-
ing transactional operations and LUTS-based scheduling; and ProfSched, an alternative
heuristic to LUTS that relies on profiled data to determine the best scheduling alternative.

5.4.1 Profiling

During the execution of the profiling of an application, we collect data regarding the
executing transactions. Every time the application calls a function from the TM interface
to perform a transactional operation (such as TXBEGIN, TXREAD or TXWRITE), a function
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from the TxProf interface is called to collect this information in memory1. When the
application has finished executing, the profiling information is dumped into a file.

Internally, TxProf defines a Profiling structure whose fields characterize the proper-
ties of the profiled transaction. Table 5.1 presents a high-level view of each field in this
structure. During the post-profiling phase, a human-readable file in JSON format is pro-
duced from the profile dump, and its entries strongly resemble this internal representation
of transactions.

Table 5.1: Fields in a profiling entry.
Field Description
this A unique ID for each entry.
precursor ID of aborted transaction, if re-executing.
id_lwp Unique thread ID (schd_getThreadID()).
id_ecr Unique user-level thread ID (the ECR ID).
start_bt Signature vector (maximum size controlled by

TXPROF_SIZE_STARTBT).
oper_n Total number of transactional operations.
oper_fun Vector of transactional functions (maximum

size controlled by TXPROF_SIZE_OPERS).
oper_enum An integer indicating the type of transactional

operation in oper_fun, such as READ or COMMIT.
oper_arg The argument to each operation in oper_fun.
tstamps Three timestamps, one of them collected at

TXBEGIN and the other two before and after
committing/aborting.

enemy ID of the conflicting transaction that prompted
this transaction to abort, or 0x0.

status An integer corresponding to one of BEGAN,
ABORTED, COMMITTED or RESTARTED.

The Signature vector is collected by taking a stack backtrace at the beginning of the
TXBEGIN operation (we used GCC’s __builtin_return_address instead of the more
portable libbacktrace, because the latter would try to acquire a lock internally). The
vector of transactional functions is implemented as the return address for the Software
TM library’s operation; if this operation is either TXREAD or TXWRITE, the respective
argument in oper_arg is set to this address. TxProf also collects nanoseconds-precision
timestamps, to enable the calculation of the running length for each transaction.

Figure 5.1 presents an algorithm implemented with Transactional Memory (adapted
from a similar code in STAMP/lib/list.c), along with a simplified representation of the
corresponding assembly instructions and their addresses. The algorithm is a list removal
operation, consisting in finding the node previous to elem in the list and updating its next
pointer to reference the subsequent node.

Consider an execution of the list removal algorithm where the conditional branch is
taken and the transaction executes until TXCOMMIT, but then conflicts with another trans-
action during commit-time validation. Figure 5.2 represents a possible entry in the JSON

1Given the main memory limitations inherent to 32-bit LUTS, we restrict the collected data to an amount
of 100MB, so as to avoid out-of-memory errors in the applications.
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Figure 5.1: Example Transactional Memory code.
/** Remove element from Singly-Linked List. */
bool list_remove (List* list, void* elem) {
   ListNode *prev, *cur, *next;
   tm_start();
   prev = find_prev(list, elem);

   if (prev != NULL) {
      cur = tm_read(&prev->next);
      next = tm_read(&cur->next);
      tm_write(&prev->next, next);
      tm_commit();
      return true;
   }
   tm_commit();
   return false;
}

0x40049   call  <tm_start>
0x4005c   call  <find_prev>

0x4006c   cmp   %eax,-0x18(%ebp)
0x40079   call  <tm_read>
0x40089   call  <tm_read>
0x400a0   call  <tm_write>
0x400aa   call  <tm_commit>
0x400b5   ret

0x400bc   call  <tm_commit>
0x400c8   ret

profiling file, created during such execution (for simplicity, all transactional operations
inside find_prev have been omitted).

Figure 5.2: Example TxProf JSON entry.
"entry": {
   "this": 0xd66e0,
   "precursor": 0xd42c8,
   "id_lwp": 2,
   "id_ecr": 17,
   "start_bt": [0x40049, 0x58814, 0x54dd1, 0x541b5],
   "oper_n": 4,
   "oper_name": ["read",     "read",     "write", "commit"],
   "oper_fun": [0x40079,     0x40089,    0x400a0,  0x400aa],
   "oper_arg": [&prev->next, &cur->next, &prev->next,  0x0],
   "enemy": 0xd68e8,
   "status": 203
}

The value corresponding to this is the unique identifier for this entry, while the
presence of a non-zero precursor indicates that this is a re-execution of a previously
failed transaction, under the specified identifier. The id_lwp and id_ecr fields specify
the system-level and user-level (ECR) threads that were tasked with the execution of this
transaction, respectively.

Note how the top of the start_bt stack contains the address of the instruction that
called the function tm_start, while the next address in the stack corresponds to the caller
of list_remove, and then its parent caller. For each operation named in oper_name, the
respective address in oper_fun corresponds to the callers of transactional operations in-
side the conditional branch, with the function argument indicated in oper_arg (here rep-
resented as their corresponding high-level C code for didactic purposes). Since the TX-
COMMIT operation does not take any target argument, its corresponding argument is 0x0.

Finally, the presence of an enemy identifier indicates that this transaction has termi-
nated due to a conflict with the transaction represented by the transaction matching the
profile identifier. This is corroborated by the status field, which contains the value that
corresponds to the RESTARTED state, indicating the outcome of the execution of this trans-
action.

It is important to observe that, while the backtrace from TXBEGIN in start_bt by
itself would already contain enough information to characterize instances of Dynamic
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Transactions according to their Signature, TxProf also collects additional information
that allow it to predict how long a transaction will take to execute and how likely it is to
be involved in a conflict, permitting more advanced scheduling heuristics than the ones
employed by LUTS.

In order to collect the needed profiling data, TxProf subroutines must be called at
startup, as well as during each transactional operation performed by the Software TM
system. During the system-level thread initialization, a call to txprof_thread_init en-
sures the allocation of memory and initialization of a thread-local linked-list of empty
Profiling entries, which will be filled during the execution of the program — thread-local
instances are used because they greatly reduce the costs of creating a new Profiling entry
during TXBEGIN, whereas a global linked-list would require some method of synchro-
nization during the acquisition of each new entry.

Table 5.2 gives a brief description of some of the main subroutines that comprise the
TxProf module, indicating where they are called and the profiling data that they collect.
These calls must be explicitly added to both the Software TM system and LUTS at the
appropriate places.

Table 5.2: Summary of TxProf subroutines.
TxProf Subroutine Description
txprof_thread_init() Called by luts_init once for each thread dur-

ing the application startup.
txprof_start(*p) Called inside TXBEGIN before the execution of

each transaction. Creates a new Profiling entry,
setting its start_bt.

txprof_read_beg(p,addr) Called inside TXREAD before reading transac-
tionally from an address. Collects both the
caller’s address and the value of addr.

txprof_write_beg(p,addr) Called inside TXWRITE before writing transac-
tionally to an address. Collects both the caller’s
address and the value of addr.

txprof_commit_beg(p) Called inside TXCOMMIT before trying to com-
mit a transaction. Collects a timestamp.

txprof_commit_end(p) Called inside TXCOMMIT after a transaction has
successfully committed. Collects a timestamp
and sets the COMMITTED status.

txprof_abort_beg(p,enemy) Called inside TXABORT before starting to roll-
back the aborted transaction. Collects a times-
tamp and sets the enemy transaction pointer.

txprof_abort_end(p) Called inside TXABORT, right before long-
jumping to TXBEGIN for re-execution. Collects
a timestamp and sets the ABORTED status.

txprof_file_dump(file) Called after the application has executed.
Dumps the collected profile information.

5.4.2 Post-Profiling

The data that is collected during the profiling phase is then processed by scripts so that
useful information can be extracted in a compact representation. This concise character-
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ization of the TM application can be directly manipulated by the post-profiling scripts to
provide additional runtime information to the transaction scheduler, without any manual
intervention to adapt the original application. Three files are output by the post-profiling
processor, and then loaded by the scheduler during the execution, as described below:

Running time for each transaction.

During the post-profiling processing, the length of execution (obtained from the times-
tamps) is gathered for all instances of each Transaction Type. This information is then
summarized into a hash table, mapping from a Transaction Type to the average running
length of its Dynamic Transactions.

A plain-text representation of this hash table is stored in the avgruntime.txt file,
to be loaded during execution time into the commit_length hash table — which maps
from the Signature of a Transaction Type to its average running length (in nanoseconds),
serving to determine whether a Dynamic Transaction should be treated by the scheduler
as a short transaction or a long one.

Number of transactional operations.

Similarly to the collected hash table on the average running time for each Transac-
tion Type, the average number of transactional operations can be also be gathered into a
avgtxops.txt file, built from the value of the oper_n_real Profiling field.

During execution, the file is loaded into a txopers_length hash table inside the sched-
uler, which can be used as as estimate for the number of transactional operations that will
be executed by a Dynamic Transaction — a predictor of probability of conflict with other
transactions, as well as a predictor for transaction operation overhead and likelihood of
required serialization.

Graph of conflicts.

A directed graph of conflicts is built by the post-profiler based on the properties sum-
marized from Dynamic Instances. Each node in this graph represents a Transaction Type,
and these nodes store information regarding Transaction Types based on the execution of
their respective instances during profiling:

• signature, the Signature for this Transaction Type.

• n_runs, the total number of times the transaction instances have executed.

• n_aborts, the number of executions of that have failed to commit.

Post-profiling also identifies the interaction between Dynamic Transactions through
the enemy indication in Profiling instances, and this is reflected in the edges of this graph.
An edge from Ta to Tb stores information regarding the past interaction between instances
of those Transaction Types:

• n_conflicts, which is the number of times an instance of Ta has conflicted with
an instance of Tb.

• wasted_time, which is the total amount of time (in nanoseconds) that has been lost
executing instances of Ta which then conflicted with Tb.
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• n_shared_runs, which is the number of times Ta executed, except for the cases
where it conflicted with some transaction that was not Tb. That is, given the set R
of nodes adjacent to Ta,

n_shared_runs(Ta, Tb) = n_runs(Ta)−
∑
Tx∈R
x 6=B

n_conflicts(Ta, Tx).

Here, we assume that the probability of Ta conflicting with Tb is the same as it
would be if Ta did not conflict with any other transaction — which is why we
explicitly ignore those data points. This is a somewhat strong assumption that may
lead to an overestimation of the actual probability of conflict in some cases, which
can make the scheduler perform needlessly conservative re-scheduling decisions,
but at the same time it permits the prediction of interaction between of each pair of
transactions without full knowledge of how they all affect each other pairwise.

At the beginning of the execution, the described graph is loaded into memory. The set
of nodes is implemented as an array indexed by a hash on the Signature of each transac-
tion. Edges (Ta, Tb) are represented through adjacency lists at node Ta, implemented as a
hash table on the Signature of Tb, which maps into a C language structure with a field for
each information in the edge.

During execution, the scheduler can update this information based on transactions that
are currently executing, effectively combining data from profiling with locally acquired
execution-time data. However, since this incurs in extra overhead, extra care must be
taken to only update information for sufficiently large transactions, lest this bookkeeping
become a performance bottleneck.

Once all information has been loaded at the beginning of the execution, an estimate
of the Conflict Probability between two transactions can be easily and efficiently derived
from this graph: the probability of Ta conflicting with Tb is

CP (Ta, Tb) = n_conflicts(Ta, Tb)/n_shared_runs(Ta, Tb).

This value is a number between 0 and 1 which estimates the probability of a conflict
based on the frequency with which an instance of Transaction Type Ta has conflicted with
a concurrent instance of Tb during the profiling phase.

5.4.3 Scheduling

During the execution of the TM application, the data structures loaded from the post-
profiled files can be accessed by a scheduling module, to inform its decisions regarding
who to schedule at each processor core. Rather than internally characterizing a trans-
action through its Lexical Transaction ID, as previous works have done (DRAGOJEVIć;
GUERRAOUI; KAPAłKA, 2009; NICÁCIO; BALDASSIN; ARAUJO, 2011), we use the
full Signature for a transaction to determine when it should be scheduled.

We adapt the core scheduling capabilities of our system from prior work by LUTS (de-
scribed in Section 4.4), and extend the scheduler by applying a profiling-based scheduling
heuristics, using a more refined set of data structures. Due to the more extensive schedul-
ing requirements of ProfSched, the following data structures are required:

• A hash-based mapping keeps track of the currently executing ECR thread for each
system-level thread. This is conceptually similar to the activeTx list under LUTS,
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but ProfSched maintains a pointer to the actual ECR context that is executing, rather
than just storing the Lexical ID for its transaction. Given the ECR context object,
we can access the Signature, as well as any other data collected during the execution
of the current Dynamic Transaction, if any.

• A Signature-indexed hash table of queues, collecting the ECR threads that are wait-
ing for execution for each Transaction Type, as well as the threads that are not
currently executing any transactions. An ECR thread can be popped from one of
these queues when the scheduler decides to schedule a thread executing a given
Transaction Type.

Although LUTS must rely on the running time of a transaction just aborted to pre-
dict whether its re-execution should be classified as either a small or a long transaction,
ProfSched is able to take advantage of the values from the commit_length hash table,
which allows it to predict the execution length of any transaction at the moment it starts
executing for the first time2.

Long Transactions

When a transaction is deemed a Long Transaction, we compare its Conflict Estimate
with its Expected Gain to decide whether it can be executed right away. Given the listA of
currently active transactions, the Conflict Estimate for a transaction T is an approximation
of the expected amount of time that will have been wasted if it conflicts with transaction
Ai and needs to be restarted:

CE(T ) =
∑

0≤i<|A|

{ ∏
0≤j<i

[
1− CP (T,Aj)

]
· CP (T,Ai) · wasted_time(T,Ai)

}
.

For a precise calculation of the Conflict Estimate, the elements of A should be sorted in
ascending order of wasted_time(T,Ai), as otherwise the product of previous probabili-
ties may yield a spurious value.

We define the Expected Gain for a transaction T as the probability of successfully
executing it (that is, the probability of not conflicting with transactions of any of the
concurrent threads), scaled by its expected commit_length:

EG(T ) =
∏

0≤i<|A|

[
1− CP (T,Ai)

]
· commit_length(T ).

This value estimates the amount of progress that will be made in overall execution if T
commits after being scheduled right away.

Figure 5.3 presents the algorithm we developed to calculate the Conflict Estimate and
the Expected Gain for a given ECR thread. Note that, while the definition of Conflict
Estimate would at first suggest an implementation of Θ(k2) running time for k available
processor cores, we use a partial calculation of the inner product of Conflict Probabilities
to derive an efficient Θ(k) algorithm, effectively proportional to the constant number of
processor cores.

Whenever a non-transactional thread starts executing a transaction T that is predicted
to be a Long Transaction, ProfSched calculates both its Conflict Estimate and its Expected

2We classify a transaction as long if its expected commit length surpasses 104 ns. LUTS uses a similar
classification when automatically alternating between heuristics at the 5 · 104 ns threshold.
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Figure 5.3: Calculating the Conflict Estimate and the Expected Gain.
function calculate_CE_EG(t)
   sum = 0; partial_prod = 1
   for t2 in active_ecr_threads
      if executing_transaction(t2)
         p = conflict_probability(t, t2)
         sum = sum + partial_prod * p * wasted_nsecs(t, t2)
         partial_prod = partial_prod * (1 – p)
   ConflictEstimate = sum
   ExpectedGain = partial_prod * commit_length(t)

Gain, and compares them to decide whether it would be more worthwhile to attempt its
execution. ProfSched uses a static value of ρ = 0.5 to weigh the difference in impact
between these two values, and if

CE(T ) > ρ · EG(T ),

another transaction is scheduled in the current system-level thread, and the ECR thread in
which T was executing is pushed into the queue of waiting threads to be later re-scheduled
under more favorable circumstances.

Small Transactions

The above scheme does not work well for small transactions, since the overhead of
calculating conflict probabilities outweighs any gains obtained from achieving less con-
flicts. As in LUTS, we use the CILUTS heuristic to determine whether a short transaction
is expected to commit, and only schedule a transaction if it has a sufficiently small Con-
flict Intensity — otherwise, another transaction is chosen in its place.
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6 EXPERIMENTAL RESULTS

Chapter 5 presented two different proposals involving the application of profiling tech-
niques towards the optimization of the execution of Transactional Memory applications.
This chapter presents an evaluation of our implementations for both the Syncchar-based
Hardware Transactional Memory profiling approach (Section 6.1) and the LUTS-based
user-thread transaction scheduler (Section 6.2).

6.1 Syncchar Results

Execution was performed on the Simics 3.0.17 simulator for the x86 architecture (with
simulator modules compiled under GCC 4.6.4), using eight 3 GHz processors, a 4-way
16 KBd 16 KBi L1 cache under XMESI (1-cycle hit), 8-way 4 MB L2 cache under the
regular MESI (16-cycle hit) and 1 GB main memory (200-cycle hit). We used a modified
32-bit Linux kernel version 2.6.16, which is the one originally used during the develop-
ment of Syncchar1, and STAMP benchmark version 0.9.9 using simulator workloads (all
compiled under GCC 4.5.3).

When working with a simulator, the physical time it takes to perform the simulation
can often be orders of magnitude higher than the simulated time. While this physical
time property is not the focus of our profiling concerns, it is still relevant in matters
of practicality of use. When disabling custom XMESI cache-coherency protocol from
MetaTM, a single-processor execution of the lock-based STAMP SSCA2 benchmark is
simulated in about an hour of physical time, taking 6.12 × 108 cycles to execute under
simulated time. Enabling the full transactional support, the execution time of transactional
SSCA2 can range from about 8 hours, for the simulation of single-processor architectures,
to around 4 days of physical time at the 8-processor Syncchar configuration.

In spite of months of attempted execution, Syncchar has proven to be an unstable
infrastructure, and our initial implementation of the profiling tool has never been prop-
erly executed in a way that reliably produced profiling data. We list some of the major
problems encountered during the execution of Syncchar in Appendix A.

Given the underlying problems encountered in simulating Transactional Memory hard-
ware, we deduce an overall inability to obtain profiling information from this framework.
It relies on a simulator which, despite appearing to seamlessly handle transactional se-
mantics on a single-processor execution, fails to execute the appropriate semantics on a
multicore simulation, thus hiding parallel concurrency from any profiling tools.

1We also tried other versions of the Linux kernel, in particular the version 3.5, which was the newest
version at the time we proposed this work. Simics 3.0.17 seemed to crash during the boot of kernel 3.5,
and even older kernels were too incompatible with the kconfig parameterization for Syncchar’s kernel and
failed to execute update-initramfs.
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6.2 ProfSched Results

We compare the results from executions under ProfSched with the results from both
the unmodified SwissTM Software TM system as the Baseline, as well as the LUTS
scheduler using its default heuristic. Execution was performed for all three systems on
two different target platforms, described below.

The first platform is viking, a 2-processor machine with 4 cores per processor (mul-
tithreading was disabled), each processor executing at a frequency of 2.4 GHz on a 64-bit
x86 architecture. Its memory hierarchy includes a 32 KBd 32 KBi L1 cache, 256 KB
L2 cache, 8 MB L3 cache and 24 GB main memory. The operating system is 64-bit
Ubuntu 12.04, with Linux kernel 3.2.

The second platform is turing, a 4-processor machine with 8 cores per processor
(multithreading was disabled), with each processor executing at a frequency of 2 GHz
on a 64-bit x86 architecture. Its memory hierarchy includes a 32 KBd 32 KBi L1 cache,
256 KB L2 cache, 18 MB L3 cache and 128 GB main memory. The operating system is
64-bit Ubuntu 12.04, with Linux kernel 3.2.

All of SwissTM, LUTS, TxProf, ProfSched and the STAMP benchmarks were com-
piled with GCC 4.6.3 (-O1 optimization level), similar to the configurations adopted when
LUTS was tested at (NICÁCIO; BALDASSIN; ARAUJO, 2011). Due to inherent limi-
tations of LUTS’s internal stack management algorithm, everything was compiled under
32-bit x86 mode.

Table 6.1 presents the running time achieved by ProfSched on STAMP benchmarks
for 1, 2, 4, and 8 threads. Each entry in the table was generated through n = 30 executions
of the given benchmark, and its content reflects the average running time (in seconds) for
those executions and the sample standard deviation (using Bessel’s n− 1 correction).

As can be seen in the table, not all executions finish successfully. While we have
managed to understand and correct some of the problems that plagued earlier benchmark
executions, in spite of all the time that has been spent on debugging the internals of LUTS
along with the original authors, one application still fails to finish execution after weeks,
while another one finishes its execution producing wrong results, and a further one goes
astray at a pointer’s dereference and attempts to access invalid memory.

While the executions of all benchmarks finish correctly under the Baseline, failures
on the part of ProfSched always entail a similar failure when executing under LUTS.
Recently, the authors of LUTS have conceded that the results presented in (NICÁCIO;
BALDASSIN; ARAUJO, 2011) were produced after sieving out cases of stack overflow
and wrong output, and that the original STAMP benchmarks also presented some inter-
mittent invalid memory accesses that were never fully understood.

Table 6.1: Running times (in seconds) ± standard deviation on viking.
Benchmark 1 thread 2 threads 4 threads 8 threads
bayes 20.87± 0.02 16.80± 1.20 6.89± 0.97 5.14± 0.72
genome 22.95± 0.01 13.04± 0.06 7.08± 0.06 4.19± 0.06
intruder 126.18± 1.55 78.36± 0.14 43.70± 0.14 28.48± 0.04
kmeans 56.23± 1.37 ∞ ∞ ∞
labyrinth 114.52± 2.20 Wrong Wrong Wrong

ssca2 77.82± 1.07 57.40± 0.15 42.16± 0.08 34.53± 0.13
vacation 213.17± 1.77 128.44± 0.40 65.33± 0.18 28.45± 0.10
yada SegFault SegFault SegFault SegFault
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While the prospect presented above might seem rather bleak, it is important to no-
tice that the applications that executed completely did calculate their answer correctly.
Furthermore, the most insidious errors we have found were all related to the way the
compiler generated optimized code — such as the omission of stack pointers (which cor-
rupted LUTS’s ECR thread checkpointing) and the miscompilation of code where the
compiler assumed that a volatile-qualified variable was not accessed and did not allocate
space for it on the stack. When compiling the code without optimizations, all errors dis-
appear, further advancing the hypothesis that the failed executions happened due to no
particular fault in ProfSched, rather being the outcome of ill-defined behavior in either
LUTS or even the STAMP benchmarks themselves.

Figure 6.1 presents the average running time for the successful executions on viking,
along with their corresponding 95% confidence interval (calculated from the aforemen-
tioned sample standard deviation, assuming that the random disturbances in running time
follow a Gaussian distribution). As can be readily seen, the most significant effects on
running time occur at the longest benchmarks, intruder and vacation, while more mod-
est improvements in running time are observed in other benchmarks. Similar results can
be seen in Figure 6.2 for executions on turing, though the scalability of STAMP for
this machine’s 32 cores is somewhat less pronounced, particularly in the case of smaller
benchmarks. Variation in the running times is more visible in this machine, and affects
the small benchmark bayes to a greater extent.

Figure 6.1: Running times for ProfSched on viking.

Since one of the key motivations to using Transactional Memory is the ability to scale
an application to a high number of processor cores in spite of memory access conflicts (a
factor that would serialize execution under the lock-based paradigm), different systems
of speculative execution must be compared under this parameter. Figure 6.3 presents the
base-2 logarithm of the speedup for viking

(
T1/T8

)
and turing

(
T1/T32

)
running the light

STAMP workloads (see Appendix B for a table of raw speedup values).
As a ratio of two numbers, the speedup from two different executions can be readily

compared through a visual inspection whenever presented logarithmically. For example,
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Figure 6.2: Running times for ProfSched on turing.

in the light execution at viking, the speedup of ProfSched for vacation is inversely
proportional to its speedup for genome. Overall, the executions with light workload had
worsening speedups, particularly for LUTS and ProfSched, through even the Baseline
scaled poorly under these workloads.

Figure 6.3: Log-speedup for the light workload.

The executions with medium workloads, on the other hand, show more mixed speedup
results, as can be seen in Figure 6.4. In this case, most executions on viking yielded an
improvement in performance for its 8 cores, while the equivalent execution in turing’s
32 cores maintained a slowdown when compared to the sequential execution — albeit a
less pronounced performance impact than the one observed with the light workloads.

As can be seen, scheduling techniques have not really been effective for the light and
medium workloads, and this is actually not very surprising: even the Baseline results do
not scale at all during most of these executions, since the overhead introduced by the
software TM system is more than enough to outweigh any performance gain obtained
through parallelism. When even the Baseline fails to keep up in execution time, any
scheduling heuristic is doomed to fail as well.
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Figure 6.4: Log-speedup for the medium workload.

Figure 6.5 presents the logarithm of speedups for heavy STAMP workloads. As can be
observed in this figure, Baseline (SwissTM) presents above-constant speedup for all exe-
cutions, allowing LUTS and ProfSched to similarly succeed in their scheduling. Note that,
in spite of the dampening visual effect of log-scales, in most cases ProfSched presents a
visually higher speedup than both the Baseline and LUTS.

Figure 6.5: Log-speedup for the heavy workload.

The consistent improvement of ProfSched over the alternatives can be more thor-
oughly recognized at Tables 6.2 and 6.3. In these tables, the raw (non-logarithmic)
speedup for all heavy executions is presented for both viking and turing. Note how,
in both architectures, the geometric mean of ProfSched speedups is higher than the one
achieved by Baseline and LUTS. In fact, while the geometric mean for LUTS on turing

is lower than Baseline, ProfSched is reasonably higher.

Table 6.2: Speedup under heavy workload on viking.
Speedup Baseline LUTS ProfSched
bayes 1.98 2.28 4.06
genome 5.77 5.86 5.47
intruder 3.88 4.07 4.43
ssca2 1.79 1.85 2.25
vacation 6.43 6.40 7.49
Geometric mean 3.48 3.65 4.41
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Table 6.3: Speedup under heavy workload on turing.
Speedup Baseline LUTS ProfSched
bayes 4.08 3.34 4.30
genome 10.51 5.07 5.03
intruder 3.10 4.25 6.33
ssca2 1.65 1.90 1.90
vacation 18.37 20.50 21.34
Geometric mean 5.26 4.89 5.61

Given this data, we can readily see the improvement of ProfSched over the alternative
methods. On viking, it is 26.71% more efficient than Baseline and 20.83% more efficient
than LUTS; on turing, the results are more modest, though still positive: 6.67% more
efficient than Baseline and 14.73% more efficient than LUTS.

Not shown in the data is the overhead of TxProf collection, which accounts for about 10–
20% of extra running time. Since this overhead is only incurred once, during the profil-
ing phase, and it is equally distributed among all executing transactions, we deemed it a
reasonable cost — unlikely to skew the results of profiling or to excessively burden the
process of installing the application into the target system.

While the ineffectiveness of state-of-the-art debuggers (such as gdb and valgrind)
in dealing with speculative execution have hindered the uncovering of the problems in
the failing STAMP applications, the proposed approach for profile-based scheduling in
Transactional Memory systems looks sound, and achieves significantly better results than
previously observed.

As the data implies, scheduling of transactional applications still greatly depends the
efficiency of the underlying software TM system in dealing with the application work-
loads: whenever the overhead of speculation obstructs the performance of parallel execu-
tion, the efficiency of scheduling techniques is thoroughly hindered. On the other hand,
whenever the software TM system presents a more favorable speedup scaling with the
number of concurrent threads, our scheduling heuristic is able to consistently turn that
behavior to its advantage, further improving the running time of the transactional appli-
cations.
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7 FINAL CONSIDERATIONS

The ultimate success of Transactional Memory will depend on whether it can actually
supersede traditional lock-based techniques in terms of performance and ease of use. Cur-
rent solutions still often demand that programmers manually tinker with the transactional
application and the speculative system to optimize the execution.

We build on a preexisting work devoted to Hardware Transactional Memory simu-
lation and performance modeling, as well as a user-level thread scheduler for Software
Transactional Memory systems, in both cases adding a phase of profile gathering to the
installation of an application in a given environment, and tuning the application based on
conclusions automatically derived from this collected data.

Our first proposal is an extension to the Syncchar Hardware TM infrastructure that
relies on the nature of processor simulation to seamlessly acquire detailed access pattern
data during a profiling execution, which can then be used to predict the most favorable
policies for the underlying Transactional Memory system when actually executing the
application. This prediction can be used to automatically tune the speculative system to
the particular application and runtime environment.

We also propose a method of low-overhead profiling and summarization of data ac-
cess patterns from Dynamic Transactions in Software TM system applications, and a
profile-guided scheduling of user-level threads based on the characteristics inferred for
the currently executing transactions. We write a profile-based scheduler based on a state-
of-the-art scheduling interface, extending it to use our novel representation of transactions
through their Signature, so that the conflict estimates closely resemble an average on the
execution of Dynamic Instances, accounting for the fact that transactions executed under
the same Signature are more likely to be similar than transactions that simply share a
superficial lexical identification.

7.1 Contributions

On the whole, despite all the work that can be found in the literature regarding auto-
matic optimization of lock-based applications, the field of Transactional Memory is still
comparatively recent, and generally lacks the basic tools aimed at debugging and perfor-
mance tuning. Our work on automated profile-based tuning of applications fills a part of
this gap by designing, implementing and evaluating methods of automatically optimizing
the execution of transactional applications.

In the case of our first proposal, we implement a profiling tool on top of Syncchar and
perform experiments on it, reaching the unfortunate conclusion that the framework is not
reliably usable as a basis for our profiling techniques, as it is built upon a simulator which
fails to execute the appropriate transactional semantics on a multicore simulation, which
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in turn hinders parallel concurrency from our profiling tool.
Regarding the second proposal, we implement and compare it against the state-of-

the-art Transactional Memory systems SwissTM and LUTS on two different architec-
tures, achieving a improvement in execution time of around 27% over SwissTM and
15% over LUTS. This improvement over the execution time of Transactional Memory
applications will greatly favor the future adoption of this method of synchronization in
high-performance contexts.

7.2 Future Work

The ProfSched scheduling approach treats the Conflict Probability CP (Ta, Tb) uni-
formly even when the Transaction Types are the same (that is, Ta = Tb). In the cases
where this probability is too high, a scheduler could attempt to differentiate between Dy-
namic Instances, blocking the execution of one of the threads and re-scheduling another
thread less likely to conflict in its place, perhaps even applying a more specific method of
conflict resolution for these “self-conflicting” cases.

ProfSched schedules transactions based on a comparison between their Conflict Es-
timate and their Expected Gain, weighted by a static value. While this approach is a
reasonable early method of comparison, it is possible that a more refined comparison
might yield a more unbiased scheduling when there are threads with low Expected Gain
that have a high Conflict Estimate, whose execution is all but prevented by this heuristic.
A variable weighting based on past execution, or even some randomization, may lead to
a scheduling that is more fair towards all transactions and avoids occasional incidents of
performance degradation due to excessive serialization.

While the profiling information collected allows for the scheduling of transactions
based on a more complete view of the whole application, it is important to notice that
our work on LUTS focuses only on this scheduling, and does not take full advantage
of all optimizations that could be performed based on this profiling. For example, the
choice of conflict detection mechanism for an application would likely benefit from the
knowledge of what Transaction Types are expected to be executing at a given moment.
A post-profiling summarization of what Signatures dominate the execution at each point
should allow the dynamic tuning of the underlying Software TM system based on these
parameters.
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APPENDIX A: A BRIEF GUIDE TO SYNCCHAR

A.1 Introduction

The Syncchar TM infrastructure (described in Sections 3.3 and 5.3) can be down-
loaded from http://z.cs.utexas.edu/users/osa/metatm/releases/1.2/osa.img.bz2,
which contains the image file with the in-simulator file system. After downloading Sync-
char and setting up a Simics workspace, the Linux kernel and Syncchar modules must be
compiled and copied to the image file.

The C++ compiler must be GCC, version 4.5. Versions older than 4.1 are known for
miscompiling the map_demap interface (an internal C-language representation of memory
mapping in Simics), and newer versions are too strict when searching for #include di-
rectives, failing to compile the Syncchar C++ module. On some versions of GCC, the
arch/i386/kernel/Makefile must be modified to use -m32 instead of -m x86_i386, and
the static qualifier must be removed from mutex functions in kernel/mutex.c. The
Linux kernel can then be easily compiled with linux32 make HOSTCC=gcc-4.5, and a
similar operation can be used to compile each of the STAMP benchmarks. The Syncchar
utility script scripts/cp_linux can then be used to copy the kernel and the benchmarks
into the image file.

A.2 Inconveniences

When executing make clean; make under Syncchar, care must be taken, as some
modules in the sws/modules directory must be manually compiled with independent make
calls before the execution of Syncchar. Failure to do so will be silently ignored and cause
segmentation faults in the target simulated programs (not during the loading of Syncchar
modules).

Simics uses an image file to represent the file system. Since this file must be mounted
by the root user, Syncchar scripts must often be executed with super-user privileges, and
will produce files that will be further used by Syncchar. At any error during the Simics
boot-up, one should check whether any simulator files are owned by the root, and change
to the appropriate user instead. In particular, the sws/grub.simics file must not have
been removed by the Syncchar scripts.

During the course of our work, we encountered two MetaTM assertions that fail un-
der the name OSA_ASSERT FAILURE. One of them checked whether the pTx transaction
pointer has been relieved after TXCOMMIT, which must be fixed by the addition of a
call to the MetaTM magic instruction OSA_MAGIC(OSA_KERNEL_BOOT) in the Linux ker-
nel’s start_kernel at init/main.c. The other assertion was caught because the current
thread disappeared from MetaTM’s local version of process table; the authors of Sync-
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char seemed to think it wasn’t really a problem, since Syncchar didn’t rely on it, and the
solution consisted in commenting out this check.

One of the most insidious error messages consisted in the repeated printing of the
line System call 119 made inside a user tx, seemingly stuck in a loop. This may
be a result of a signal handler being called synchronously from inside a transaction. The
authors of Syncchar were able to reproduce this, and introduced a few extra hooks into
MetaTM from the kernel to properly handle context switching during a transaction. Their
SVN code has since been updated with a fixed version of MetaTM.

The aforementioned error message could also be caused by scheduling of threads with
negative PIDs (we always saw the PID -12347, deterministically), caused by the kernel
not properly informing MetaTM of process creation and context switches, corrupting its
memory instead. This problem is handled with a tricky set of special Simics instructions
that must be called at key points in the kernel. At the time we experienced this error, the
authors of MetaTM were able to identify the missing instruction and updated the SVN
code appropriately.

Some common warning messages, such as odd magic breakpoint 0x2058a0 and
xcpt#: 7 No translation addr: 0x39f90417 can be safely ignored. Other more se-
rious error messages, such as the sporadic failure of execution of TM benchmarks with
signal 11 (presumably Segmentation Fault) still require further looking into. The Sync-
char authors have not been able to identify and reproduce the source of this error, but its
terse PROCESS EXIT FAILURE: (SIGNAL: 11, CODE: 0) error message implies that any
measurement of execution time would just be meaningless.
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APPENDIX B: RAW DATA

With the purpose of furthering future comparisons, we present the full execution data
collected from ProfSched (omitted from Chapter 5.4 in the interest of brevity).

B.1 Running time

Table B.1 is similar to Table 6.1, but contains data from turing. This data is presented
more visually at Figure 6.2.

Table B.1: Running times (in seconds) ± standard deviation at turing.
Benchmark 1 thread 2 threads 4 threads
bayes 28.50± 3.02 22.32± 3.44 9.60± 4.37
genome 30.66± 0.02 17.51± 0.27 9.96± 0.04
intruder 180.12± 3.12 111.01± 2.18 64.32± 0.34
ssca2 110.68± 2.13 80.00± 0.64 59.63± 0.38
vacation (high) 281.45± 4.54 174.66± 2.92 91.21± 0.18
Benchmark 8 threads 16 threads 32 threads
bayes 12.03± 4.13 9.04± 3.52 6.63± 1.73
genome 9.29± 2.48 4.61± 0.14 6.10± 0.29
intruder 47.61± 0.36 39.02± 0.44 28.46± 0.28
ssca2 52.43± 3.88 56.65± 0.72 58.18± 0.34
vacation (high) 51.44± 0.23 23.67± 0.12 13.19± 1.11

Not shown in the Tables 6.1 and B.1 is the overhead of TxProf collection, which ac-
counts for about 10–20% of extra running time. Since this overhead is only incurred once,
during the profiling phase, and it is equally distributed among all executing transactions,
we deem it a reasonable cost — unlikely to skew the results of profiling or to excessively
burden the process of installing the application into the target system.

B.2 Speedup

Tables B.2 and B.3 are similar to Tables 6.2 and 6.3, but using light STAMP work-
loads. This data is presented more visually at Figure 6.3. In the same vein, Tables B.4
and B.5 represent the medium STAMP workloads. This data is presented more visually at
Figure 6.4.
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Table B.2: Speedup under light workload at viking.
Speedup Baseline LUTS ProfSched
bayes 1.08 0.33 0.34
genome 0.93 0.39 0.49
intruder 1.01 0.61 0.74
ssca2 1.21 0.98 1.27
vacation 3.08 1.82 1.91
Geometric mean 1.31 0.67 0.78

Table B.3: Speedup under light workload at turing.
Speedup Baseline LUTS ProfSched
bayes 0.33 0.08 0.08
genome 0.14 0.11 0.08
intruder 0.39 0.21 0.17
ssca2 0.59 0.44 0.35
vacation 1.64 0.69 0.54
Geometric mean 0.45 0.22 0.18

Table B.4: Speedup under medium workload at viking.
Speedup Baseline LUTS ProfSched
bayes 0.85 0.33 0.35
genome 1.74 0.87 1.12
intruder 1.76 1.41 1.71
ssca2 1.28 1.18 1.45
vacation 3.16 2.10 2.49
Geometric mean 1.60 1.00 1.19

Table B.5: Speedup under medium workload at turing.
Speedup Baseline LUTS ProfSched
bayes 0.38 0.09 0.09
genome 0.31 0.25 0.18
intruder 1.01 0.63 0.84
ssca2 0.87 0.72 0.61
vacation 2.38 0.98 1.80
Geometric mean 0.76 0.40 0.43
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