Big data e educação matemática : algumas aproximações
dc.contributor.advisor | Dalla Vecchia, Rodrigo | pt_BR |
dc.contributor.author | Gayeski, Rose Grochot | pt_BR |
dc.date.accessioned | 2019-06-29T02:36:41Z | pt_BR |
dc.date.issued | 2019 | pt_BR |
dc.identifier.uri | http://hdl.handle.net/10183/196412 | pt_BR |
dc.description.abstract | A presente dissertação tem por objetivo investigar as potencialidades educacionais da relação entre Modelagem Matemática e Literacia Digital, por meio dos recursos do Big Data em específico do Google Correlate e Google Trends, na construção do conhecimento matemático. Como pergunta diretriz, assumimos o seguinte questionamento: Como se mostram as potencialidades educacionais do Big Data associado à Modelagem Matemática? Em consequência do questionamento assumimos uma abordagem qualitativa. Na busca por respostas a temática pesquisada, embasamo-nos principalmente, nas ideias de: Modelagem Matemática de Dalla Vecchia (2012) e Soares (2015); Literacia Digital de Jenkins et al. (2009); Big Data de Dalla Vecchia (2015) e Santos e Lemes (2014); e Narrativas digitais de Murray (2003), Dalcin (2018), Benjamin (1994), Larrosa (2002), Clandinin e Connely (2011). Procuramos identificar por meio dos modelos matemáticos construídos com o Google Correlate as habilidades de jogabilidade, performance, simulação, apropriação, multitarefa, distribuição cognitiva, inteligência coletiva, julgamento, navegação transmídia, networking e a negociação que levam a Literacia Digital. A produção de dados ocorreu por meio de tarefas desenvolvidas nos recursos do Big Data em seis encontros, durante as aulas de matemática, com duração de dois períodos cada. Os participantes da pesquisa foram alunos do primeiro ano do Ensino Médio. Os dados principais foram obtidos por meio da captação de vídeo (tela do computador) e áudio (fala dos alunos) utilizando o software Camtasia e por vídeos feitos durante as apresentações finais realizadas pelos estudantes. Os vídeos foram analisados e transcritos em partes constituindo excertos baseados nas ações e discussões feitas pelos alunos durante a realização das tarefas. A análise desses dados foi realizada à luz do referencial teórico e foi dividida em quatro categorias. Na primeira categoria analisada, evidenciaram-se as habilidades de Distribuição Cognitiva, a Multitarefa, a Navegação Transmídia, a Simulação, a Apropriação, o Julgamento, o Networking e a Inteligência Coletiva, as quais podem ter levado os estudantes ao desenvolvimento da Literacia Digital, de acordo com Jenkins et al. (2009). A segunda categoria analisada foram as narrativas digitais, fruto do processo de Modelagem Matemática desenvolvido. Ressaltamos que as tecnologias e a produção de informações se mostraram essenciais na criação das narrativas, havendo indícios de experiências vivenciadas com a realidade do mundo cibernético. Baseados em Murray (2003), entendemos que se trata de narrativas digitais, caracterizadas por aspectos associados ao hibridismo e ao multiautoral. A última categoria analisada foi a Modelagem Matemática, a qual apresentou um processo de 6 encaminhamento particular, partindo do Modelo e, a posteriori, buscando relações reais dadas pelos recursos de Big Data utilizados. | pt_BR |
dc.description.abstract | The present dissertation aims to investigate the educational potential of the relationship between Mathematical Modeling and Digital Literacy, through the resources of Big Data in specific Google Correlate and Google Trends, in the construction of mathematical knowledge. As a guiding question, we assume the following question: How do we show the educational potential of Big Data associated to Mathematical Modeling? As a result of the questioning we take a qualitative approach. In the search for answers to the researched subject, we are based mainly on the ideas of: Mathematical Modeling by Dalla Vecchia (2012) and Soares (2015); Digital Literacy by Jenkins et al. (2009); Big Data by Dalla Vecchia (2015) and Santos and Lemes (2014); and Digital Narratives of Murray (2003), Dalcin (2018), Benjamin (1994), Larrosa (2002), Clandinin and Connely (2011). We try to identify through the mathematical models built with Google Correlate the abilities of gameplay, performance, simulation, appropriation, multitasking, cognitive distribution, collective intelligence, judgment, navigation, transmigration, networking and negotiation that lead to Digital Literacy. The data production occurred through tasks developed in the resources of the Big Data in six meetings, during the classes of mathematics, with duration of two periods each. Participants in the survey were first year students in high school. The main data were obtained through the capture of video (computer screen) and audio (students' speech) using the Camtasia software and videos made during the final presentations made by the students. The videos were analyzed and transcribed in parts constituting excerpts based on the actions and discussions made by the students during the accomplishment of the tasks. The analysis of these data was carried out in the light of the theoretical reference and was divided into four categories. In the first category analyzed, the abilities of Cognitive Distribution, Multitasking, Transmission Navigation, Simulation, Appropriation, Judgment, Networking and Collective Intelligence were evidenced, which may have led the students to the development of Digital Literacy, according to Jenkins et al. (2009). The second category analyzed were the digital narratives, the result of the Mathematical Modeling process developed. We emphasize that the technologies and the production of information have been essential in the creation of the narratives, and there are indications of experiences lived with the reality of the cyber world. Based on Murray (2003), we understand that these are digital narratives, characterized by hybridism and multi-authorial aspects. The last category analyzed was Mathematical Modeling, which presented a particular routing 8 process, starting from the Model and, a posteriori, searching for real relations given by the Big Data resources used. | en |
dc.format.mimetype | application/pdf | pt_BR |
dc.language.iso | por | pt_BR |
dc.rights | Open Access | en |
dc.subject | Modelagem matemática | pt_BR |
dc.subject | Big data | pt_BR |
dc.subject | Narrativa digital | pt_BR |
dc.subject | Mídias digitais | pt_BR |
dc.title | Big data e educação matemática : algumas aproximações | pt_BR |
dc.type | Dissertação | pt_BR |
dc.identifier.nrb | 001096348 | pt_BR |
dc.degree.grantor | Universidade Federal do Rio Grande do Sul | pt_BR |
dc.degree.department | Instituto de Matemática e Estatística | pt_BR |
dc.degree.program | Programa de Pós-Graduação em Ensino de Matemática | pt_BR |
dc.degree.local | Porto Alegre, BR-RS | pt_BR |
dc.degree.date | 2019 | pt_BR |
dc.degree.level | mestrado | pt_BR |
Este item está licenciado na Creative Commons License
-
Multidisciplinar (2573)Ensino de Matemática (205)