Mostrar registro simples

dc.contributor.advisorDiehl, Nicolau Matiel Lunardipt_BR
dc.contributor.authorMachado, Gabriel Pizziopt_BR
dc.date.accessioned2023-11-25T03:25:51Zpt_BR
dc.date.issued2023pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/267600pt_BR
dc.description.abstractA teoria de regularidade de soluções de equações diferenciais parciais (EDP's) tem tido grande importância ao longo das últimas décadas. Neste trabalho, iremos considerar uma das mais importantes equações parabólicas do tipo degenerado, a Equação de Meios Porosos, (PME) ut − div(m|u| m−1∇u) = f, m > 1. Como resultado principal desta dissertação, iremos mostrar que soluções fracas localmente limitadas da equação de meios porosos não-homogênea são localmente C 0,γ no espaço e C 0, γ θ no tempo, com γ = min 2α − 0 2 + (m − 1)α0 , r(2q − d) − 2q q[mr − (m − 1)] , θ := 2 + γ(1 − m), onde 0 < α0 ≤ 1 denota o expoente Hölder ótimo de soluções do caso homogêneo. A prova deste resultado é feita através de um lema de aproximação, onde aproximamos soluções da PME não-homogênea por soluções da equação homogênea, e num processo geométrico iterativo, usando a escala apropriada para a equação.pt_BR
dc.description.abstractThe regularity theory for solutions of Partial Di erential Equations (PDE's) has been of great importance over the last few decades. In this work, we consider one of the most important parabolic equations of the degenerate type, the Porous Medium Equation, (PME) ut − div(m|u| m−1∇u) = f, m > 1. As the main result of this thesis, we show that locally bound weak solutions of the non-homogeneous porous media equation are locally C 0,γ in space and C 0, γ θ in time, with γ = min 2α − 0 2 + (m − 1)α0 , r(2q − d) − 2q q[mr − (m − 1)] , θ := 2 + γ(1 − m). where 0 < α0 ≤ 1 denotes the optimal Hölder exponent of solutions of the homogeneous case. The proof of this result is made through an approximation lemma, where we approximate solutions of the inhomogeneous PME by solutions of the homogeneous equation, and in an iterative geometric process, using the appropriate scale for the equation.en
dc.format.mimetypeapplication/pdfpt_BR
dc.language.isoporpt_BR
dc.rightsOpen Accessen
dc.subjectEquaçõespt_BR
dc.subjectMeio porosopt_BR
dc.subjectEquações parabólicaspt_BR
dc.subjectIteração geométricapt_BR
dc.titleRegularidade fina para equação de meios porosospt_BR
dc.typeDissertaçãopt_BR
dc.identifier.nrb001187534pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentInstituto de Matemática e Estatísticapt_BR
dc.degree.programPrograma de Pós-Graduação em Matemáticapt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2023pt_BR
dc.degree.levelmestradopt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples