Counting orientations of graphs with no strongly connected tournaments
dc.contributor.author | Botler, Fábio Happ | pt_BR |
dc.contributor.author | Hoppen, Carlos | pt_BR |
dc.contributor.author | Mota, Guilherme Oliveira | pt_BR |
dc.date.accessioned | 2022-08-16T04:47:07Z | pt_BR |
dc.date.issued | 2021 | pt_BR |
dc.identifier.issn | 1877-0509 | pt_BR |
dc.identifier.uri | http://hdl.handle.net/10183/246962 | pt_BR |
dc.description.abstract | Let Sk(n) be the maximum number of orientations of an n-vertex graph G in which no copy of Kk is strongly connected. For all integers n, k ≥ 4 where n ≥ 5 or k ≥ 5, we prove that Sk(n) = 2tk - 1(n), where tk-1(n) is the number of edges of the n-vertex (k - 1)-partite Turán graph Tk-1(n). Moreover, we prove that Tk-1(n) is the only graph having 2tk-1(n) orientations with no strongly connected copies of Kk. | en |
dc.format.mimetype | application/pdf | pt_BR |
dc.language.iso | eng | pt_BR |
dc.relation.ispartof | Procedia Computer Science. Amsterdam. Vol. 195 (2021), p. 385 - 393 | pt_BR |
dc.rights | Open Access | en |
dc.subject | Orientations | en |
dc.subject | Grafos | pt_BR |
dc.subject | Tournaments | en |
dc.subject | Orientação | pt_BR |
dc.subject | Complete graphs | en |
dc.title | Counting orientations of graphs with no strongly connected tournaments | pt_BR |
dc.type | Artigo de periódico | pt_BR |
dc.identifier.nrb | 001136295 | pt_BR |
dc.type.origin | Estrangeiro | pt_BR |
Este item está licenciado na Creative Commons License
-
Artigos de Periódicos (40175)Ciências Exatas e da Terra (6132)