UMA CONEXÃO ENTRE O CÁLCULO E O CAOS. Carlos D. Halmann, Eduardo H. M. Brietzke (Departamento de Matemática Pura e Aplicada, Instituto de Matemática, UFRGS).

Partindo de uma iteração simples, como a do método de Newton, para encontrar as raízes da equação $y=x^2$ -b, podese mostrar o surgimento do caos. Para valores positivos de b, o Método de Newton funciona perfeitamente. Para valores negativos de b, o Método de Newton não consegue encontrar as raízes da equação. No entanto, de acordo com o ponto de partida, as iterações assumem três comportamentos diferentes. Fazendo b=-1 e x_0 =1, ocorre divergência para o infinito. Se agora x_0 =1/ $\sqrt{3}$, ocorre um ciclo entre $1/\sqrt{3}$ e $-1/\sqrt{3}$. Se agora iniciarmos com x_0 grande, x_n se aproxima da origem. Porém, quando bem próximo desta, x_n é jogado para longe novamente. De modo a melhor observar o que ocorre, procede-se a mudança x_n =cot $2^n\theta$. Percebe-se que se θ /(for um inteiro/ 2^n , x_n divergirá. Se θ /(for um racional, ocorrerão ciclos. Se θ /(for um irracional será encontrado o caos. Estabelecendo uma iteração para y_n g fazendo a mudança y_n =1/ z_n , chegamos a z_n +1=4 z_n -4 z_n . Esta última, é um análogo discreto da equação logística z'=az-bz', porém com novas propriedades não compartilhadas pela equação diferencial. É também um caso particular da iteração da família de parábolas z_n +1=a z_n -a z_n '. Esta, pela variação do parâmetro 'a' e de z_0 , conduz aos fractais bem como aos conjuntos de Cantor e Mandelbrot (CNPq).