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We show that the Dirac-bracket quantization of a single self-dual field leads naturally to the bosoniza-
tion formulas. We find a numerical parameter describing the soliton charge and unveiling hidden soliton

sectors.
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Quantization of chiral bosons is an essential ingredient
in the heterotic string.! More generally, one is faced
with the problem of quantizing self-dual fields,? y =y’
(overdot and prime mean differentiation with respect to
time ¢ and space x, respectively; we employ the notation,
terminology, and conventions of Ref. 2). Floreanini and
Jackiw have offered some solutions to the problem of a
single self-dual field, namely, they have constructed (i) a
nonlocal Lagrangean in terms of a local field; (ii) a local
Lagrangean in terms of a nonlocal field, and (iii) a local
Lagrangean in terms of a local field (using the input of
bosonization®). It was remarked in Ref. 2 that the
equal-time canonical commutation relations employed
are unusual, whereas in Costa and Girotti* it was point-
ed out that they are just the ones that follow from the
Dirac formalism for constrained systems.’

The purpose of this Letter is to improve further the
understanding of item iii above. We introduce the soli-
ton field as a charge-creating field (as it should be),
through its Dirac bracket with the charge-density soli-
ton. We show then that Poincaré invariance requires the
soliton field to obey one additional equation of motion.
Our integrating of this equation leads to a formula which
becomes identical to the “bosonization rule” after quan-
tization, explaining the origin of this rule for self-dual
fields. In our treatment there occurs a numerical param-
eter unveiling a hidden soliton sector.

In terms of the local charge-density soliton field, ¥, the
Lagrangean is

L= l—fdxdyl(x)e(x —p)x(y)— é—fdxlz(x),
(1)
leading to the canonically conjugate momentum
m() =1+ [dyx()ety—x). @

Actually this expression is a constraint since it does not
depend on the velocities. It has been shown* that there
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are no further (secondary) constraints, so that the Dirac
formalism will be set with the only second-class con-
straint

T() =m,(0) = + [ dyx(p)ely —x) =0, 3
{T), TGN =+ elx—y). 4)
As usual, Dirac brackets are defined by**
if.glo=1r.g} —fdzdz'{f,T(z)}Q “Uz,z")
x{Tz"),g, ()

where Q(z,z')={T(z),T(z")}. In particular, one ob-
tains

(), x(Np=6'(x—yp). 6)

All the symmetries (internal as well as external) are
defined with Dirac brackets. Thus, the Hamiltonian
which follows from (1),

H=1 [axr2(x), ™
generates the self-dual equation of motion for %:

1= Hip=x" (®)
The Lorentz transformations are generated by

M=1 [ax+120), ©)

and can be written in a familiar form? by use of the
equation of motion (8):

Srx(x) =0, Mip=2x(x)+1x'(x) +xx(x). (10)
Let us now introduce a charge-creating field u by
HG),uG)lp=iys(x —ylu(x), an

where y is the numerical parameter to which we have re-
ferred before. From (11) it follows that the Poincaré
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generators act on u(x) as
{Hu()p=iyx(x)u(x), 12)
IM,uOp=iyx () u (Ot +iyx(x)u(x)x. (13)

So besides self-duality of the soliton field, Poincaré in-
variance requires the following equation of motion:

w'(x)=—iyx(x)ulx). (14)

Observe also that u has zero dimension. In the follow-
ing, we will show that its quantum dimension comes en-
tirely from the normal order of (14) with respect to the
quanta of the charge-density soliton.

The integration of (14) is given in terms of the
momentum (2) by

ul(x) =2 (15)

It is clear that this formula is the source of the bosoniza-
tion rule in the quantum regime to which we now turn.
One approach to the quantum regime that exhibits the
full symmetry of the above constrained system is the
path integral.® One may integrate over the ¥ and =,
fields subject to the &-functional constraint &(my(x)
+ 5 fdye(y —x)x(y)). If first one integrates over the
ny field one gets the Lagrangean (1). Alternatively, we
may integrate over X using the functional constraint
§(x(x)+2m3(x)) arriving then at the Lagrangean

£=2f dxlmy) () — ()2 (16)

The second alternative is more suitable to perform the
computation of the u-field correlation functions with Eq.
(15). Since the Lagrangean is quadratic, these correla-
tion functions can be easily computed, analogously to the
Coulomb-gas approach to the Thirring model.” This cal-
culation leads to y%/4x for the dimension of u.

The operator quantization is obtained by the replace-
ment of the above Dirac brackets by commutators. Then

DG x()l=is'(x —y), a7
which can be realized with the decomposition? (at ¢ =0)

2(x) =2, () + 25 (x), (18)
where

o (1" B

2ol =i f; dk[E] alk)e = (19)
with

la(k),a" (k)] =8k —k"). 20

In order to define the full quantum regime one has to
specify the product between quantum fields. We will
choose the normal order with respect to the  field quan-
ta:

2(x)AG): =2H () A + A4 ) x(x), 1
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where A stands for X itself or other fields. So, to com-
pute the Poincaré transformation of the u field one has to
normal order expressions like

[u(x),2*G) ) =y6(x —y)u(x)x(y)
+y6(x—y)xGulx). (22)

Using the commutator that corresponds to the bracket
(11) one obtains

(), 221 =27y6(x —y)x(yIulx):
—i(y¥27)8,6(x —y)ulx), (23)
and so
ilMu(x)1=(/4n)u(x)
+H—iyx(NDux):1e+x). (24)

Thus the self-dual field « has dimension y?/4x, coming
entirely from quantum effects, and must fulfill the equa-
tion of motion

u'(x)=—iyx(x)ulx):. (25)

The integral of (25) is what has been called the bosoni-
zation rule’ or, for y>=2r, the fermion-boson equiva-
lence:

u(x) =expl2iyni,(x)lexpRiymn(x)], (26)

where 7y = — ¥ %in(x). We have shown that this formu-
la follows from our demands of u being a charge-
creating field and of Poincaré invariance. For y*=2r a
local canonical anticommuting field, u/,, exists and a lo-
cal Lagrangean can be written in terms of it.> For gen-
eral values of y the situation is more complicated. Local
fields with dimension g%/2, where g is an integer, can be
constructed as composites® of the uy, field [they are®
B, +0,)%u 128, +8,)9 tuyn - - @, +90,)uijpuyy, nor-
mal ordered with respect to the u1/; quantal. So, for
these particular values of the dimension, the canonical
theory may be described by the u,/, Lagrangean. Ob-
serve that in the left-right counterpart of this theory (the
Thirring model®) a Lagrangean can be written for all
values of y. In this case y plays the role of coupling con-
stant between the left- and right-handed currents. In the
self-dual situation it is not known to us if it is possible to
describe the theory, for general values of y, with the u /.
In any case, this point raises the question of what is the
elementary excitation in this model. In Ref. 2 the exci-
tation corresponding to the field u,/; was considered to
be the elementary one. On the other hand, for general
values of y, we have learned how to compute the correla-
tion functions of u’s from the x (or =) Lagrangean
(paying attention to the charge selection rules'®). At
any rate, it will be desirable to have a better understand-
ing of these soliton sectors.

We would like to make one further observation also
concerning item ii. As we have seen, in the functional-
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integral approach there is a complete symmetry between
the n; and x field formulations. Nevertheless, the field
my is nonlocal which implies a non-positive-definite two-
point function. At the level of the u-field correlation
functions the negative-norm states are ruled out by the
charge selection rule. '°

We also add a last remark regarding the origin of the
equation of motion (14). Forgetting for a moment the
reasoning that led to (14), let us compute from (11) the
following brackets:

HG)u' Y p=iys' (x —y)ulx)
+iys(x —p)u'(x), Q7)
(), iyx(x)u(x)}p
=—iys'(x —pulx) =y —y)x(xX)ulx), (28)
and so
G),u' ) +Hiyx(x)ulx)}p
=iys(x —y)u' ) +iyx(x)u(x)].  (29)

Since we do not want to have another field creating the
same charge as u creates, we have to impose u'+iyXu to
be zero for all times, namely, Eq. (14). This alternative
derivation of Eq. (14) goes through to the quantum case,
where it means electing u to create an irreducible repre-
sentation of the current algebra (17). Actually, this ap-
proach was considered by Kurak'' in the non-Abelian
case where it was shown that the irreducibility of the
representation of Kac-Moody algebras'? leads to equa-

tions analogous to Eq. (25). The non-Abelian case is
relevant regarding the chiral-boson version' of the
heterotic string and we plan to come back to this point in
a future report.
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