Mostrar registro simples

dc.contributor.authorSantos, Pedro Machado Nery dospt_BR
dc.contributor.authorMendes, Sérgio Leonardopt_BR
dc.contributor.authorBiazoli Junior, Claudinei Eduardopt_BR
dc.contributor.authorGadelha, Arypt_BR
dc.contributor.authorSalum Junior, Giovanni Abrahãopt_BR
dc.contributor.authorMiguel, Eurípedes Constantinopt_BR
dc.contributor.authorRohde, Luis Augusto Paimpt_BR
dc.contributor.authorSato, João Ricardopt_BR
dc.date.accessioned2023-08-03T03:32:44Zpt_BR
dc.date.issued2023pt_BR
dc.identifier.issn1662-453Xpt_BR
dc.identifier.urihttp://hdl.handle.net/10183/263081pt_BR
dc.description.abstractGenerative Adversarial Networks (GANs) are promising analytical tools in machine learning applications. Characterizing atypical neurodevelopmental processes might be useful in establishing diagnostic and prognostic biomarkers of psychiatric disorders. In this article, we investigate the potential of GANs models combined with functional connectivity (FC) measures to build a predictive neurotypicality score 3-years after scanning. We used a ROI-to-ROI analysis of resting-state functional magnetic resonance imaging (fMRI) data from a community-based cohort of children and adolescents (377 neurotypical and 126 atypical participants). Models were trained on data from neurotypical participants, capturing their sample variability of FC. The discriminator subnetwork of each GAN model discriminated between the learned neurotypical functional connectivity pattern and atypical or unrelated patterns. Discriminator models were combined in ensembles, improving discrimination performance. Explanations for the model’s predictions are provided using the LIME (Local Interpretable Model-Agnostic) algorithm and local hubs are identified in light of these explanations. Our findings suggest this approach is a promising strategy to build potential biomarkers based on functional connectivity.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.relation.ispartofFrontiers in neuroscience. Lausanne. Vol. 16 (2023), artigo 1025492, 12 p.pt_BR
dc.rightsOpen Accessen
dc.subjectMachine learningen
dc.subjectAprendizado de máquinapt_BR
dc.subjectCriançapt_BR
dc.subjectBiomarkeren
dc.subjectNeural networksen
dc.subjectBiomarcadorespt_BR
dc.subjectChildrenen
dc.subjectNeurôniospt_BR
dc.subjectRede nervosapt_BR
dc.subjectFunctional connectivityen
dc.subjectGANsen
dc.subjectCérebropt_BR
dc.subjectNeurodevelopmenten
dc.titleAssessing atypical brain functional connectivity development : an approach based on generative adversarial networkspt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb001172200pt_BR
dc.type.originEstrangeiropt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples