2-(Dimethylamino)ethyl methacrylate/(2-hydroxyethyl) methacrylate/α-tricalcium phosphate cryogels for bone repair, preparation and evaluation of the biological response of human trabecular bone-derived cells and mesenchymal stem cells
Visualizar/abrir
Data
2014Autor
Tipo
Assunto
Abstract
The aim of this work is to evaluate the potential of cryogels to be used as scaffolds in tissue engineering. Scaffolds based on the α-tricalcium phosphate reinforced PDMAEMA (Poly(dimethyl aminoethyl methacrylate))/PHEMA (poly(hydroxyethyl methacrylate)) system were prepared and human trabecular bone-derived cells (HTBs) and bone marrow derived-mesenchymal stem cells (BM-MSCs) cultured on them. Several features, such as porosity, pore shape, molecular weight between crosslinks and mesh size, ar ...
The aim of this work is to evaluate the potential of cryogels to be used as scaffolds in tissue engineering. Scaffolds based on the α-tricalcium phosphate reinforced PDMAEMA (Poly(dimethyl aminoethyl methacrylate))/PHEMA (poly(hydroxyethyl methacrylate)) system were prepared and human trabecular bone-derived cells (HTBs) and bone marrow derived-mesenchymal stem cells (BM-MSCs) cultured on them. Several features, such as porosity, pore shape, molecular weight between crosslinks and mesh size, are studied. The most suitable PDMAEMA/PHEMA ratio for cell proliferation has been assessed and the viability, adhesion, proliferation and expression of osteoblastic biochemical markers are evaluated. The PDMAEMA/PHEMA ratio influences the scaffolds porosity. Values between 53% ± 5.7% for a greater content in PHEMA and 75% ± 5.5% for a greater content in PDMAEMA have been obtained. The polymer ratio also modifies the pore shape. A greater content in PDMAEMA leads also to bigger network mesh size. Each of the compositions were non-cytotoxic, the seeded cells remained viable for both BM-MSCs and HTBs. Thus, and based on the structural analysis, specimens with a greater content in PDMAEMA seem to provide a better structural environment for their use as scaffolds for tissue engineering. The α-tricalcium phosphate incorporation into the composition seems to favor the expression of the osteogenic phenotype. ...
Contido em
Polymers [recurso eletrônico]. Basel. Vol. 6 (2014), p. 2510-2525
Origem
Estrangeiro
Coleções
-
Artigos de Periódicos (40977)Engenharias (2456)
Este item está licenciado na Creative Commons License