Os ambientes de geometria dinâmica e o pensamento hipotético-dedutivo
Visualizar/abrir
Data
2001Autor
Orientador
Co-orientador
Nível acadêmico
Doutorado
Tipo
Assunto
Resumo
O processo de demonstração é axial na construção do conhecimento matemático. Na geometria euclidiana, ele é um dos aspectos que apresenta grandes obstáculos aos alunos. Uma das dificuldades aparece na transição, necessária, entre o conhecimento de natureza empírica, já adquirido, e aquele a ser construído: a geometria euclidiana enquanto modelo teórico, organizado em axiomas, teoremas e demonstrações. Os recursos informáticos hoje disponíveis provocam a busca de estratégias pedagógicas favoráve ...
O processo de demonstração é axial na construção do conhecimento matemático. Na geometria euclidiana, ele é um dos aspectos que apresenta grandes obstáculos aos alunos. Uma das dificuldades aparece na transição, necessária, entre o conhecimento de natureza empírica, já adquirido, e aquele a ser construído: a geometria euclidiana enquanto modelo teórico, organizado em axiomas, teoremas e demonstrações. Os recursos informáticos hoje disponíveis provocam a busca de estratégias pedagógicas favoráveis à construção deste conhecimento. Entender as suas potencialidades torna-se um objeto de investigação: o que acontece com os processos cognitivos quando ao sujeito em interação com a máquina é possibilitada a concretização de seus construtos e ações mentais, e quando, mediante realimentação imediata, ele é levado a novas reelaborações e construções mentais? E como tais processos concorrem para um novo conhecimento? Esta tese propõe uma engenharia didática, em ambiente de geometria dinâmica, que favorece a ascensão dos alunos em patamar de conhecimento — de empírico a hipotético-dedutivo. Toma-se como referencial a teoria piagetiana, bem como a teoria da situação didática em matemática desenvolvida pela escola francesa. A engenharia se desenrola em três níveis: no primeiro, o propósito é a compreensão do significado e da necessidade de demonstração por via de construções geométricas; no segundo nível, pretende-se o desenvolvimento das primeiras habilidades na produção de demonstrações; e, no terceiro, os problemas propostos ao alunos exigem mais de seus funcionamentos cognitivos no tratamento adequado de uma figura geométrica — trata-se das extensões de desenho e concomitantes apreensões operativas responsáveis pela identificação de subconfigurações geométricas que dão suporte à argumentação dedutiva. Análise a posteriori do desenrolar dos trabalhos dos alunos confirma as expectativas anunciadas na análise a priori apresentada na fase de concepção da situação didática cuja implementação é proposta: o progresso dos alunos na construção de conhecimento em geometria, como modelo matemático, foi expressivo. ...
Instituição
Universidade Federal do Rio Grande do Sul. Centro Interdisciplinar de Novas Tecnologias na Educação. Programa de Pós-Graduação em Informática na Educação.
Coleções
-
Multidisciplinar (2573)Informática na Educação (322)
Este item está licenciado na Creative Commons License