Campos de Killing, curvatura média e translações
Visualizar/abrir
Data
2005Orientador
Nível acadêmico
Mestrado
Tipo
Resumo
D. Hoffman, R. Osserman e R. Schoen mostraram que se a aplicação de Gauss de uma superfície orientada completa de curvatura média constante M imersa em R³ está contida em um hemisfério fechado de S² (equivalentemente, a função <n, V> não muda de sinal em M, onde n é um vetor unitário normal de M e v algum vetor não nulo de R³), então M é invariante por um subgrupo a um parâmetro de translações de R³ (aquele determinado por v). Neste trabalho obtemos uma extensão deste resultado para o caso em q ...
D. Hoffman, R. Osserman e R. Schoen mostraram que se a aplicação de Gauss de uma superfície orientada completa de curvatura média constante M imersa em R³ está contida em um hemisfério fechado de S² (equivalentemente, a função <n, V> não muda de sinal em M, onde n é um vetor unitário normal de M e v algum vetor não nulo de R³), então M é invariante por um subgrupo a um parâmetro de translações de R³ (aquele determinado por v). Neste trabalho obtemos uma extensão deste resultado para o caso em que o espaço ambiente é uma variedade riemanniana e M uma hipersuperfície em N requerendo que a função <n, V> não mude de sinal em M, onde V é um campo de Killing em N. Na parte final deste trabalho consideramos uma variedade riemanniana Killing paralelizável N para definir uma translação Y: M -> Rn de uma hipersuperfície M de N que é uma extensão natural da aplicação de Gauss de uma hipersuperfície de Rn. Considerando as mesmas hipóteses para a imagem de y obtemos uma extensão do resultado original de Hoffman-Osserman-Schoen. ...
Abstract
D. Hoffman, R. Osserman and R. Schoen proved that if the Gauss map of a complete constant mean curvature oriented surface M immersed in R³ is contained in a closed hemisphere of S² (equivalently, the function <n, V> does not change sign on M where n is a unit normal vector of M and v some non zero vector of R³), then M is invariant by a one parameter subgroup of translations of R³ (the one determined by v). In this work we obtain an extension of this result to the case that the ambient space is ...
D. Hoffman, R. Osserman and R. Schoen proved that if the Gauss map of a complete constant mean curvature oriented surface M immersed in R³ is contained in a closed hemisphere of S² (equivalently, the function <n, V> does not change sign on M where n is a unit normal vector of M and v some non zero vector of R³), then M is invariant by a one parameter subgroup of translations of R³ (the one determined by v). In this work we obtain an extension of this result to the case that the ambient space is a Riemannian manifold and M a hypersurface on N by requiring that the function <n, V> does not change sign on M, where V is a Killing field on N. In the last part of this work we consider a Killing paralelizable Riemannian manifold N to define a translation map y : M -> Rn of a hypersurface M of N which is a natural extension of the Gauss map of a hypersurface in Rn. Considering the same hypothesis on the image of y we obtain, an extension to this setting, of the original Hoffman-Osserman-Schoen result. ...
Instituição
Universidade Federal do Rio Grande do Sul. Instituto de Matemática. Programa de Pós-Graduação em Matemática.
Coleções
-
Ciências Exatas e da Terra (5143)Matemática (367)
Este item está licenciado na Creative Commons License