Mostrar registro simples

dc.contributor.authorAlmeida, Rita Maria Cunha dept_BR
dc.contributor.authorClendenon, Sherry G.pt_BR
dc.contributor.authorRichards, William Grahampt_BR
dc.contributor.authorBoedigheimer, Michael J.pt_BR
dc.contributor.authorDamore, Michael A.pt_BR
dc.contributor.authorRossetti, Sandropt_BR
dc.contributor.authorHarris, Peter C.pt_BR
dc.contributor.authorHerbert, Brittney Sheapt_BR
dc.contributor.authorXu, Wei Minpt_BR
dc.contributor.authorWandinger-Ness, Angelapt_BR
dc.contributor.authorWard, Heather H.pt_BR
dc.contributor.authorGlazier, James Alexanderpt_BR
dc.contributor.authorBacallao, Robert L.pt_BR
dc.date.accessioned2017-06-20T02:34:01Zpt_BR
dc.date.issued2016pt_BR
dc.identifier.issn1479-7364pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/159798pt_BR
dc.description.abstractBackground: Autosomal dominant polycystic kidney disease (ADPKD) causes progressive loss of renal function in adults as a consequence of the accumulation of cysts. ADPKD is the most common genetic cause of end-stage renal disease. Mutations in polycystin-1 occur in 87% of cases of ADPKD and mutations in polycystin-2 are found in 12% of ADPKD patients. The complexity of ADPKD has hampered efforts to identify the mechanisms underlying its pathogenesis. No current FDA (Federal Drug Administration)-approved therapies ameliorate ADPKD progression. Results: We used the de Almeida laboratory’s sensitive new transcriptogram method for whole-genome gene expression data analysis to analyze microarray data from cell lines developed from cell isolates of normal kidney and of both non-cystic nephrons and cysts from the kidney of a patient with ADPKD. We compared results obtained using standard Ingenuity Volcano plot analysis, Gene Set Enrichment Analysis (GSEA) and transcriptogram analysis. Transcriptogram analysis confirmed the findings of Ingenuity, GSEA, and published analysis of ADPKD kidney data and also identified multiple new expression changes in KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways related to cell growth, cell death, genetic information processing, nucleotide metabolism, signal transduction, immune response, response to stimulus, cellular processes, ion homeostasis and transport and cofactors, vitamins, amino acids, energy, carbohydrates, drugs, lipids, and glycans. Transcriptogram analysis also provides significance metrics which allow us to prioritize further study of these pathways. Conclusions: Transcriptogram analysis identifies novel pathways altered in ADPKD, providing new avenues to identify both ADPKD’s mechanisms of pathogenesis and pharmaceutical targets to ameliorate the progression of the disease.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.relation.ispartofHuman Genomics. London. Vol. 10 (Nov. 2016), 37, 24 p.pt_BR
dc.rightsOpen Accessen
dc.subjectRim policístico autossômico dominantept_BR
dc.subjectKidneyen
dc.subjectTranscriptogramen
dc.subjectTranscriptomapt_BR
dc.subjectCystic kidney diseaseen
dc.subjectBioinformáticapt_BR
dc.subjectAutosomal dominant polycystic kidney diseaseen
dc.subjectExpressão gênicapt_BR
dc.subjectBioinformaticsen
dc.subjectPathway identificationen
dc.titleTranscriptome analysis reveals manifold mechanisms of cyst development in ADPKDpt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb001022809pt_BR
dc.type.originEstrangeiropt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples