Mostrar registro simples

dc.contributor.advisorZiegelmann, Flavio Augustopt_BR
dc.contributor.authorVelho, Desireè de Boerpt_BR
dc.date.accessioned2018-08-18T03:01:05Zpt_BR
dc.date.issued2018pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/181099pt_BR
dc.description.abstractO estudo da volatilidade apresenta um papel importante em áreas como economia e estatística. Este trabalho inicialmente visa, através de dados simulados, identificar se a dinâmica GAS (Generalized Autoregressive Score) traz benefícios em relação à dinâmica GARCH (Generalized Autoregressive Conditional Heteroskedasticity) usada para estimar volatilidade. O modelo GAS, proposto por Creal, Koopman e Lucas (2008), é um modelo de séries temporais para parâmetros variantes no tempo, onde o gradiente da função de probabilidade no instante t-1 (em relação ao parâmetro variante no tempo) determina parcialmente a dinâmica do parâmetro variante. O modelo GARCH, proposto por Bollerslev (1986), descreve a dinâmica da variância condicional (volatilidade) como parcialmente dependente dos quadrados passados das observações. Além disso, dados empíricos provenientes da série do índice Bovespa serão analisados a fim de se comparar a performance dos modelos propostos em situações reais.pt_BR
dc.description.abstractThe study of volatility presents an important role in areas such as economics and statistics. This work initially aims, through simulated data, to identify if the GAS (Generalized Autoregressive Score) dynamics brings benefits in relation to the GARCH (Generalized Autoregressive Conditional Heteroskedasticity) dynamics used to estimate volatility. The GAS model, proposed by Creal, Koopman e Lucas (2008), is a time series model for time varying parameters, where the gradient of the probability function at time t-1 (in relation to the time variant parameter) partially determines the dynamics of the variant parameter. In addition, empirical data from the Bovespa index series will be analyzed in order to compare the performance of the proposed models in real situations.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoporpt_BR
dc.rightsOpen Accessen
dc.subjectSéries temporaispt_BR
dc.subjectGASen
dc.subjectVolatilidadept_BR
dc.subjectGARCHen
dc.subjectTime Seriesen
dc.subjectVolatilityen
dc.titleEstimação de volatilidade utilizando modelos GAS e GARCHpt_BR
dc.typeTrabalho de conclusão de graduaçãopt_BR
dc.identifier.nrb001073625pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentInstituto de Matemática e Estatísticapt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2018pt_BR
dc.degree.graduationEstatística: Bachareladopt_BR
dc.degree.levelgraduaçãopt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples