Mostrar registro simples

dc.contributor.authorBotler, Fábio Happpt_BR
dc.contributor.authorHoppen, Carlospt_BR
dc.contributor.authorMota, Guilherme Oliveirapt_BR
dc.date.accessioned2022-08-16T04:47:07Zpt_BR
dc.date.issued2021pt_BR
dc.identifier.issn1877-0509pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/246962pt_BR
dc.description.abstractLet Sk(n) be the maximum number of orientations of an n-vertex graph G in which no copy of Kk is strongly connected. For all integers n, k ≥ 4 where n ≥ 5 or k ≥ 5, we prove that Sk(n) = 2tk - 1(n), where tk-1(n) is the number of edges of the n-vertex (k - 1)-partite Turán graph Tk-1(n). Moreover, we prove that Tk-1(n) is the only graph having 2tk-1(n) orientations with no strongly connected copies of Kk.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.relation.ispartofProcedia Computer Science. Amsterdam. Vol. 195 (2021), p. 385 - 393pt_BR
dc.rightsOpen Accessen
dc.subjectOrientationsen
dc.subjectGrafospt_BR
dc.subjectTournamentsen
dc.subjectOrientaçãopt_BR
dc.subjectComplete graphsen
dc.titleCounting orientations of graphs with no strongly connected tournamentspt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb001136295pt_BR
dc.type.originEstrangeiropt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples