Mostrar registro simples

dc.contributor.authorBarbosa, Marcia Cristina Bernardespt_BR
dc.date.accessioned2014-08-19T02:10:45Zpt_BR
dc.date.issued1993pt_BR
dc.identifier.issn1063-651Xpt_BR
dc.identifier.urihttp://hdl.handle.net/10183/101396pt_BR
dc.description.abstractWe consider a spin system with competing interactions that are isotropic with respect to the axes of a cubic lattice. On the basis of an e expansion, we demonstrate that for small values of the external field H, the paramagnetic-to-modulated-phase transition remains first order. For larger fields, such a transition changes to a continuous one at a tricritical point ~ As one varies the wave vector q that is related to the modulated phase, one finds a line of such tricritical points. We remark that such a line must end at a Lifshitz tricritical point at qc = 0.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.relation.ispartofPhysical Review. E, Statistical Physics, Plasmas, Fluids and Related Interdisciplinary Topics. New York. Vol. 48, no. 3 (Sept. 1993), p. 1744-1751pt_BR
dc.rightsOpen Accessen
dc.subjectFísica estatísticapt_BR
dc.subjectMecânica estatísticapt_BR
dc.titleIsing model with isotropic competing interactions in the presence of a field : a tricritical-lifshitz-point realizationpt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb000056648pt_BR
dc.type.originEstrangeiropt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples