Mostrar registro simples

dc.contributor.advisorScharcanski, Jacobpt_BR
dc.contributor.authorRamos, Yessenia Deysi Yaript_BR
dc.date.accessioned2013-07-26T01:45:44Zpt_BR
dc.date.issued2013pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/76248pt_BR
dc.description.abstractEsta dissertação apresenta um novo método para cálculo da pose da cabeça em imagens monoculares. Este cálculo é estimado no sistema de coordenadas da câmera, comparando as posições das características faciais específicas com as de múltiplas instâncias do modelo da face em 3D. Dada uma imagem de uma face humana, o método localiza inicialmente as características faciais, como nariz, olhos e boca. Estas últimas são detectadas e localizadas através de um modelo ativo de forma para faces. O algoritmo foi treinado sobre um conjunto de dados com diferentes poses de cabeça. Para cada face, obtemos um conjunto de pontos característicos no espaço de imagem 2D. Esses pontos são usados como referências na comparação com os respectivos pontos principais das múltiplas instâncias do nosso modelo de face em 3D projetado no espaço da imagem. Para obter a profundidade de cada ponto, usamos as restrições impostas pelo modelo 3D da face por exemplo, os olhos tem uma determinada profundidade em relação ao nariz. A pose da cabeça é estimada, minimizando o erro de comparação entre os pontos localizados numa instância do modelo 3D da face e os localizados na imagem. Nossos resultados preliminares são encorajadores e indicam que a nossa abordagem produz resultados mais precisos que os métodos disponíveis na literatura.pt_BR
dc.description.abstractThis dissertation presents a new method to accurately compute the head pose in mono cular images. The head pose is estimated in the camera coordinate system, by comparing the positions of specific facial features with the positions of these facial features in multiple instances of a prior 3D face model. Given an image containing a face, our method initially locates some facial features, such as nose, eyes, and mouth; these features are detected and located using an Adaptive Shape Model for faces , this algorithm was trained using on a data set with a variety of head poses. For each face, we obtain a collection of feature locations (i.e. points) in the 2D image space. These 2D feature locations are then used as references in the comparison with the respective feature locations of multiple instances of our 3D face model, projected on the same 2D image space. To obtain the depth of every feature point, we use the 3D spatial constraints imposed by our face model (i.e. eyes are at a certain depth with respect to the nose, and so on). The head pose is estimated by minimizing the comparison error between the 3D feature locations of the face in the image and a given instance of the face model (i.e. a geometrical transformation of the face model in the 3D camera space). Our preliminary experimental results are encouraging, and indicate that our approach can provide more accurate results than comparable methods available in the literature.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoporpt_BR
dc.rightsOpen Accessen
dc.subjectComputação gráficapt_BR
dc.subjectHead poseen
dc.subject3D face modelen
dc.subjectProcessamento de imagenspt_BR
dc.subjectInformatica : Medicinapt_BR
dc.subjectASMen
dc.subjectMonocular imagesen
dc.subjectPattern matchingen
dc.titleEstimativa da pose da cabeça em imagens monoculares usando um modelo no espaço 3Dpt_BR
dc.title.alternativeEstimation of the head pose based on monocular images en
dc.typeDissertaçãopt_BR
dc.identifier.nrb000893248pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentInstituto de Informáticapt_BR
dc.degree.programPrograma de Pós-Graduação em Computaçãopt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2013pt_BR
dc.degree.levelmestradopt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples