Mostrar registro simples

dc.contributor.authorMinchev, Ivanpt_BR
dc.contributor.authorAnders, Friedrichpt_BR
dc.contributor.authorRecio-Blanco, Alejandrapt_BR
dc.contributor.authorChiappini, C.C.M.pt_BR
dc.contributor.authorLaverny, Patrick dept_BR
dc.contributor.authorQueiroz, Anna Bárbara de Andradept_BR
dc.contributor.authorSteinmetz, M.pt_BR
dc.contributor.authorAdibekyan, Vardanpt_BR
dc.contributor.authorCarrillo, Ismaelpt_BR
dc.contributor.authorCescutti, Gabrielept_BR
dc.contributor.authorGuiglion, Guillaumept_BR
dc.contributor.authorHayden, Michaelpt_BR
dc.contributor.authorJong, Roelof S. dept_BR
dc.contributor.authorKordopatis, Georgespt_BR
dc.contributor.authorMajewski, Steven Raymondpt_BR
dc.contributor.authorMartig, Mariept_BR
dc.contributor.authorSantiago, Basilio Xavierpt_BR
dc.date.accessioned2019-05-15T02:37:50Zpt_BR
dc.date.issued2018pt_BR
dc.identifier.issn0035-8711pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/194238pt_BR
dc.description.abstractWe present a semi-empirical, largelymodel-independent approach for estimatingGalactic birth radii, rbirth, for Milky Way disc stars. The technique relies on the justifiable assumption that a negative radial metallicity gradient in the interstellar medium (ISM) existed for most of the disc lifetime. Stars are projected back to their birth positions according to the observationally derived age and [Fe/H] with no kinematical information required. Applying our approach to the AMBRE:HARPS and HARPS–GTO local samples, we show that we can constrain the ISM metallicity evolution with Galactic radius and cosmic time, [Fe/H]ISM(r, t), by requiring a physically meaningful rbirth distribution. We find that the data are consistent with an ISM radial metallicity gradient that flattens with time from ~− 0.15 dex kpc−1 at the beginning of disc formation, to its measured present-day value (−0.07 dex kpc−1). We present several chemokinematical relations in terms of mono-rbirth populations. One remarkable result is that the kinematically hottest stars would have been born locally or in the outer disc, consistent with thick disc formation from the nested flares of mono-age populations and predictions from cosmological simulations. This phenomenon can be also seen in the observed age–velocity dispersion relation, in that its upper boundary is dominated by stars born at larger radii. We also find that the flatness of the local age–metallicity relation (AMR) is the result of the superposition of the AMRs of mono-rbirth populations, each with a well-defined negative slope. The solar birth radius is estimated to be 7.3 ± 0.6 kpc, for a current Galactocentric radius of 8 kpc.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.relation.ispartofMonthly notices of the royal astronomical society. Oxford. Vol. 481, no. 2 (Dec. 2018), p. 1645-1657pt_BR
dc.rightsOpen Accessen
dc.subjectISM: abundancesen
dc.subjectEvolucao galaticapt_BR
dc.subjectFormacao de galaxiaspt_BR
dc.subjectGalaxy: abundancesen
dc.subjectGalaxy: discen
dc.subjectCinemáticapt_BR
dc.subjectGalaxy: evolutionen
dc.subjectMetalicidadept_BR
dc.subjectGalaxy: formationen
dc.subjectMeio interestelarpt_BR
dc.subjectGalaxy: kinematics and dynamicsen
dc.subjectGalaxy: solar neighbourhooden
dc.subjectGalaxies: ISMen
dc.titleEstimating stellar birth radii and the time evolution of Milky Way’s ISM metallicity gradientpt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb001086167pt_BR
dc.type.originEstrangeiropt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples