Mostrar registro simples

dc.contributor.authorKhan, Niqabpt_BR
dc.contributor.authorWolff, Rogério Nunespt_BR
dc.contributor.authorUllah, Hameedpt_BR
dc.contributor.authorChacón, Gustavopt_BR
dc.contributor.authorRosa, Washington Santapt_BR
dc.contributor.authorDupont, Jairtonpt_BR
dc.contributor.authorGonçalves, Renato Vitalinopt_BR
dc.contributor.authorKhan, Sherdilpt_BR
dc.date.accessioned2023-02-10T04:55:02Zpt_BR
dc.date.issued2022pt_BR
dc.identifier.issn2633-5409pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/254554pt_BR
dc.description.abstractForeign elemental doping is a widely utilized strategy to modify the electronic structure of semiconductors. Herein, we present a dopant-free novel synthesis approach to control the electronic structure of a semiconductor. Utilizing butyl methyl imidazolium ([BMIM]Cl) and methoxyethyl methyl imidazolium ([M(MOE)Im][Cl]) chloride ILs, we prepared four different Bi and V based ILs: 3-butyl-1-methyl-1H-imidazol 3-ium vanadate [BMIm][VO3], 3-(2-methoxyethyl)-1-methyl-1H-imidazol-3-ium vanadate [M(MOE)Im][VO3], 3-butyl-1-methyl-1H-imidazol-3-ium tetrachlorobismate [BMIm][BiCl4] and 3-(2-methoxyethyl)-1-methyl 1H-imidazol-3-ium tetrachlorobismate [M(MOE)Im][BiCl4]. Owing to the bimetallic oxide nature of BiVO4, these gels were mixed either with each other or with Bi/V commercial salts and simply heat-treated to obtain monoclinic BiVO4. Depending on the IL, the bandgap energy of pure BiVO4 will be redshifted (2.44 to 2.25 eV). The IL based synthesis induced oxygen vacancies and uplifted the BiVO4 valence band edge as observed in the X-ray photoelectron spectroscopy (XPS). These effects were profound for IL anchored Bi; however, the side effects of this synthesis were chemisorption of a higher oxygen content and low reactivity of Bi with V to form an additional V2O5 phase. ILs acted as templates to form smooth spherical particles with improved crystallinity. [M(MOE)Im] based synthesis resulted in lower-order crystallinity and a large V–O bonding length of BiVO4 compared to [BMIm] which may be ascribed to its lower-order cationic–anionic electrostatic attraction associated with the presence of oxygen in the ether-group for [M(MOE)Im]. [BMIm] cation-based synthesis suppressed photogenerated charge-recombination and resulted in a five-fold O2 evolution of B30 mmol for 3 h (AM 1.5G illumination) compared to pure BiVO4 which was better compared to the sample prepared by the conventional hydrothermal process. It also improved the photocurrent, and the MS plots have shown that the conduction band was not much affected; however, the defect density was larger for IL based synthesisen
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoporpt_BR
dc.relation.ispartofMaterials Advances. Cambridge. Vol. 3, no. 16 (Aug. 2022), p. 6485–6495pt_BR
dc.rightsOpen Accessen
dc.subjectSemicondutorespt_BR
dc.subjectEspectroscopia de fotoelétrons excitados por raios Xpt_BR
dc.subjectLíquidos iônicospt_BR
dc.subjectFotocatálisept_BR
dc.titleIonic liquid based dopant-free band edge shift in BiVO4 particles for photocatalysis under simulated sunlight irradiationpt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb001153847pt_BR
dc.type.originEstrangeiropt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples