Mostrar registro simples

dc.contributor.authorCannizzaro, Giuseppept_BR
dc.contributor.authorGonçalves, Patríciapt_BR
dc.contributor.authorMisturini, Ricardopt_BR
dc.contributor.authorOccelli, Alessandrapt_BR
dc.date.accessioned2025-06-03T06:43:12Zpt_BR
dc.date.issued2025pt_BR
dc.identifier.issn0044-3719pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/292444pt_BR
dc.description.abstractWe study the equilibrium fluctuations of an interacting particle system evolving on the discrete ring with N ∈ N points, denoted byTN , and with three species of particles that we name A, B and C, but such that at each site there is only one particle. We prove that proper choices of density fluctuation fields (that match those from nonlinear fluctuating hydrodynamics theory) associated to the (two) conserved quantities converge, in the limit N → ∞, to a system of stochastic partial differential equations, that can either be the Ornstein–Uhlenbeck equation or the Stochastic Burgers equation. To understand the cross interaction between the two conserved quantities, we derive a general version of the Riemann–Lebesgue lemma which is of independent interest.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoengpt_BR
dc.relation.ispartofProbability theory and related fields. Berlin. Vol. 191, n. 1-2 (Feb. 2025), p. 161 - 420pt_BR
dc.rightsOpen Accessen
dc.subjectStochastic Burgers equationen
dc.subjectEquação de Burgerpt_BR
dc.subjectOrnstein-Uhlenbeck processen
dc.subjectEquação de KPZ (Kardar–Parisi–Zhang)pt_BR
dc.subjectKPZ equationen
dc.subjectMulti-componenten
dc.subjectCrossover weakly asymmetric exclusionen
dc.subjectTwo speciesen
dc.titleFrom ABC to KPZpt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb001242955pt_BR
dc.type.originEstrangeiropt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples