Mostrar registro simples

dc.contributor.advisorSaldanha, Dejanira Luderitzpt_BR
dc.contributor.authorBittencourt, Helio Radkept_BR
dc.date.accessioned2012-01-06T01:19:55Zpt_BR
dc.date.issued2011pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/36053pt_BR
dc.description.abstractA detecção de mudanças na superfície terrestre é o principal objetivo em aplicações de sensoriamento remoto multitemporal. Sabe-se que imagens adquiridas em datas distintas tendem a ser altamente influenciadas por problemas radiométricos e de registro. Utilizando imagens de fração, obtidas a partir do modelo linear de mistura espectral (MLME), problemas radiométricos podem ser minimizados e a interpretação dos tipos de mudança na superfície terrestre é facilitada, pois as frações têm um significado físico direto. Além disso, interpretações ao nível de subpixel são possíveis. Esta tese propõe três algoritmos – rígido, suave e fuzzy – para a detecção de mudanças entre um par de imagens de fração, gerando mapas de mudança como produtos finais. As propostas requerem a suposição de normalidade multivariada para as diferenças de fração e necessitam de pouca intervenção por parte do analista. A proposta rígida cria mapas de mudança binários seguindo a mesma metodologia de um teste de hipóteses, baseando-se no fato de que os contornos de densidade constante na distribuição normal multivariada são definidos por valores da distribuição qui-quadrado, de acordo com a escolha do nível de confiança. O classificador suave permite gerar estimativas da probabilidade do pixel pertencer à classe de mudança, a partir de um modelo de regressão logística. Essas probabilidades são usadas para criar um mapa de probabilidades de mudança. A abordagem fuzzy é aquela que melhor se adapta ao conceito de pixel mistura, visto que as mudanças no uso e cobertura do solo podem ocorrer em nível de subpixel. Com base nisso, mapas dos graus de pertinência à classe de mudança foram criados. Outras ferramentas matemáticas e estatísticas foram utilizadas, tais como operações morfológicas, curvas ROC e algoritmos de clustering. As três propostas foram testadas utilizando-se imagens sintéticas e reais (Landsat-TM) e avaliadas qualitativa e quantitativamente. Os resultados indicam a viabilidade da utilização de imagens de fração em estudos de detecção de mudanças por meio dos algoritmos propostos.pt_BR
dc.description.abstractLand cover change detection is a major goal in multitemporal remote sensing applications. It is well known that images acquired on different dates tend to be highly influenced by radiometric differences and registration problems. Using fraction images, obtained from the linear model of spectral mixing (LMSM), radiometric problems can be minimized and the interpretation of changes in land cover is facilitated because the fractions have a physical meaning. Furthermore, interpretations at the subpixel level are possible. This thesis presents three algorithms – hard, soft and fuzzy – for detecting changes between a pair of fraction images. The algorithms require multivariate normality for the differences among fractions and very little intervention by the analyst. The hard algorithm creates binary change maps following the same methodology of hypothesis testing, based on the fact that the contours of constant density are defined by chi-square values, according to the choice of the probability level. The soft one allows for the generation of estimates of the probability of each pixel belonging to the change class by using a logistic regression model. These probabilities are used to create a map of change probabilities. The fuzzy approach is the one that best fits the concept behind the fraction images because the changes in land cover can occurr at a subpixel level. Based on these algorithms, maps of membership degrees were created. Other mathematical and statistical techniques were also used, such as morphological operations, ROC curves and a clustering algorithm. The algorithms were tested using synthetic and real images (Landsat-TM) and the results were analyzed qualitatively and quantitatively. The results indicate that fraction images can be used in change detection studies by using the proposed algorithms.en
dc.format.mimetypeapplication/pdf
dc.language.isoporpt_BR
dc.rightsOpen Accessen
dc.subjectSensoriamento remotopt_BR
dc.subjectChange detectionen
dc.subjectFraction imagesen
dc.subjectGeografia físicapt_BR
dc.subjectDigital image processingen
dc.subjectImagens digitaispt_BR
dc.subjectHard classificationen
dc.subjectSoft classificationen
dc.subjectFuzzy classificationen
dc.titleDetecção de mudanças a partir de imagens de fraçãopt_BR
dc.typeTesept_BR
dc.identifier.nrb000815617pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentInstituto de Geociênciaspt_BR
dc.degree.programPrograma de Pós-Graduação em Geografiapt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2011pt_BR
dc.degree.leveldoutoradopt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples