Comportamento hidrodinâmico para o processo de exclusão com taxa lenta no bordo
Visualizar/abrir
Data
2013Autor
Orientador
Nível acadêmico
Mestrado
Tipo
Assunto
Resumo
Apresentamos o teorema de limite hidrodinâmico para o processo de exclusão simples simétrico com taxa lenta no bordo. Neste processo, partículas descrevem passeios aleatórios independentes no espaço O, 1, , N}, respeitando a regra de exclusão (que afirma que duas partículas não ocupam o mesmo lugar ao mesmo instante). Paralelamente, partículas podem nascer ou morrer nos sítios O e N com taxas proporcionais a N-1 . Com o devido reescalonamento, a densidade de partículas converge para a solução f ...
Apresentamos o teorema de limite hidrodinâmico para o processo de exclusão simples simétrico com taxa lenta no bordo. Neste processo, partículas descrevem passeios aleatórios independentes no espaço O, 1, , N}, respeitando a regra de exclusão (que afirma que duas partículas não ocupam o mesmo lugar ao mesmo instante). Paralelamente, partículas podem nascer ou morrer nos sítios O e N com taxas proporcionais a N-1 . Com o devido reescalonamento, a densidade de partículas converge para a solução fraca de urna equação diferencial parcial parabólica. Além disso, no primeiro capítulo, apresentamos seções sobre o Teorema de Prohorov, o espaço das funções càdlàg e a métrica de Skorohod definida nesse espaço. ...
Abstract
We present the hydrodynamic limit theorem for the simple symmetric exclusion process with slow driven boundary. In this process, particles describe independent random walks in the space O, 1, , N}, using the exclusion rule (which says that two particles do not occupy the same place at the same time). We also suppose that particles can be born or die on the sites O and N with rates proportional to N -1 . With the right rescaling procedure, the density of particles converges to the weak solution ...
We present the hydrodynamic limit theorem for the simple symmetric exclusion process with slow driven boundary. In this process, particles describe independent random walks in the space O, 1, , N}, using the exclusion rule (which says that two particles do not occupy the same place at the same time). We also suppose that particles can be born or die on the sites O and N with rates proportional to N -1 . With the right rescaling procedure, the density of particles converges to the weak solution of a parabolic partial differential equation. In the first chapter, we present sections about Prohorov's Theorem, the càdlàg function space and Skorohod's metric defined in this space. ...
Instituição
Universidade Federal do Rio Grande do Sul. Instituto de Matemática. Programa de Pós-Graduação em Matemática.
Coleções
-
Ciências Exatas e da Terra (5143)Matemática (367)
Este item está licenciado na Creative Commons License