Uso de redes neurais artificiais para classificação da patogenicidade de Escherichia coli de origem aviária
Visualizar/abrir
Data
2013Orientador
Nível acadêmico
Mestrado
Tipo
Assunto
Resumo
E. coli Patogênicas Aviárias (APEC) são uma das causas de doenças extra-intestinais em aves, as quais trazem grande prejuízo econômico para o setor avícola mundial. Os avanços nas pesquisas vêm aumentando o entendimento dos mecanismos de patogenicidade das APEC, demonstrando a grande importância da interação dos diversos fatores de virulência na determinação da sua patogenicidade. Redes Neurais Artificiais (RNAs) têm mostrado ser uma poderosa ferramenta para uma vasta gama de aplicações. Neste ...
E. coli Patogênicas Aviárias (APEC) são uma das causas de doenças extra-intestinais em aves, as quais trazem grande prejuízo econômico para o setor avícola mundial. Os avanços nas pesquisas vêm aumentando o entendimento dos mecanismos de patogenicidade das APEC, demonstrando a grande importância da interação dos diversos fatores de virulência na determinação da sua patogenicidade. Redes Neurais Artificiais (RNAs) têm mostrado ser uma poderosa ferramenta para uma vasta gama de aplicações. Neste trabalho, o foco na aplicação da RNA é na predição (0 a 10) da patogenicidade de amostras APEC. Em 489 isolados APEC foram analisados a presença de 38 genes associados a virulência, o Índice de Patogenicidade (IP) in vivo e a motilidade das amostras. Duas RNAs foram construídas utilizando o software Neuroshell Classifier 2.1 (Ward Systems Group, Inc., Frederick, MD, USA) em duas fases distintas: treinamento e validação. Utilizou-se como camada de entrada, informações sobre a presença ou ausência dos 38 genes de virulência e a motilidade de cada uma das amostras, com uma camada de saída formada pelo IP in vivo previamente determinado. As RNAs construídas apresentaram uma classificação correta acima de 90%, sendo que a rede 1 apresentou uma classificação de 91,62 e a rede 2 de 99,03%. A rede 2 obteve uma especificidade superior a 99,64% em todas as categorias e uma sensibilidade superior a 92,86%. Isso demonstra que o método aqui proposto, revelou ser uma ótima ferramenta de suporte às decisões de médico veterinário, descartando no futuro a inoculação de animais. ...
Abstract
Avian Pathogenic Escherichia coli (APEC) are one of the causes of extraintestinal diseases in birds, and cause considerable economic losses to the poultry industry worldwide. Advances in research have increased understanding of pathogenic mechanisms of APEC, and have demonstrated the importance of the interaction of several virulence factors in determining their pathogenicity. Artificial Neural Networks (ANN) have shown to be a powerful tool for a wide range of applications. In this paper, the ...
Avian Pathogenic Escherichia coli (APEC) are one of the causes of extraintestinal diseases in birds, and cause considerable economic losses to the poultry industry worldwide. Advances in research have increased understanding of pathogenic mechanisms of APEC, and have demonstrated the importance of the interaction of several virulence factors in determining their pathogenicity. Artificial Neural Networks (ANN) have shown to be a powerful tool for a wide range of applications. In this paper, the focus on neural network applications in the prediction (index of 0-10) of the pathogenicity of isolates APEC. In 489 APEC isolates were analyzed: 38 virulenceassociated genes, the Pathogenicity Index (PI) in vivo and motility of the strains. Two ANNs were constructed using the software Neuroshell Classifier 2.1 (Ward Systems Group, Inc., Frederick, MD, USA) in two distinct phases: training and validation. We used as input layer, information about the presence or absence of the 38 virulenceassociated genes and the motility of each of the samples, with an output layer formed by a previously-determined PI in vivo. The ANNs showed a correct classification of the PI above of 90%, being that the network 1 had a rating of 91.62% and the network 2 of 99.03%. The network 2 obtained a specificity of over 99.64% and sensitivity greater than 92.86% in all categories. This demonstrates that the method proposed here has proven to be a great decision support tool for the veterinarian, thereby dispensing the inoculation of animals in the future. ...
Instituição
Universidade Federal do Rio Grande do Sul. Faculdade de Veterinária. Programa de Pós-Graduação em Ciências Veterinárias.
Coleções
-
Ciências Agrárias (3298)Ciências Veterinárias (1012)
Este item está licenciado na Creative Commons License